

RAKESH JALLA

B.Tech (ME), M.Tech (CAD/CAM)

Assistant Professor
Department Of Mechanical Engineering
CMR INSTITUTE OF TECHNOLOGY

SCALES

Definition: A Scale is defined as the ratio of the drawing size of an object to its actual size.

Designation of scales:

Full size 1:1

e.g.: Drawing a pen profile on the drawing sheet.

Here the objects are represented by lines of length equal to the actual size of the objects.

Reducing size 1: X

e.g.: Drawing the building plans on the drawing sheet.

Here the objects are represented by lines of length smaller than the actual size of the objects.

Increasing (or) enlarging size X: 1

e.g.: Drawing the small ornaments on the drawing sheet.

Here the objects are represented by lines of length greater than the actual size of the objects.

$\frac{1}{10}$ th $m=0.1 \mathrm{~m}=100 \mathrm{~cm}=1000 \mathrm{~mm}$	
$\frac{1}{100}$ th $m=0.01 \mathrm{~m}=$ decimeter (dm)	$10 \mathrm{~m}=1$ decameter (dam)
$\frac{1}{1000}$ th $m=0.001 \mathrm{~m}=$ millimeter (mm)	$100 \mathrm{~m}=1$ hectometer (mm)
	$1000 \mathrm{~m}=$ 1kilometer (km)

$$
\begin{aligned}
& 1 \text { yard }=3 \text { feet }(\text { or }) 3^{\prime} \\
& 1 \text { feet }=12 \text { inches (or) } 12^{\prime \prime} \\
& 1 \text { inch }=2.54 \mathrm{~cm} \\
& 1 \mathrm{~cm}=10 \mathrm{~mm}
\end{aligned}
$$

Note: Many students get confused between dm and dam. They must know the difference between them clearly.

Types of scales:

1. Plain or Simple scale
2. Diagonal scale
3. Vernier scale

1. Plain or Simple scale:

- Accuracy to read up to two measurements
- E.g.: $\mathrm{Km} \longrightarrow \mathrm{hm}$ (here hm is immediate below measurement to Km) $\mathrm{dm} \longrightarrow \mathrm{cm}$ (here dm is immediate below measurement to cm)
$\mathrm{Km} \longrightarrow$ dam (it is not possible to indicate the value in plain scale because km to dam in middle hm is there. i.e. here Km is not immediate below measurement to dam)
$\mathrm{Km} \longrightarrow$ dam (it is not possible to indicate the value in plain scale
$\mathrm{dm} \longrightarrow \mathrm{mm}$ (it is not possible to indicate the value in plain scale because dm to mm in middle cm is there.)

2. Diagonal scale:

- Accuracy to read up to three measurements
$\begin{array}{ll}-\quad \text { E.g.: } & \begin{array}{l}\mathrm{Km} \\ \mathrm{dm}\end{array} \longrightarrow \quad \mathrm{hm} \longrightarrow \mathrm{dam} \\ \mathrm{cm} \longrightarrow \mathrm{mm}\end{array}$

3. Vernier scale:

- Accuracy to read up to three measurements

Steps to solve a Scale Problem:

1. Decide the type of a scale (if not mention the type scale in the problem): Based on the indicated value. i.e. "by seeing the mark/indicate the distance value" in the problem. e.g.: (a) Name the scale and indicate a distance of 4.5 m on it. (Or) Name the scale and indicate a distance of 4 m and 5 decimeters.

Here 4.5 m can be split in to $4 \mathrm{~m}+0.5 \mathrm{~m}$
i.e., $4.5 \mathrm{~m}=4 \mathrm{~m}+5 \mathrm{dm}$

Here dm is immediate below measurement to m .

So the indicated value 4.5 m is two steps.
I.e. Two measurements are m and dm . Therefore it is a plain scale.
(b) Name the scale, and mark a distance of 36 km on it.

Here 36 km can be split in to $36 \mathrm{~km}+6 \mathrm{~km}$

So the indicated value 36 km is two steps. Therefore it is a plain scale.
(c) Name the scale, and mark a distance of 349 km

Here 349 km can be split in to $300 \mathrm{~km}+40 \mathrm{~km}+9 \mathrm{~km}$

So the indicated value 349 km is three steps. Therefore it is a Diagonal scale.
(d) Name the scale, and indicate a distance of 3.24 m

Here 3.24 m can be split in to $3 \mathrm{~m}+0.2 \mathrm{~m}+0.04 \mathrm{~m}$

So the indicated value 3.24 m is three steps.
I.e. Three measurements are m, dm and cm . Therefore it is a Diagonal scale.

