## AREAS UNDER CURVES

1. Let $\mathbf{f}$ be a continuous curve over $[\mathbf{a}, \mathbf{b}]$. If $f(x) \geq o$ in $[\mathbf{a}, \mathbf{b}]$, then the area of the region bounded by $y=f(x)$, $x$-axis and the lines $x=a$ and $x=b$ is given by $\int_{a}^{b} f(x) d x$.

2. Let $\mathbf{f}$ be a continuous curve over $[\mathbf{a}, \mathbf{b}]$. If $f(x) \leq o$ in $[\mathbf{a}, \mathbf{b}]$, then the area of the region bounded by $y=f(x)$, $x$-axis and the lines $x=a$ and $x=b$ is given by $-\int_{a}^{b} f(x) d x$

3. Let $\mathbf{f}$ be a continuous curve over $[\mathbf{a}, \mathbf{b}]$. If $f(x) \geq o$ in $[\mathbf{a}, \mathbf{c}]$ and $f(x) \leq o$ in $[c, b]$ where $a<c<b$. Then the area of the region bounded by the curve $y=f(x)$, the $\mathbf{x}$-axis and the lines $\mathbf{x}=\mathbf{a}$ and $\mathbf{x}=\mathbf{b}$ is given by $\int_{a}^{c} f(x) d x-\int_{c}^{b} f(x) d x$.

4. Let $f(x)$ and $g(x)$ be two continuous functions over $[a, b]$. Then the area of the region bounded by the curves $y=f(x), y=g(x)$ and the lines $\mathbf{x}=\mathbf{a}, \mathbf{x}=\mathbf{b}$ is given by $\left|\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x\right|$.

5. Let $\mathbf{f}(\mathbf{x})$ and $\mathbf{g}(\mathbf{x})$ be two continuous functions over $[\mathbf{a}, \mathbf{b}]$ and $\mathrm{c} \in(a, b)$. If $\mathrm{f}(x)>g(x)$ in (a, c) and $\mathrm{f}(x)<g(x)$ in (c, b) then the area of the region bounded by the curves $y=f(x)$ and $y=g(x)$ and the lines $x=a, x=b$ is given by $\left|\int_{a}^{c}(\mathrm{f}(x)-g(x)) d x\right|+\left|\int_{c}^{b}(g(x)-\mathrm{f}(x)) d x\right|$

6. let $f(x)$ and $g(x)$ be two continuous functions over $[a, b]$ and these two curves are intersecting at $\mathbf{X}=\mathbf{x}_{\mathbf{1}}$ and $\mathbf{x}=\mathbf{x}_{\mathbf{2}}$ where $x_{1}, x_{2} \in(a, b)$ then the area of the region bounded by the curves $y=f(x)$ and $y=g(x)$ and the lines $x=x_{1}, x=x_{2}$ is given by


Note: The area of the region bounded by $\mathrm{x}=\mathrm{g}(\mathrm{y})$ where g is non negative continuous function in [c,d], the y axis and the lines $\mathrm{y}=\mathrm{c}$ and $\mathrm{y}=\mathrm{d}$ is given by $\int_{c}^{d} \mathrm{~g}(y) d y$.


## Very Short Answer Questions

## 1. Find the area of the region enclosed by the given area

$$
\text { i) } y=\cos x, y=1-\frac{2 x}{\pi} \text {. }
$$

Sol: Equations of the given curves are

$$
\begin{align*}
& y=\cos x  \tag{1}\\
& y=1-\frac{2 x}{\pi} \tag{2}
\end{align*}
$$

Solving (1) and (2)

$$
\cos x=1-\frac{2 x}{\pi}
$$

$\Rightarrow x=0, \frac{\pi}{2}, \pi$


The curves are intersecting at $\Rightarrow x=0, \frac{\pi}{2}, \pi$
in $\left(0, \frac{\pi}{2}\right)$,
(2) and in $\left(\frac{\pi}{2}, \pi\right)$,
(2) $>$

Therefore required area $=\int_{0}^{\frac{\pi}{2}}(y$ of $(1)-\mathrm{y}$ of $(2)) d x+\int_{\frac{\pi}{2}}^{\pi}(y$ of $(2)-\mathrm{y}$ of $(1)) d x=$

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{2}}\left(\cos x-1+\frac{2 x}{\pi}\right) d x+\int_{\frac{\pi}{2}}^{\pi}\left(1-\frac{2 x}{\pi}-\cos x\right) d x \\
& =\left(\sin x-x+\frac{x^{2}}{\pi}\right)_{0}^{\frac{\pi}{2}}+\left(x-\frac{x^{2}}{\pi}-\sin x\right)_{\frac{\pi}{2}}^{\pi} \\
& =2-\frac{\pi}{2}
\end{aligned}
$$

2. $y=\cos x, y=\sin 2 x, x=0, x=\frac{\pi}{2}$

Sol: Given curves $\mathrm{y}=\cos \mathrm{x}---$ - (1)

$$
y=\sin 2 x---(2)
$$

Solving (1) and (2), $\cos x=\sin 2 x$
$\cos x-2 \sin x \cos x=0 \quad$ (where $\sin (2 x)=2 \sin x \cos x$.)
$\cos x=0$ and $1-2 \sin x=0$

$$
x=\frac{\pi}{2}, \sin x=\frac{1}{2} \Rightarrow x=\frac{\pi}{6}
$$

Given curve re intersecting at $x=\frac{\pi}{2}, \frac{\pi}{6}$


Required area $=$

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{6}}(\cos x-\sin 2 x) d x+\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}(\sin 2 x-\cos x) d x \\
& =\left(\sin x+\frac{\cos 2 x}{2}\right)_{0}^{\frac{\pi}{6}}+\left(-\frac{\cos 2 x}{2}-\sin x\right)_{\frac{\pi}{6}}^{\frac{\pi}{2}} \\
& =\left[\left(\frac{1}{2}+\frac{1}{4}\right)-\left(0+\frac{1}{2}\right)\right]-\left[\left(\frac{1}{2}-1\right)-\left(-\frac{1}{4}-\frac{1}{2}\right)\right] \\
& =\frac{1}{2}+\frac{1}{4}-\frac{1}{2}-\frac{1}{2}+\frac{1}{4}+\frac{1}{2}=\frac{1}{2} \text { sq.units }
\end{aligned}
$$

