2. TEST OF DIVISIBILITY

These test help us to know whether a given number however large it maybe is divisible by a certain division without going into the process of division.

1. Test of divisibility by " 2 ": Any number whose last digit is $0,2,4,6$, or 8 is divisible by 2 . Ex: The numbers 72, 908, 1426 are divisible by 2.
2. Test of divisibility by " 3 ": A number is divisible by ' 3 ' if the sum of it's digits divisible by 3 .
Ex: 126, 147, 198....
3. Test of divisibility by '" 4 ": A number is divisible by 4 if the last two digits of a number divisible by 4.

Ex: 124, 184, 864, 1528.....
4. Test of divisibility by " 5 ": If a number ends in ' 5 ' (or) ' 0 ' the number is divisible by 5 . Ex: 120, 180, 175, 225, 290, 350, 520, 1000, 1550, 1900....
5. Test of divisibility by "6": If a number is divisible by both $3 \& 2$ the number is also divisible by '6'.

Ex: 126, 198, 864, 1260....
6. Test of divisibility by "7": If a number is divisible by '7' if its unit digit is multiplied with 2 and sobtracted from the remaining number its result is divisible by ' 7 ' the number is divisible by ' 7 '.
Ex: 1. Find 343 is divisible by ' 7 ' (or) not-
Ans: $343=34-2 \times 3=36-6=\frac{28}{\not 又}=4 \quad$ So the number 343 is divisible by 7
2. Find 2961 is divisible by 7 (or) not-

Divisibility Rules for
$2,3,4,5,6,7,8,9,10$
\&
11
$294=29-2(4)=\frac{21}{\chi}=3 \quad$ So, 2961 is divisible by 7
7. Test of divisibility of " 8 ": If the last three digits of a number is divisible by ' 8 ' then the number is also divisible by ' 8 '.
8. Test of divisibility by "9": If the sum of all the digits of a number is divisible by "9" the number is also divisible by ' 9 '.
Ex: 387, 549, 657...
9. Test of divisibility by " 10 ": Any number which ends with zero it is divisible by ' 10 '. Ex: 30, 90, 150, 470, 890, 1000, 1500, 1860...
10. Test of divisibility by " 11 ": A number is divisible by 11 , if the difference of the sum of its digits at odd places and the sum of its digits at even places is either "0" (or) a number divisible by ' 11 '.
Ex: Show that 4832718 is divisible by 11 or not (sum of digits at odd places) - (sum of digits at even places)

$=[8+7+3+4]=[8+2+1]=22-11=11$, which is divisible by 11 .
11. Test of divisibility by " 12 ": Any number which is divisible by both $3 \& 4$ it is also divisible by 12 .
Ex: 240, 312, 612, 886......

Problems on Test of divisibility:

1. What least value must be given to * so that the number $451 * 603$ is exactly divisible by " 9 "?
a) 8
b) 9
c) 2
d) 6

Ans: According rule

Sum of the digits must be divisible by "9". Sum of digits = [19 + *]

$$
\frac{[19+0]}{9} \Rightarrow \text { least value of } * \text { is " } 8 \text { ". }
$$

2. What is the least value of " k " so that the number 6735 k 1 is divisible by " 9 ".

Ans: $6+7+3+5+k+1=(22+k)$
The least number greater than " 22 " and divisible by " 9 " is 27 .
$\therefore 27=22+\mathrm{k} \Rightarrow \mathrm{k}=5$
3. For what value of ' k ' the number 7236 k 2 is divisible by " 8 ".
a) 3
b) 7
c) $3 \& 7$
d) 3 (or) 7

Ans: According rule.
The last three digits 6 k 2 is divisible by ' 8 ' if k is 3 or 7 .
4. 5×2 is a three digit number with ' x ' as a missing digit. If the number is divisible by ' 6 ' then the missing digit is-
a) 3
b) 6
c) 7
d) 2

Ans: The given number must be divisible by 2 as well as 3 .
$\Rightarrow 5+\mathrm{x}+2=7+\mathrm{x}=$ must be divisible 3,
$\frac{7+2}{3}=x=2$