2. Finding RF :

To draw a scale, need to know the "Representative Factor (RF)". Or it is also called Scale factor.
Representative Factor or Scale Factor $=\frac{\text { drawing size }}{\text { actual size }}$ (in same units)

Case1: RF will be given directly as a ratio or as a fraction. Take the value to find the length of the scale.
E.g.; $R F=1: 20,000$

$$
\mathrm{RF}=\frac{1}{500}
$$

Case 2: RF will be given not directly, Possible ways of giving RF.
(a) The distance between Hyderabad and Mangalagiri is 300 km and its equivalent distance on map is 10 cm . Find RF.

$$
\begin{aligned}
& \text { Representative Factor }=\frac{\text { drawing size }}{\text { actual size }} \text { (in same units) } \\
& \mathrm{RF}=\frac{10 \mathrm{~cm}}{300 \mathrm{~km}}
\end{aligned}
$$

Note: The numerator and denominator should be same units.

$$
\begin{aligned}
& =\frac{10 \mathrm{~cm}}{300 \times 1000 \mathrm{~m}}(\text { since } 1 \mathrm{~km}=1000 \mathrm{~m}) \\
& =\frac{10 \mathrm{~cm}}{300 \times 1000 \times 100 \mathrm{~cm}} \\
\mathrm{RF} & =\frac{1}{3000000}
\end{aligned}
$$

(b) 1 sq.cm represents a 25 sq.m.
(Or)
$1 \mathrm{~cm}^{2}$ represents a $25 \mathrm{~m}^{2}$. Find RF.

$$
\text { Representative Factor }=\frac{\text { drawing size }}{\text { actual size }} \text { (in same units) }
$$

$$
\mathrm{RF}=\frac{1 \mathrm{sq} \cdot \mathrm{~cm}}{25 \mathrm{sq} \cdot \mathrm{~m}}
$$

$$
\mathrm{RF}=\sqrt[2]{\frac{1 \mathrm{sq} \cdot \mathrm{~cm}}{25 \mathrm{sq} \cdot m}}
$$

$$
\mathrm{RF}=\frac{1 \mathrm{~cm}}{5 m}
$$

$$
\mathrm{RF}=\frac{1 \mathrm{~cm}}{5 \times 100 \mathrm{~cm}}
$$

$$
\mathrm{RF}=\frac{1}{500}
$$

Note: Change the square (area) units into linear measurements by taking square root.
(c) 1cubic.cm represents a $64 \mathrm{cu} . \mathrm{m}$. Find RF.
(Or)
$1 \mathrm{~cm}^{3}$ represents a $64 \mathrm{~m}^{3}$. Find RF.

$$
\mathrm{R} \mathrm{~F}=\frac{\text { drawing size }}{\text { actual size }} \text { (in same units) }
$$

$$
\begin{aligned}
& \mathrm{RF}=\frac{1 \mathrm{cu} . \mathrm{cm}}{64 c u . m} \\
& \mathrm{RF}=\sqrt[3]{\frac{1 \mathrm{cu} \cdot \mathrm{~cm}}{64 \mathrm{cu} \cdot \mathrm{~m}}} \\
& \mathrm{RF}=\frac{1 \mathrm{~cm}}{4 m} \\
& \mathrm{RF}=\frac{1 \mathrm{~cm}}{4 \times 100 \mathrm{~cm}} \\
& \mathrm{RF}=\frac{1}{400}
\end{aligned}
$$

Note: Change the cubic (volume) units into linear measurements by taking cubic root.
(d) A cube of side 10 m , its volume is represented by a block volume of $125 \mathrm{~cm}^{3}$. Find RF.

