DIVISION SUMS

In a division sum we have four quantities namely -

- i) Dividend (p)
- ii) Divisor (d)
- iii) Quotient (q)
- iv) Remainder (r)

$$\mathbf{P} = (\mathbf{d} \times \mathbf{q}) + \mathbf{r}$$

Problems:

1. Find a number when divided by a divisor which is five times the quotient, gives a quotient which is four times the remainder the remainder being 10.

a) 8,000 b) 8,010 c) 8,500 d) 8,110

Ans: Remainder (r) = 10 Quotient (Q) = $4r = 4 \times 10 = 40 = 40$ Divisor (d) = $5 \times 40 = 200$ Dividend = $(200 \times 40) + 10 = 8,010$

2. In a division sums the quotient is 120 the divisor 456 and the remainder 333. Find the dividend.

a) 5,553 b) 50,553 c) 56,053 d) 55,053Ans: Quotient (Q) = 120, Divisor (d) = 456 Remainder (r) = 333 Dividend (P) = (D × Q) + r = (456 × 120) + 333 = 55,053

www.sakshieducation.com

3. In a division sum the divisor is ten times the quotient and five times the remainder. what is the dividend if the remainder is 46 ?

a) 5	,326	b) 5,306	c) 5,336	d) 5,366	
Ans:	Remainder	(r) = 46	2.25		
	Divisor (d)	7 1 5.7 5			
	Divisor (d)	14			
	10q = 230 =	1 7 1 4			
	Dividend -	$(\mathbf{D} \times \mathbf{Q}) + \mathbf{r} = 0$	$(230 \times 23 + 46)$	3 5	
		= 5.336		3 5	
		0			

4. The quotient arising from a division of a number by 62 is 463 and the remainder is 60. what is the number ?

a) 28,666 b) 28,766 c) 28,576 D) 28,676 Ans: Divisor (d) = 62, quotient (Q) = 463 Remainder (r) = 60, find dividend Dividend = (divisor × quotient) + remainder = $(63 \times 463) + 60$ = 28,766

Divisors:

Divisor: Each one of the natural numbers that divides a given number exactly is called a divisor (or)

Factor of the given number is divisor

Ex: Each of the numbers 1, 3 and 5 divides 15 exactly

$$\therefore \frac{15}{1} = 15, \quad \frac{15}{3} = 5, \quad \frac{15}{5} = 3$$

So, 1, 3 & 5 are divisors of "15"

- * Every number has at least two different divisors
- * Those numbers which contain only two different divisors are called Prime numbers
- * The numbers containing more than two different divisors are called "Composite numbers"

Prime factors:

A factor of a given number is called a prime factor if this factor is a prime number.

Ex: The factors of 30 are 2, 3, & 5 are prime factors.

Prime factorisation

ar To express a given number as a product of prime factors is called prime factorisation

of the given number.

Ex: Express '90' as a product of prime factors?

Ans: Divide 90 sucessively by primes

starts from least prime...

2	90
3	45
3	15
5	5
	1

 $90 = 2 \times 3 \times 3 \times 5 \times 1$

 $90 = 2 \times 3^2 \times 5$ (product of prime factors of 90)

Problems based on Divisors:

1. Express 108 as a product of prime factors.

b) 2×3^2 c) $2^2 \times 3^3$ a) $2^2 \times 3^2$ d) 2×3 Ans:

2	108
2	54
3	27
3	9
	3

 $108 = 2 \times 2 \times 3 \times 3 \times 3 = 2^2 \times 3^3$

2. Express "2178" as a product of prime factors.

a) $2 \times 3 \times 11$ b) $2 \times 3^2 \times 11$ c) $2 \times 3^2 \times 11^2$ d) $3^2 \times 11^2$ Ans:

2	2178
3	1089
3	363
11	121
	11

 $2178 = 2 \times 3 \times 3 \times 11 \times 11$

$$= 2 \times 3^2 \times 11^2$$

3. The prime factors of 15,015 are..

d) 3, 5, 7, 11, 13 c) 3, 5, 7, 13, 37

d) 5

Ans:

3	15015	
5	5005	
<u>11</u>	1001	
13	91	
7	7	
1		

$$15015 = 3 \times 5 \times 11 \times 13 \times 7 \times 1$$

$$= 3 \times 5 \times 7 \times 11 \times 13$$

1 2 fr 4. Find the numbers of different prime factors used in $(21)^{17} \times (15)^{12} \times (51)^{9}$.

a) 2

c) 4

Ans:

$$\Rightarrow (21)^{17} \times (15)^{12} \times (51)^{9}$$

$$\Rightarrow 3^{17} \times 7^{17} \times 3^{12} \times 5^{12} \times 3^{9} \times 17^{9} \Rightarrow 3, 5, 7, 17$$

$$= "4" \text{ factors}$$

5. Find the number of different prime factors used in $(15)^{13} \times (14)^{21} \times (62)^{7}$.

a) 3 b) 4 c) 5 d) 6
Ans:
$$(15)^{13} \times (14)^{21} \times (62)^7$$

 $\Rightarrow 3^{13} \times 5^{13} \times 2^{21} \times 7^{21} \times 2^7 \times 31^7$
 $\Rightarrow 2, 3, 5, 7, 13 \Rightarrow "5" \text{ factors}$

www.sakshieducation.com

www.sakshieducation.com

6. What is the number of prime factors contained in the product $30^7 \times 22^5 \times 34^{11}$?

a) 23 b) 44 c) 46 d) 53
Ans:
$$30^7 \times 22^5 \times 34^{11}$$

 $\Rightarrow (2 \times 3 \times 5)^7 \times (2 \times 11)^5 \times (2 \times 17)^{11}$
 $\Rightarrow 2^7 \times 2^5 \times 2^{11} \times 3^7 \times 5^7 \times 11^5 \times 17^{11}$
 $\Rightarrow 2^{23} \times 3^7 \times 5^7 \times 11^5 \times 17^{11}$
 $\Rightarrow 23 + 7 + 7 + 5 + 11 = 53$

7. What is the number of prime factors contained in the product $(21)^8 \times (77)^{11} \times (26)^2$?

a) 40 b) 41 c) 42 d) 43 Ans: $(3 \times 7)^8 \times (7 \times 11)^{11} \times (2 \times 13)^2$ $\Rightarrow 2^2 \times 3^8 \times 7^8 \times 7^{11} \times 11^{11} \times 13^2$ $\Rightarrow 2 + 8 + 19 + 11 + 2 = 42$

Theorem-1

Finding number of division of a composite number

To find the number of divisors of a composite number... "A" be a natural number

 $A = b^{p} \times c^{q} \times d^{2} \times \cdots$

Here b, c & d are Distinct Prime Factors

The number of prime factors for "A" = (P + 1) (q + 1) (r + 1)....

Ex: 1. Find the number of factors for 21.

a) 1 b) 2 c) 3 d) 4

Ans: $21 = 7^1 \times 3^1$

 $A = b^p \times c^q$

Number of factors = (p + 1) (q + 1)

$$= (1 + 1) (1 + 1) = 2 \times 2 = 4$$

Verification:

The set of factors = $\{ 1, 7, 3, 21 \}$

www.sakshieducation.com

2. Find the number of factors for "48" ?

Ans:

2	48
2	24
2	12
2	6
	3

 $48 = 2^4 \times 3^1$ $A = b^q \times c^r$

Number of factors = (4 + 1) (1 + 1)

$$= 5 \times 2$$

= 10

Verification:

The set of factors of '48' is {1, 2, 3, 4, 6, 8, 12, 16, 24, 48}

3. The number of divisors of 600 is ?

a)	21	b	22 c) 23	d)) '	24	4
~~,		~,		, = e	~,		_	•

Ans:

2	600
2	300
2	150
3	75
5	25
5	5
	1

 $600 + 2^3 \times 3^1 \times 5^2$

Number of divisors = (3 + 1) (1 + 1) (2 + 1)

$$= 4 \times 2 \times 3$$
$$= 24$$