3. $\mathrm{y}=\mathrm{x}^{3}+3, \mathrm{y}=0, \mathrm{x}=-1, \mathrm{x}=2$

Sol: $y=x^{3}+3, y=0, x=-1, x=2$
Given curve is continuous in [-1.2] and $\mathrm{y}>0$.
Area bounded by $\mathbf{y}=\mathbf{x}^{3}+\mathbf{3}, \mathbf{x}-\mathbf{a x i s}, \mathbf{x}=-\mathbf{1}, \mathbf{x}=\mathbf{2}$ is $\int_{-1}^{2} \mathrm{ydx}$
$=\int_{-1}^{2}\left(x^{3}+3\right) d x=\left(\frac{x^{4}}{4}+3 x\right)_{-1}^{2}$
$=\left(\frac{2^{2}}{4}+3.2\right)-\left(\frac{(-1)^{4}}{4}+3(-1)\right)$
$=12 \frac{3}{4}$ sq. units
4. $\mathbf{y}=\mathrm{e}^{\mathrm{x}}, \mathrm{y}=\mathrm{x}, \mathrm{x}=\mathbf{0}, \mathrm{x}=1$

Sol: Given curve is $y=e^{x}$
Lines are $\mathrm{y}=\mathrm{x}, \mathrm{x}=0$ and $\mathrm{x}=1$.


Required area $=$

$$
\begin{aligned}
\int_{0}^{1}\left(e^{x}-x\right) d x & =\left(e^{x}-\frac{x^{2}}{2}\right)_{0}^{1} \\
& =\left(e-\frac{1}{2}\right)-(1-0)=e-\frac{3}{2}
\end{aligned}
$$

5. $y=\sin x, y=\cos x ; x=0, x=\frac{\pi}{2}$

Sol. Given curves $y=\sin x--$ (1)

$$
\begin{equation*}
y=\cos x \tag{2}
\end{equation*}
$$

From (1) and (2), $\cos x=\sin x$
$\Rightarrow \mathrm{x}=\frac{\pi}{4}$


Between 0 and, $\frac{\pi}{4} \operatorname{Cos} x>\sin x$

Between $\frac{\pi}{4}$ and $\frac{\pi}{2}, \operatorname{Cos} x<\sin x$
Required area
$=\int_{0}^{\frac{\pi}{4}}(\cos x-\sin x) d x+\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}(\sin x-\cos x) d x$
$=(\sin x+\cos x)_{0}^{\pi / 4}-(\sin x+\cos x)_{\pi / 4}^{\pi / 2}$
$=(\sqrt{2}-1)+(\sqrt{2}-1)=2(\sqrt{2}-1)$ sq. units .
6. $\mathrm{x}=4-\mathrm{y}^{2}, \mathrm{x}=0$.

Sol: Given curve is $x=4-y^{2}--$ (1)
Put $\mathrm{y}=0$ then $\mathrm{x}=4$.
The parabola $x=4-y^{2}$ meets the $x-$ axis at $A(4,0)$.
Require area $=$ region AQPA
Since the parabola is symmetrical about X -axis,


Required area $=2$ Area of OAP

$$
\begin{aligned}
& =2 \int_{0}^{2}\left(4-y^{2}\right) d y=2\left(4 y-\frac{y^{3}}{3}\right)_{0}^{2} \\
& =2\left(8-\frac{8}{3}\right)=2 \cdot \frac{16}{3}=\frac{32}{3} \text { sq.units }
\end{aligned}
$$

## 7. Find the area enclosed within the curve $|x|+|y|=1$.

Sol: The given equation of the curve is $|x|+|y|=1$ which represents $\pm x \pm y=1$ representing four different lines forming a square.

Consider the line $\mathrm{x}+\mathrm{y}=1 \Rightarrow \mathrm{y}=1-\mathrm{k}$
If the line touches the X -axis then $\mathrm{y}=0$ and one of the points of intersection with X -axis is $(1,0)$.

Since the curve is symmetric with respect to coordinate axes, area bounded by $|\mathrm{x}|+|\mathrm{y}|=1$ is

$$
\begin{aligned}
& =4 \int_{0}^{1}(1-x) d x \\
& =4\left(x-\frac{x^{2}}{2}\right)_{0}^{1} \\
& =4-\frac{4}{2}=2 \text { sq.units. }
\end{aligned}
$$



## 8. Find the area under the curve $f(x)=\sin x$ in $(0,2 \pi)$


$f(x)=\sin x$,
We know that in $[0, \pi], \sin x \geq 0$ and $[\pi, 2 \pi], \sin x \leq 0$

Required area $\int_{1}^{\pi} \sin x d x+\int_{\pi}^{2 \pi}(-\sin x) d x$
$(-\cos x)_{0}^{\pi}[\cos x]_{\pi}^{2 \pi}$
$=-\cos \pi+\cos 0+\cos 2 \pi-\cos \pi$
$=-(-1)+1+1-(-1)=1+1+1+1=4$
9. Find the area under the curve $f(x)=\cos x$ in $[0,2 \pi]$.