Solution:

$$
\begin{aligned}
& \text { Let a cube of side }=\mathrm{S}=10 \mathrm{~m} \\
& \text { Volume of a cube }=S^{3}=1000 \mathrm{~m}^{3} \\
& \text { Representative Factor }=\frac{\text { drawing size }}{\text { actual size }} \text { (in same units) } \\
& \mathrm{RF}=\frac{125 \mathrm{~cm}^{3}}{1000 \mathrm{~m}^{3}} \\
& \mathrm{RF}=\sqrt[3]{\frac{125 \mathrm{~cm}^{3}}{1000 \mathrm{~m}^{3}}} \\
& \mathrm{RF}=\frac{5 \mathrm{~cm}}{10 \mathrm{~m}} \\
& \mathrm{RF}=\frac{5 \mathrm{~cm}}{10 X 100 \mathrm{~cm}}
\end{aligned}
$$

$$
\mathrm{RF}=\frac{1}{200}
$$

3. Length of scale(L):

Length of scale to draw on drawing sheet is determined by

$$
\mathrm{L}=\mathrm{RF} \mathrm{X} \text { Maximum length }
$$

Note:

1. Maximum length depends on the value of "mark a distance value' in the problem.
2. When maximum length is not given in the problem, Consider maximum length is the next round off integer to the 'mark a distance value' in the problem.
3. When 'mark a distance value' is not given in the problem, take the length of the scale is 15 cm by default.
4. The width of the scale is usually taken 2 cm and do not mention 2 cm on the drawing sheet.

Plain Scale (or) Simple Scale

1. Plain Scale of RF is $1: 40$.To read meters and $\frac{1}{10}$ th meter and long enough to measure up to 8 m . Show the lengths of 4.3 m and 6.2 m on the scale.

Solution:

Step1: Which scale?
Plain Scale, mentioned in the problem. And also 4.3 m and 6.2 m are two measurements i.e. meter and deci meter. So it is a plain scale.

Step2: RF?
RF given directly in the problem as 1:40
Step3: Maximum Length?
Given in the problem as 8 m
Note: Based on the maximum length, divide the scale in to required no. of parts.
Step4: Length of the scale?
$\mathrm{L}=\mathrm{RF} \mathrm{X}$ maximum length
$\mathrm{L}=1 / 40 \mathrm{X} 8 \mathrm{~m}$
$\mathrm{L}=1 / 40 \mathrm{X} 8 \mathrm{X} 100 \mathrm{~cm}$
$\mathrm{L}=20 \mathrm{~cm}$

2. A cube of 5 cm sides represent a tank of $1000 \mathrm{~m}^{3}$ volume. Find the RF and construct a scale to measure up to $30 \mathrm{~m} \&$ mark a distance of 27 m on it.

Solution:

Step1: Which scale?
Which scale didn't mention in the problem. So decide based on the 'mark a distance value'.
i.e. 27 m , i.e. 20 meter +7 meter. 27 m is two steps. So it is a plain scale.

Step2: RF?
RF is not given directly in the problem as X : X
So calculate by using RF formula
Let a cube of side $=S=5 \mathrm{~cm}$
Volume of a cube $=S^{3}=1000 \mathrm{~m}^{3}$

$$
\text { Representative Factor }=\frac{\text { drawing size }}{\text { actual size }} \text { (in same units) }
$$

$$
\mathrm{RF}=\frac{125 \mathrm{~cm}^{3}}{1000 \mathrm{~m}^{3}}
$$

$$
\begin{aligned}
& \mathrm{RF}=\sqrt[3]{\frac{125 \mathrm{~cm}^{3}}{1000 \mathrm{~m}^{3}}} \\
& \mathrm{RF}=\frac{5 \mathrm{~cm}}{10 \mathrm{~m}} \\
& \mathrm{RF}=\frac{5 \mathrm{~cm}}{10 \times 100 \mathrm{~cm}} \\
& \mathrm{RF}=\frac{1}{200}
\end{aligned}
$$

Step3: Maximum Length?
Given in the problem as 30 m
Note: Based on the maximum length, divide the scale in to required 3 no. of parts; it is not possible to divide into 30 parts. So the each part is 10 m i.e. 1 decameter (1dam)

Step4: Length of the scale?
$\mathrm{L}=\mathrm{RF} \mathrm{X}$ maximum length
$\mathrm{L}=1 / 200 \times 30 \mathrm{~m}$
$\mathrm{L}=1 / 200 \times 30 \times 100 \mathrm{~cm}$
$\mathrm{L}=15 \mathrm{~cm}$

Diagonal scale

1. Construct \& name the scale of RF $1: 250$ to show decimeter \& long enough to measure up to 30 m . Indicate a distance of 28.9 m on it.

