166 (N)

Total No. of Questions : 24 Total No. of Printed Pages : 4

Regd. No.								
--------------	--	--	--	--	--	--	--	--

Part-III

MATHEMATICS, Paper - I (A)

(English version)

Time: 3 Hours]

[Max. Marks: 75

Note: This question paper consists of three sections A, B and C.

SECTION - A

 $10 \times 2 = 20$

- I. Very short answer type questions.
 - (i) Answer All the questions.
 - (ii) Each question carries TWO marks.
 - 1. If $f: \mathbb{R} \to \mathbb{R}$, $g: \mathbb{R} \to \mathbb{R}$ are defined by f(x) = 3x 1, $g(x) = x^2 + 1$, then find $(f \circ g)$ (2).
 - 2. Find the domain of the function $f(x) = \frac{1}{\sqrt{1-x^2}}$, where f is real valued function.
 - Define Trace of the Matrix and

find the trace of the matrix
$$A = \begin{bmatrix} 1 & 3 & -5 \\ 2 & -1 & 5 \\ 2 & 0 & 1 \end{bmatrix}$$

4. If
$$A = \begin{bmatrix} 0 & 2 & 1 \\ -2 & 0 & -2 \\ -1 & x & 0 \end{bmatrix}$$
 is a Skew symmetric matrix, then find x .

- 5. Find the vector equation of the Plane passing through the points $\bar{i} 2\bar{j} + 5\bar{k}$, $-5\bar{j} \bar{k}$ and $-3\bar{i} + 5\bar{j}$.
- **6.** Find the unit vector in the direction of the sum of the vectors $\overline{a} = 2\overline{i} + 2\overline{j} 5\overline{k}$ and $\overline{b} = 2\overline{i} + \overline{j} + 3\overline{k}$.
- 7. Let $\overline{a} = \overline{i} + \overline{j} + \overline{k}$ and $\overline{b} = 2\overline{i} + 3\overline{j} + \overline{k}$, find projection vector of \overline{b} on \overline{a} and its magnitude.
- 8. If $\sin \alpha + \csc \alpha = 2$, find the value of $\sin^n \alpha + \csc^n \alpha$, $n \in \mathbb{Z}$.
- 9. Find a sine function, whose period is $\frac{2}{3}$.
- 10. If $\cosh x = \sec \theta$, then prove that $\tanh^2 \frac{x}{2} = \tan^2 \frac{\theta}{2}$.

SECTION - B

 $5 \times 4 = 20$

- II. Short answer type questions.
 - (i) Answer ANY FIVE questions.
 - (ii) Each question carries FOUR marks.
 - 11. Show that $\begin{vmatrix} b+c & c+a & a+b \\ a+b & b+c & c+a \\ a & b & c \end{vmatrix} = a^3 + b^3 + c^3 3abc$.

- **12.** Find the point of intersection of the line $\bar{r} = 2\bar{a} + \bar{b} + t(\bar{b} \bar{c})$ and the plane $\bar{r} = \bar{a} + x(\bar{b} + \bar{c}) + y(\bar{a} + 2\bar{b} \bar{c})$, where \bar{a} , \bar{b} and \bar{c} are non-coplanar vectors.
- 13. Prove that angle in a semi-circle is a right angle by using Vector method.
- 14. Prove that $\sin^4 \frac{\pi}{8} + \sin^4 \frac{3\pi}{8} + \sin^4 \frac{5\pi}{8} + \sin^4 \frac{7\pi}{8} = \frac{3}{2}$.
- 15. Solve the equation $2\cos^2\theta + 11\sin\theta = 7$ and write general solution.
- 16. Prove that $\cos^{-1}\left(\frac{4}{5}\right) + \sin^{-1}\left(\frac{3}{\sqrt{34}}\right) = \tan^{-1}\left(\frac{27}{11}\right)$.
- 17. In a $\triangle ABC$, if a:b:c=7:8:9, then find $\cos A:\cos B:\cos C$.

SECTION - C

 $5 \times 7 = 35$

- III. Long answer type questions.
 - (i) Answer ANY FIVE questions.
 - (ii) Each question carries SEVEN marks.
 - 18. Let $f: A \to B$, $g: B \to C$ are bijections, then prove that $g \circ f: A \to C$ is a bijection.
 - 19. By Mathematical Induction, show that $49^n + 16n 1$ is divisible by 64 for all positive Integer n.

20. If
$$A = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}$$
 is a non-singular matrix,

then show that A is invertiable and $A^{-1} = \frac{Adj A}{dot A}$.

21. Solve the following equations by using Cramer's rule -

$$2x - y + 3z = 9$$

$$x + y + z = 6$$

$$x - y + z = 2$$

- **22.** If $\overline{a} = \overline{i} 2\overline{j} + 3\overline{k}$, $\overline{b} = 2\overline{i} + \overline{j} + \overline{k}$, $\overline{c} = \overline{i} + \overline{j} + 2\overline{k}$, then find $\left| (\overline{a} \times \overline{b}) \times \overline{c} \right|$ and $\left| \overline{a} \times (\overline{k} \vee -1) \right|$
- 23. In triangle ABC, prove that

$$\cos\frac{A}{2} + \cos\frac{B}{2} + \cos\frac{C}{2} = 4\cos\left(\frac{\pi - A}{4}\right) \quad \cos\left(\frac{\pi - B}{4}\right) \quad \cos\left(\frac{\pi - C}{4}\right)$$

In \triangle ABC, if $r_1 = 8$, $r_2 = 12$, $r_3 = 24$; find a, b and c.