Sol: We know that $\cos x \geq 0$ in $\left(0, \frac{\pi}{2}\right) \cup\left(\frac{3 \pi}{2}, \pi\right)$ and $\leq 0$ in $\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$


Required area

$$
\begin{aligned}
& =\int_{0}^{\frac{\pi}{2}} \cos x d x+\int_{\frac{\pi}{2}}^{\frac{3 \pi}{2}}(-\cos x) d x+\int_{\frac{3 \pi}{2}}^{2 \pi} \cos x d x \\
& =(\sin x)_{0}^{\pi / 2}+(-\sin x)_{\frac{\pi}{2} / 2}^{3 \pi /(\sin x)_{3 \pi / 2}^{2 \pi}} \\
& =\sin \frac{\pi}{2}-\sin 0-\sin \frac{3 \pi}{2}+\sin \frac{\pi}{2}+\sin 2 \pi-\sin \frac{3 \pi}{2} \\
& =1-0-(-1)+1+0-(-1) \\
& =1+1+1+1=4 .
\end{aligned}
$$

10. Find the area bounded by the parabola $y=x^{2}$, the $X$-axis and the lines $x=-1$, $x=2$


Sol:

$$
\begin{aligned}
\text { Required area } & =\int_{-1}^{2} x^{2} d x=\left(\frac{x^{3}}{3}\right)_{-1}^{2} \\
& =\frac{1}{3}\left(2^{3}-(-1)^{3}\right)=\frac{1}{3}(8+1)=\frac{9}{3}=3
\end{aligned}
$$

11. Find the area cut off between the line $y$ and the parabola $y=x^{2}-4 x+3$.

## Sol:

Equation of the parabola is $y=x^{2}-4 x+3$
Equation of the line is $y=0$

$$
x^{2}-4 x+3=0,(x-1)(x-3)=0, x=1,3
$$

The curve takes negative values for the values of x between 1 and 3 .
Required area $=\int_{1}^{3}-\left(x^{2}-4 x+3\right) d x$

$$
\begin{aligned}
& =\int_{1}^{3}\left(-x^{2}+4 x-3\right) d x \\
& =\left(-\frac{x^{3}}{3}+2 x^{2}-3 x\right)_{1}^{3} \\
& =(-9+18-9)-\left(-\frac{1}{3}+2-3\right) \\
& =\frac{10}{2}-2=\frac{4}{3}
\end{aligned}
$$

## Short Answer Questions

1. $\mathrm{x}=2-5 \mathrm{y}-3 \mathrm{y}^{2}, \mathrm{x}=0$.

Sol:
Given curve $x=2-5 y-3 y^{2}$ and $x=0$
Solving the equations

$$
\begin{aligned}
& 2-5 y-3 y^{2}=0 \\
& 3 y^{2}+5 y-2=0 \\
& \Rightarrow(y+2)(3 y-1)=0 \Rightarrow y=-2 \text { or } \frac{1}{3}
\end{aligned}
$$



Required area $=\int_{-2}^{\frac{1}{3}}\left(2-5 y-3 y^{2}\right) d y$
$=\left(2 y-\frac{5}{2} y^{2}-y^{3}\right)_{-2}^{\frac{1}{3}}$
$=\left(\frac{2}{3}-\frac{5}{2} \cdot \frac{1}{9}-\frac{1}{27}\right)-\left(-4-\frac{5}{2} .4+8\right)$
$=\left(\frac{2}{3}-\frac{5}{8}-\frac{1}{27}\right)+6$
$=\frac{36-15-2+324}{54}=\frac{343}{54}$ sq. units
2. $x^{2}=4 y, x=2, y=0$

Sol. Given curve $x^{2}=4 y$,

$$
X=2 \text { and } y=0 \text { i.e., } x-\text { axis }
$$



Required curve $=\int_{0}^{2} y d x=\int_{0}^{2} \frac{x^{2}}{4} d x=$

$$
\left(\frac{\mathrm{x}^{3}}{12}\right)_{0}^{2}=\frac{8}{12}=\frac{2}{3} \text { sq. units. }
$$

3. $\mathrm{y}^{2}=3 \mathrm{x}, \mathrm{x}=3$.

Given curve is $\mathrm{y}^{2}=3 \mathrm{x}$ and the line is $\mathrm{x}=3$


The parabola is symmetrical about $\mathrm{X}-$ axis Required area $=2$ (area of the region bounded by the curve, $x$-axis, $x=0$ and $x=3$ )

$$
=2 \int_{0}^{3} y d x=2 \int_{0}^{3} \sqrt{3} \cdot \sqrt{x} d x
$$

$$
=\left(2 \sqrt{3} \cdot \frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right)_{0}^{3}=\frac{4 \sqrt{3}}{3} \cdot(3 \sqrt{3}-0)=12 \text { sq. units }
$$

4) $y=x^{2}, y=2 x$.

## Sol:



Eliminating $y$, we get $x^{2}=2 x$
$x^{2}-2 x=0, x(x-2)=0$
$\mathrm{x}=0$ or $\mathrm{x}=2, \mathrm{y}=0$ or $\mathrm{y}=4$
Points of intersection are $\mathrm{O}(0,0), \mathrm{A}(2,4)$

$$
\text { Required area }=\int_{0}^{2}\left(2 x-x^{2}\right) d x
$$

$$
=\left(x^{2}-\frac{x^{3}}{3}\right)_{0}^{2}=4-\frac{8}{3}=\frac{4}{3} \text { sq. units }
$$

5. $y=\sin 2 x, y=\sqrt{3} \sin x, x=0, x=\frac{\pi}{6}$.

Sol; $\mathrm{y}=\sin 2 \mathrm{x}-\cdots----(1)$
$y=\sqrt{3} \sin x$ $\qquad$ (2)

Solving $\operatorname{Sin} 2 x=\sqrt{3} \sin x$
$\Rightarrow 2 \sin \mathrm{x} \cdot \cos \mathrm{x}=\sqrt{3} \sin \mathrm{x}$
$\Rightarrow \operatorname{Sin} x=0$ or $2 \cos x=\frac{\sqrt{3}}{2}$

$$
\Rightarrow x=0, \cos x=\frac{\sqrt{3}}{2} \Rightarrow x=\frac{\pi}{6}
$$



$$
\begin{aligned}
\text { Required area } & =\int_{0}^{\frac{\pi}{6}}(\sin 2 x-\sqrt{3} \sin x) d x \\
& =\left(-\frac{\cos 2 x}{2}+\sqrt{3} \cos x\right)_{0}^{\frac{\pi}{6}} \\
& =\left(-\frac{1}{4}+\sqrt{3} \cdot \frac{\sqrt{3}}{2}\right)-\left(-\frac{1}{2}+\sqrt{3}\right) \\
& =-\frac{1}{4}+\frac{3}{2}+\frac{1}{2}-\sqrt{3}=\frac{7}{4}-\sqrt{3} \text { sq. units }
\end{aligned}
$$

6). $y=x^{2}, y=x^{3}$.