Solution:

Step1: Which scale?
Which scale did not mention in the problem. So see the 'mark the value' as given 28.9 m . It is three measurements i.e. decameter, meters and deci meter. So it is a Diagonal scale.
I.e. $28.9 \mathrm{~m}=20 \mathrm{~m}+8 \mathrm{~m}+0.9 \mathrm{~m}$
$28.9 \mathrm{~m}=2 \mathrm{dam}+8 \mathrm{~m}+9$ decimetre
Step2: RF?
RF given directly in the problem as 1:250
Step3: Maximum Length?
Given in the problem is 30 m .
Note: Based on the maximum length, divide the scale in to required no. of parts
Step4: Length of the scale?
$\mathrm{L}=\mathrm{RF} \mathrm{X}$ maximum length
$\mathrm{L}=1 / 250 \times 30 \mathrm{~m}$

$$
\begin{aligned}
& \mathrm{L}=1 / 250 \times 30 \times 100 \mathrm{~cm} \\
& \mathrm{~L}=12 \mathrm{~cm}
\end{aligned}
$$

(1)

Note: In the above problem don't draw blue lines while drawing. They are mentioned for understanding purpose.

Vernier scale

1. Draw a vernier scale of $\mathrm{RF}=\frac{1}{5}$ to read decimeters, centimeters \& millimeters and to measure up to 6 decimeters. Show the lengths of $4.73 \mathrm{dm}, 2.99 \mathrm{dm}$ on it.

Solution:

Step1: Which scale?
It is a Vernier scale, mentioned in the problem.
In the vernier scale how to divide the 'indicate a value' is important.
To divide the 4.73 dm , see the explanation below

$$
\begin{aligned}
& 4.73 \mathrm{dm} \longrightarrow-1 \\
& 3 \times 11=33 \\
& \text { III } \\
& -0.33 \mathrm{dm} \\
& \text { (2) This } 0.33 \mathrm{dm} \text { represent on } \\
& \text { vernier scale } \\
& \text { (1) - (2) } \\
& 4.40 \mathrm{dm} \\
& \text { (3) } \\
& \text { This } 4.4 \mathrm{dm} \text {, split as } 4 \mathrm{dm}+0.4 \mathrm{dm} \\
& 4 \mathrm{dm}+4 \mathrm{~cm}
\end{aligned}
$$

Therefore $4.73 \mathrm{dm}=0.33 \mathrm{dm}+4 \mathrm{dm}+4 \mathrm{~cm}$

$$
\begin{equation*}
\text { (1) }=2+ \tag{3}
\end{equation*}
$$

The 'mark the value' is given 4.73 m . It is three measurements i.e. meters, deci meter and cent meters. So it is a Vernier scale.
Note: $0.33 \mathrm{dm}=3.3 \mathrm{~cm}$

(1) - (2) $2.00 \mathrm{dm} \longrightarrow$ This 2.0 dm , split as 2 dm

Therefore $2.99 \mathrm{dm}=0.99 \mathrm{dm}+$
2dm

$$
\begin{equation*}
\text { (1) }=2+ \tag{3}
\end{equation*}
$$

Note: $0.99 \mathrm{dm}=9.9 \mathrm{~cm}$
Step: RF?
RF given directly in the problem is $1: 5$

Step3: Maximum Length?
Given in the problem is 6 dm .
Note: Based on the maximum length, divide the scale in to required no. of parts. i.e. 6 parts
Step4: Length of the scale?
$\mathrm{L}=\mathrm{RF} \mathrm{X}$ maximum length
$\mathrm{L}=1 / 5 \mathrm{X} 6 \mathrm{dm}$
$\mathrm{L}=1 / 5 \mathrm{X} 0.6 \mathrm{~m}$
$\mathrm{L}=1 / 5 \mathrm{X} 0.6 \mathrm{X} 100 \mathrm{~cm}$
$\mathrm{L}=12 \mathrm{~cm}$

Note: Usually take vernier scale height as 1 cm .