Sol: Given equations are $y=x^{2}$

$$
\begin{equation*}
y=x^{3} \tag{1}
\end{equation*}
$$

$\qquad$

From equation (1) and (2) $x^{2}=x^{3}$

$$
\begin{aligned}
& x^{3}-x^{2}=0, x^{2}(x-1)=0 \\
& x=0 \text { or } 1
\end{aligned}
$$



Required area $=\int_{0}^{1}\left(x^{2}-x^{3}\right) d x$
$=\left(\frac{x^{3}}{3}-\frac{x^{4}}{4}\right)_{0}^{1}=\frac{1}{3}-\frac{1}{4}=\frac{1}{12}$ sq. units
7). $y=4 x-x^{2}, y=5-2 x$.

## Sol:

Given curves $y=4 x-x^{2}$
(i)
$y=5-2 x$ $\qquad$ (ii)
$y=-\left([x-2]^{2}\right)+4, y-4=(x-2)^{2}$
Solving (i) and (ii) we get

$$
\begin{aligned}
& 4 x-x^{2}=5-2 x, x^{2}-6 x+5=0 \\
& (x-5)(x-1)=0, X=1,5
\end{aligned}
$$



$$
\begin{aligned}
\text { Required area } & =\int_{1}^{5}(\operatorname{yof}(1)-\operatorname{yof}(2)) d x=\int_{1}^{5}\left(4 x-x^{2}-5+2 x\right) d x \\
& =\int_{1}^{5}\left(6 x-x^{2}-5\right) d x=\int_{1}^{5}\left(3 x^{2}-\frac{x^{3}}{3}-5 x\right)_{1}^{5} \\
& =\left(75-\frac{125}{3}-25\right)-\left(3-\frac{1}{3}-5\right) \\
& =50-\frac{125}{3}+2+\frac{1}{3} \\
& =\frac{150-125+6+1}{3}=\frac{32}{3} \text { sq.units }
\end{aligned}
$$

## 8. Find the area in sq.units bounded by the

$X$-axis, part of the curve $y=1+\frac{8}{x^{2}}$ and the ordinates $x=2$ and $x=4$.
Sol: In $[2,4]$ we have the equation of the curve given by $y=1+\frac{8}{x^{2}}$.
$\therefore$ Area bounded by the curve $\mathrm{y}=1+\frac{8}{\mathrm{x}^{2}}$.
$X$-axis and the ordinates $x=2$ and $x=4$ is

$$
\begin{aligned}
& =\int_{2}^{4} y d x=\int_{2}^{4}\left(1+\frac{8}{x^{2}}\right) d x \\
& =\left[x-\frac{8}{x}\right]_{2}^{4}=\left(4-\frac{8}{4}\right)-\left(2-\frac{8}{2}\right)
\end{aligned}
$$

$=2+2=4$ sq.units.


## 9. Find the area of the region bounded by the parabolas $y^{2}=4 x$ and $x^{2}=4 y$.

Sol: Given equations of curves are

$$
\begin{gather*}
y^{2}=4 x  \tag{1}\\
\text { And } x^{2}=4 y \tag{2}
\end{gather*}
$$

Solving (1) and (2) the points of inter-section can be obtained.
$Y^{2}=4 x \Rightarrow y^{4}=16 x^{2} \Rightarrow y^{4}=64 y \Rightarrow y=4$
$\therefore 4 \mathrm{x}=\mathrm{y}^{2} \Rightarrow 4 \mathrm{x}=16 \Rightarrow \mathrm{x}=4$
Points of intersection are $(0,0)$ and $(4,4)$.

$\therefore$ Area bounded between the parabolas

$$
\begin{aligned}
& =\int_{0}^{4} \sqrt{4 x} d x-\int_{0}^{4} \frac{x^{2}}{4} d x \\
& =2\left[\frac{x^{3 / 2}}{3 / 2}\right]_{0}^{4}-\frac{1}{4}\left[\frac{x^{3}}{3}\right]_{0}^{4} \\
& =\frac{4}{3}\left(4^{3 / 2}\right)-\frac{1}{12}(64) \\
& =\frac{32}{3}-\frac{16}{3}=\frac{16}{3} \text { sq.units. }
\end{aligned}
$$

10. Find the area bounded by the curve $y=\log x$, the $X$-axis and the straight line $\mathbf{x}=\mathbf{e}$.

Sol: Area bounded by the curve $y=\log _{c} x$,
X -axis and the straight line $\mathrm{x}=\mathrm{e}$ is

$$
\begin{aligned}
& =\int_{1}^{e} \log _{e} x d x \\
& =[x \log x]_{1}^{e}-\int_{1}^{e} d x
\end{aligned}
$$

$$
\begin{aligned}
& \left(\because \text { When } x=e, y=\log _{e} e=1\right) \\
& \quad=(e-0)-(e-1)=1 \text { sq.units. }
\end{aligned}
$$


11. Find the area bounded by $y=\sin x$ and $y=\cos x$ between any two consecutive points of intersection .


Sol:
Two consecutive points of intersection are $x=\frac{\pi}{4}$ and $x=\frac{5 \pi}{4}$
$\sin x \geq \cos x$ for all $x \in\left(\frac{\pi}{4}, \frac{5 \pi}{4}\right)$
Required area $=\int_{\pi / 4}^{5 \pi / 4}(\sin x-\cos x) d x$

$$
\begin{aligned}
& =(-\cos x-\sin x)_{\pi / 4}^{5 \pi / 4} \\
& =\left(-\cos \frac{5 \pi}{4}-\sin \frac{5 \pi}{4}\right)+\left(\cos \frac{\pi}{4}+\sin \frac{\pi}{4}\right) \\
& =\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}=4 \frac{1}{\sqrt{2}}=2 \sqrt{2}
\end{aligned}
$$

12. Find the area of one of the curvilinear triangles bounded by $y=\sin x$, $y=\cos x$ and $X-$ axis.


In $\left(0, \frac{\pi}{4}\right) \cos x \geq \sin x$ and $\left(\frac{\pi}{4}, \frac{\pi}{2}\right), \cos x \leq \sin x$.
Required area $=\int_{0}^{\pi / 4} \sin x d x+\int_{\pi / 4}^{\pi / 2} \cos x d x$

$$
\begin{aligned}
& =(-\cos x)_{0}^{\pi / 4}+(\sin x)_{\pi / 4}^{\pi / 2} \\
& =-\cos \frac{\pi}{4}+\cos 0+\sin \frac{\pi}{2}-\sin \frac{\pi}{4}
\end{aligned}
$$

$$
=-\frac{1}{\sqrt{2}}+1+1-\frac{1}{\sqrt{2}}=2\left(1-\frac{1}{\sqrt{2}}\right)=2-\sqrt{2}
$$

13. Find the area of the right angled triangle with base $b$ and altitude $h$, using the fundamental theorem of integral calculus.

Sol:


OAB is a right angled triangle and $\angle \mathrm{B}=90^{\circ}$ take ' O ' as the origin and OB as positive X - axis
If $\mathrm{OB}=\mathrm{b}$ and $\mathrm{AB}=\mathrm{h}$, then $\mathrm{co}-$ ordinates of A are $(\mathrm{b}, \mathrm{h})$
Equation of OA is $y=\frac{h}{b} x$
Area of the triangle $\mathrm{OAB}=\int_{0}^{\mathrm{b}} \frac{\mathrm{h}}{\mathrm{b}} \mathrm{xdx}$
$=\frac{\mathrm{h}}{\mathrm{b}}\left(\frac{\mathrm{x}^{2}}{2}\right)_{0}^{\mathrm{b}}=\frac{\mathrm{h}}{\mathrm{b}} \frac{\mathrm{b}^{2}}{2}=\frac{1}{2} \mathrm{bh}$.
14. Find the area bounded between the curves $y^{2}-1=2 x$ and $x=0$

Sol:


The parabola $y^{2}-1=2 x$ meets
X - axis at $\mathrm{A}\left(-\frac{1}{2} 0\right)$ and Y - axis at $\mathrm{y}=1$
$y=-1$. The curve is symmetrical about $X-$ axis required area
$=\int_{-1}^{1}(-x) d y=\int_{-1}^{1}-\left(\frac{y^{2}-1}{2}\right) d y$

$$
=\int_{0}^{1}-\left(y^{2}-1\right) d y=\left(-\frac{y^{3}}{3}+y\right)_{0}^{1}=1-\frac{1}{3}=\frac{2}{3}
$$

15. Find the area enclosed by the curves $y=3$ and $y=6 x-x^{2}$.

Sol:


The straight line $y=3 x$ meets the parabola

$$
\begin{aligned}
& y=6 x-x^{2} .3 x=6 x-x^{2}, x^{2}-3 x=0 \\
& x(x-3)=0, x=0 \text { or } 3
\end{aligned}
$$

$$
\begin{aligned}
\text { Required area } & =\int_{0}^{3}\left(6 x-x^{2}-3 x\right) d x \\
& =\int_{0}^{3}\left(3 x-x^{2}\right) d x=\left(\frac{3 x^{2}}{2}-\frac{x^{3}}{3}\right)_{0}^{3} \\
& =\frac{27}{2}-\frac{27}{3}=\frac{27}{6}=\frac{9}{2} .
\end{aligned}
$$

## Long Answer Questions

1. $\mathrm{y}=\mathrm{x}^{2}+1, \mathrm{y}=2 \mathrm{x}-2, \mathrm{x}=-1, \mathrm{x}=2$.

Sol: Equation of the curves are

$$
\begin{gather*}
y=x^{2}+1  \tag{1}\\
y=2 x-2 \tag{2}
\end{gather*}
$$

$\qquad$

$\mathrm{x}=-1$

Area between the given curves

$$
\begin{aligned}
& =\int_{-1}^{2}(f(x)-g(x)) d x \\
& =\int_{-1}^{2}\left[\left(x^{2}-1\right)-(2 x-2)\right] d x
\end{aligned}
$$

$$
=\int_{-1}^{2}\left(x^{2}-2 x+3\right) d x
$$

$$
=\left(\frac{8}{3}-4+6\right)-\left(-\frac{1}{3}-1-3\right)
$$

$$
\frac{8}{3}+2+4+\frac{1}{3}=3+6=9 \text { sq. units . }
$$

2. $y^{2}=4 x, y^{2}=4(4-x)$

Sol: Equation of the curves are

$$
\begin{align*}
& y^{2}=4 \mathrm{x}  \tag{1}\\
& \mathrm{y}^{2}=4(4-\mathrm{x})
\end{align*}
$$

Solving, we get

$$
\begin{aligned}
& 4 x=4(4-x) \Rightarrow 2 x=4 \Rightarrow x=2 \\
& y=\mathbf{0} \Rightarrow x=0 \text { and } x=4
\end{aligned}
$$

Given curves intersects at $x=2$ and those curves intersect the $x$ axis at $x=0$ and $\mathrm{x}=4$.


Required area is symmetrical about X - axis Area OACB
$=2\left[\int_{0}^{2} 2 \sqrt{x} d x+\int_{2}^{4} 2 \sqrt{4-x} d x\right]$
$=2\left(2 \frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right)_{0}^{2}+2\left\{\frac{(4-x)^{\frac{3}{2}}}{-\frac{3}{2}}\right\}_{2}^{4}$
$=2\left[\frac{4}{3}(2 \sqrt{2})-\frac{4}{3}(-2 \sqrt{2})\right]=2\left(\frac{8 \sqrt{2}}{3}+\frac{8 \sqrt{2}}{3}\right)$
$=2\left(\frac{16 \sqrt{2}}{3}\right)=\frac{32 \sqrt{2}}{3}$ sq. units
3. $y=2-x^{2}, y=x^{2}$

Sol:


$$
\begin{align*}
& y=2-x^{2}  \tag{1}\\
& y=x^{2} \tag{2}
\end{align*}
$$

FROM above equations,

$$
\begin{aligned}
& 2-x^{2}=x^{2}, 2=2 x^{2} \text { or } x^{2}=1 \\
& x= \pm 1
\end{aligned}
$$

Area bounded by two curves is

$$
\begin{aligned}
& 2 x \int_{-1}^{1}(y \text { of }(1)-y \text { of }(2)) d x \\
& =2 \int_{-1}^{1}\left(2-x^{2}-x^{2}\right) d x \\
& =2 \int_{-1}^{1}\left(2-2 x^{2}\right) d x=2\left(2 x-\frac{2 x^{3}}{3}\right)_{-1}^{1} \\
& = \\
& 2\left[2-\frac{2}{3}\right]=\frac{8}{3} \text { sq. units. }
\end{aligned}
$$

4. Show that the area enclosed between the curve $y^{2}=12(x+3)$ and

$$
y^{2}=20(5-x) \text { is } 64 \sqrt{\frac{5}{3}}
$$

Sol: Equation of the curves are

$$
\begin{align*}
& \mathrm{y}^{2}=12(\mathrm{x}+3)  \tag{1}\\
& \mathrm{y}^{2}=20(5-\mathrm{x}) \tag{2}
\end{align*}
$$

$\qquad$

Eliminating y

$$
\begin{aligned}
& 12(x+3)=20(5-x) \\
& x+9=25-5 x, 8 x=16, x=2
\end{aligned}
$$

Given curves are intersecting on $\mathrm{x}=2$.
The points of intersection of the curves and the $x$ axis are $x=5$ and $x=-3$.

$$
\begin{aligned}
& y^{2}=12(2+3)=60 \\
& y=\sqrt{60}= \pm 2 \sqrt{15}
\end{aligned}
$$



The required area is symmetrical about X - axis
Required area $=2 x($ AREA ABCOA $)$

$$
\begin{aligned}
& =2 .(\text { AREA ABEA }+ \text { AREA BECB }) \\
& =2\left[\int_{-3}^{2} 2 \sqrt{3} \sqrt{\mathrm{x}+3} \mathrm{dx}+\int_{2}^{5} 2 \sqrt{5} \sqrt{5-\mathrm{x}} \mathrm{dx}\right] \\
& =4 \sqrt{3}\left(\frac{(\mathrm{x}+3)^{\frac{3}{2}}}{\frac{3}{2}}\right)_{-3}^{2}+4 \sqrt{5}\left(\frac{(5-\mathrm{x})^{\frac{3}{2}}}{-\frac{3}{2}}\right)_{2}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{8 \sqrt{3}}{3}\left(\frac{(x+3)^{\frac{3}{2}}}{\frac{3}{2}}\right)_{-3}^{2}+4 \sqrt{5}\left(\frac{(5-x)^{\frac{3}{2}}}{-\frac{3}{2}}\right)_{2}^{5} \\
& =\frac{8 \sqrt{3}}{3}\left(5^{\frac{3}{2}}-0\right)-\frac{8 \sqrt{5}}{3}\left[0-3^{\frac{3}{2}}\right] \\
& =\frac{8 \sqrt{3}}{3} \cdot 5 \sqrt{5}+\frac{8 \sqrt{5}}{3}\left[0-3^{\frac{3}{2}}\right] \\
& =\frac{40 \cdot \sqrt{15}}{3}+\frac{24 \sqrt{15}}{3}=\frac{64}{3} \sqrt{15} \text { sq.units } \\
& =64 \sqrt{\frac{15}{9}} \text { sq. units }=64 \sqrt{\frac{5}{3}} \text { sq. units. }
\end{aligned}
$$

## 5. Find the area of the region $\left\{(x, y) / x^{2}-x-1 \leq y \leq-1\right\}$

Sol. Let the curves be $y=x^{2}-x-1----(1)$

$$
\begin{gather*}
\text { And } \begin{array}{c}
y=-1 \\
y=x^{2}-x-1=\left(x-\frac{1}{2}\right)^{2}-\frac{5}{4} \\
y=\frac{5}{4}-\left(x-\frac{1}{2}\right)^{2} \text { is a parabola with } \\
\text { Vertex }\left(\frac{1}{2},-\frac{5}{4}\right)
\end{array} .
\end{gather*}
$$

From (1) and (2),
$x^{2}-x-1=-1 \Rightarrow x^{2}-x=0 \Rightarrow x=0, x=1$

Given curves are intersecting at $\mathrm{x}=0$ and $\mathrm{x}=1$.


Required area $=\int_{0}^{1}(y$ of $(1)-y$ of $(2)) d x$

$$
\begin{aligned}
& A=\left|\int_{0}^{1}\left(x^{2}-x-1\right) d x-\int_{0}^{1}(-1) d x\right| \\
& =\left|\int_{0}^{1}\left(\frac{x^{3}}{3}-\frac{x^{2}}{2}-x\right)-{ }_{0}^{1}[-x]\right|=\frac{1}{6} \text { sq.units }
\end{aligned}
$$

6. The circle $x^{2}-y^{2}=8$ is divided into two parts by the parabola $2 y=x^{2}$. Find the area of both the parts.

## Sol:

$$
\begin{align*}
& x^{2}+y^{2}=8  \tag{1}\\
& 2 y=x^{2} \tag{2}
\end{align*}
$$

$\qquad$

Eliminating Y between equations (1) and (2)


Let $\mathrm{x}^{2}=\mathrm{t}, 4 \mathrm{t}+\mathrm{t}^{2}=32, \mathrm{t}^{2}+4 \mathrm{t}-32=0$
$(\mathrm{t}+8)(\mathrm{t}-4)=0$
$\mathrm{t}=-8$ (not possible) $\mathrm{x}^{2}=4 \Rightarrow \mathrm{x}= \pm 2$

Given curves are intersecting at $\mathrm{x}=2$ and $\mathrm{x}=-2$.

$$
\begin{aligned}
\text { AREA OBCO } & =\int_{0}^{2} \sqrt{8-x^{2}} d x-\int_{0}^{2} \frac{x^{2}}{2} d x \\
& =\left[\frac{1}{2} x \cdot \sqrt{8-x^{2}}+\frac{8}{2} \sin ^{-1} \frac{x}{2 \sqrt{2}}\right]_{0}^{2}-\left[\frac{x^{3}}{6}\right]_{0}^{2} \\
& =\frac{1}{2} \cdot 2 \cdot 2+4 \cdot \frac{\pi}{4}-\frac{8}{6}=\frac{2}{3}+\pi
\end{aligned}
$$

As curve is symmetric about $\mathrm{Y}-$ axis, total area $\mathrm{ABCOA}=2 . \mathrm{OBCO}$

$$
=2\left(\frac{2}{3}+\pi\right)=\frac{4}{3}+2 \pi \text { sq. units. }
$$

AREA of the circle $=\pi r^{2}=8 \pi$
Remain part $=8 \pi-\left(\frac{4}{3}+2 \pi\right)$

$$
=\left(6 \pi-\frac{4}{3}\right) \text { sq. units. }
$$

7. Show that the area of the region bounded by $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ (ellipse) is $\pi$ ab . Also deduce the area of the circle $x^{2}+y^{2}=a^{2}$.

## Sol:



The ellipse is symmetrical about X and Y axis Area of the ellipse $=4$ Area of $\mathrm{CAB}=4 \cdot \frac{\pi}{4} \mathrm{ab}$

Equation of ellipse is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
$y=\frac{b}{a} \sqrt{a^{2}-x^{2}}$
$\mathrm{CAB}=\frac{\mathrm{b}}{\mathrm{a}} \int_{0}^{\mathrm{a}} \sqrt{\mathrm{a}^{2}-\mathrm{x}^{2}} \mathrm{dn}$

$$
\begin{aligned}
& =\frac{\mathrm{b}}{\mathrm{a}}\left(\frac{\mathrm{x} \sqrt{\mathrm{a}^{2}-\mathrm{x}^{2}}}{2}+\frac{\mathrm{a}^{2}}{2} \sin ^{-1} \frac{\mathrm{x}}{\mathrm{a}}\right)_{0} \\
& =\frac{\mathrm{b}}{\mathrm{a}}\left(0+\frac{\mathrm{a}^{2}}{2} \cdot \frac{\pi}{2}-\mathrm{ab}\right)=\frac{\pi \mathrm{a}^{2}}{4} \cdot \frac{\mathrm{~b}}{\mathrm{a}}=\frac{\pi}{4} \mathrm{ab}
\end{aligned}
$$

(From prob. 8 in ex 10(a)) $=\pi \mathrm{ab}$
Substituting $\mathrm{b}=\mathrm{a}$, we get the circle

$$
x^{2}+y^{2}=a^{2}
$$

Area of the circle $=\pi \mathrm{a}(\mathrm{a})=\pi \mathrm{a}^{2}$ sq. units.
8. Find the area of the region enclosed by the curves $y=\sin \pi x, y=x^{2}-x, x=2$.

Sol: The graphs of the given equations

$$
\begin{equation*}
y=\sin \pi x \tag{1}
\end{equation*}
$$

and $y=x^{2}-x, x=2$ are shown below.

| $X$ | -2 | -1 | 0 | 1 | 2 | 3 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $y=x^{2}-$ | 6 | +2 | 0 | 0 | 2 | 6 |
| $x$ |  |  |  |  |  |  |



Required area bounded by
$y=\sin \pi, y=x^{2}-x, x=2$ is given by

$$
\begin{aligned}
& =\left|\int_{1}^{2} \sin \pi x d x-\int_{1}^{2}\left(x^{2}-x\right) d x\right| \\
& =\left|-\left(\frac{\cos \pi x}{\pi}\right)_{1}^{2}-\left(\frac{x^{3}}{3}-\frac{x^{2}}{2}\right)_{1}^{2}\right| \\
& =\left|-\left[\frac{\cos 2 \pi}{\pi}-\frac{\cos \pi}{\pi}\right]-\left[\left(\frac{8}{3}-2\right)-\left(\frac{1}{3}-\frac{1}{2}\right)\right]\right| \\
& =\left|-\frac{1}{\pi}[1+1]-\left[\frac{8}{3}-2-\frac{1}{3}+\frac{1}{2}\right]\right| \\
& =\left|-\frac{2}{\pi}-\left[\frac{2}{3}+\frac{1}{6}\right]\right| \\
& =\left|-\frac{2}{\pi}-\frac{5}{6}\right|=\frac{2}{\pi}+\frac{5}{6} \text { sq.units. }
\end{aligned}
$$

9. Prove that the curves $y^{2}=4 x$ and $x^{2}=4 y$ divide the area of square bounded by the lines $x=0, x=4, y=4$ and $y=0$ into three equal parts.

## Sol:



The given curves are $y^{2}=4 x$

$$
\begin{equation*}
\text { and } x^{2}=4 y \tag{1}
\end{equation*}
$$

Solving $y^{4}=16 x^{2}=64 y$

$$
\begin{aligned}
& \Rightarrow y\left(y^{3}-64\right)=0 \\
& \Rightarrow y=0 \text { or } y=4
\end{aligned}
$$

When $y=4$ we have $4 x=16 \Rightarrow x=4$.
$\therefore$ Points of intersection of parabola is $\mathrm{P}(4,4)$.
$\therefore$ Area bounded by the parabolas

$$
\begin{aligned}
& =\int_{0}^{4} 2 \sqrt{x} d x-\int_{0}^{4} \frac{x^{2}}{4} d x \\
& =\int_{0}^{4}\left(2 \sqrt{x}-\frac{x^{2}}{4}\right) d x \\
& =2\left(\frac{2}{3}\right)\left(x^{3 / 2}\right)_{0}^{4}-\frac{1}{4}\left[\frac{x^{3}}{3}\right]_{0}^{4} \\
& =\frac{4}{3}(8)-\frac{1}{4}\left(\frac{64}{3}\right) \\
& =\frac{32}{3}-\frac{16}{3}=\frac{16}{3} \text { sq.units. }
\end{aligned}
$$

Area of the square formed $=(\mathrm{OA})^{2}=4^{2}=16$
Since the area bounded by the parabolas
$x^{2}=4 y$ and $y^{2}=4 x$ is $\frac{16}{3}$ sq.units. which is one third of the area of square we
conclude that the curves $y^{2}=4 x$ and $x^{2}=4 y$ divide the area of the square bounded by $x=0$,
$x=4, y=0, y=4$ into three equal parts.
10. Let AOB be the positive quadrant of the $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$ with $\mathrm{OA}=\mathbf{a}, \mathbf{O B}=\mathbf{b}$. Then show that the area bounded between the chord $A B$ and the arc $A B$ of the ellipse is $\frac{(\pi-2) \mathrm{ab}}{4}$.

Sol: Let $\mathrm{OA}=\mathrm{a}, \mathrm{OB}=\mathrm{b}$
Equation of $A B$ is $\frac{x}{a}+\frac{y}{b}=1$
$\frac{y}{b}=1-\frac{x}{a}, y=b\left(1-\frac{x}{a}\right)$


Equation of the ellipse is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}}=1$
$\frac{y^{2}}{b^{2}}=1-\frac{x^{2}}{a^{2}}=\frac{a^{2}-x^{2}}{a^{2}}$
$y^{2}=\frac{b^{2}}{a^{2}}\left(a^{2}-x^{2}\right)$
$y=\frac{b}{a} \sqrt{a^{2}-x^{2}}$
Required area
$=\int_{0}^{a}\left(\frac{b}{a} \sqrt{a^{2}-x^{2}}\right) d x-\int_{0}^{a} b\left(1-\frac{x}{a}\right) d x$
$==\frac{b}{a}\left[x \frac{\sqrt{a^{2}-x^{2}}}{2}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{a}\right)\right]_{0}^{a}$
$-b\left(x-\frac{1}{a} \cdot \frac{x^{2}}{2}\right)_{0}^{a}$
$=\frac{\mathrm{b}}{\mathrm{a}}\left[0+\frac{\mathrm{a}^{2}}{2} \cdot \sin ^{-1} 1-(0+0)\right]-\mathrm{b}\left[\mathrm{a}-\frac{\mathrm{a}^{2}}{2 \mathrm{a}}-0\right]$
$=\frac{\mathrm{b}}{\mathrm{a}} \cdot \frac{\mathrm{a}^{2}}{2} \cdot \frac{\pi}{2}-\frac{\mathrm{ab}}{2}=\frac{\mathrm{ab}}{4}(\pi-2)$ sq.units

## 11. Find the area enclosed between $y=x^{2}-5 x$ and $y=4-2 x$.

Sol: Equations of the curves are

$$
\begin{align*}
& y=x^{2}-5 x \ldots \ldots \ldots(1) \\
& y=4-2 x \ldots \ldots \ldots(2) \\
& x^{2}-5 x=4-2 x, x^{2}-5 x=4-2 x  \tag{2}\\
& x^{2}-3 x-4=0
\end{align*}
$$

$(x+1)(x-4)=0 x=-1,4$


Required area $\int_{-1}^{4}\left[(4-2 x)-\left(x^{2}-5 x\right)\right] d x$
$=\int_{-1}^{4}\left(4+3 x-x^{2}\right) d x=\left(4 x+\frac{3}{2} x^{2}-\frac{x^{3}}{3}\right)_{-1}^{4}$
$=\left(16+\frac{3}{2} 16-\frac{64}{3}\right)-\left(-4+\frac{3}{2}+\frac{1}{3}\right)$
$=16+24-\frac{64}{3}+4-\frac{3}{2}-\frac{1}{3}$
$=44-\frac{64}{3}-\frac{3}{2}-\frac{1}{3}$
$=\frac{264-128-9-2}{6}=\frac{125}{6}$
12. Find the area bounded between the curves $y=x^{2}, y=\sqrt{x}$.

Sol:


Equations of the given curves are

$$
\begin{align*}
& y=\sqrt{x} \quad \ldots \ldots \ldots(1)  \tag{1}\\
& y=x^{2} \ldots \ldots \ldots \ldots(2)  \tag{2}\\
& \therefore \sqrt{x}=x^{2} \Rightarrow x^{4}=x \\
& x\left(x^{3}-1\right)=0, x=0 \text { or } x=1
\end{align*}
$$

$\therefore$ The curves intersect at $\mathrm{O}(0,0) \mathrm{A}(1,1)$
Required area $==\int_{0}^{1}\left(\sqrt{x}-x^{2}\right) d x$
$=\left(\frac{2}{3} \times \sqrt{\mathrm{x}}-\frac{\mathrm{x}^{3}}{3}\right)_{0}^{1}-\frac{2}{3}-\frac{1}{3}=\frac{1}{3}$
13. Find the area bounded between the curves $y^{2}=4 a x, x^{2}=4 b y(a>0, b>0)$.

Sol: Equations of the given curves are

$$
\begin{align*}
& y^{2}=4 a x  \tag{1}\\
& x^{2}=4 b y \tag{2}
\end{align*}
$$

From equation (2) $y=\frac{x^{2}}{4 b}$
Substituting in (1) $\left(\frac{\mathrm{x}^{2}}{4 \mathrm{~b}}\right)^{2}=4 \mathrm{ax}$

$$
x^{4}=\left(16 b^{2}\right)|4 a x|
$$


$x\left[x^{3}-64 b^{2} a\right]=0$
$X=0, x=4\left(b^{2} a\right)^{1 / 3}$
Area bounded will be

$$
\begin{aligned}
& =\int_{0}^{4\left(b^{2} a a^{1 / 3}\right.}\left[\sqrt{4 a x}-\frac{x^{2}}{4 b}\right] d x \\
& ={ }_{0}^{4\left(b^{2} a\right)^{1 / 3}}\left[(4 a)^{1 / 2} x^{3 / 2} \cdot \frac{2}{3}-\frac{x^{3}}{12 b}\right]
\end{aligned}
$$

$=\left[(4 a)^{1 / 2} 8\left(b^{2} a\right)^{\frac{1}{3} \cdot \frac{3}{2}} \frac{2}{3}-\frac{4^{3}\left(b^{2} a\right)^{3 \cdot \frac{1}{3}}}{12 b}\right]$
$=\left[2 a b \frac{16}{3}-\frac{64 \cdot b^{2} a}{12 b}\right]=a b\left(\frac{32}{3}-\frac{16}{3}\right)$
$=\frac{16}{3}$ ab sq.units

