1. NUMBER SYSTEM

Digit: Collection of certain symbols (or) figures is called Digit. The name "digit" comes from the fact that the 10 digits (ancient Latin *digiti* meaning fingers) of the hands correspond to the 10 symbols of the common base 10 number system.

Ex: The ten digits of the numerals are.. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Numbers: A number is a mathematical object used to count, label and measure. Numbers are

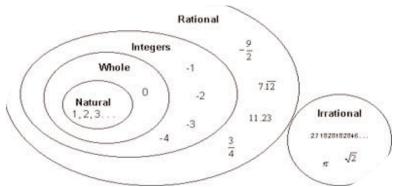
formed with the digits. The numbers include such as 0, negative numbers, rational numbers,

irrational numbers, and complex numbers.

Ex: 23, 47, 86, 154, 542, 620, 3540, 8692, 5682, etc....

Facevalue: The value of digit itself is called face value.

Ex: In 8,642 The face value of '2' is 2, face value of '6' is 6


Place value: The place value of a given digit in a given number begins from the extreme right.

10 Crore	Crore	10-L	Lakh	10-Th	Thousands	Hundreds	Ten's	Units place
108	107	106	10 ⁵	104	10 ³	10 ²	10 ¹	10 ⁰
9	8	7	6	5	4	3	2	1

Ex: Place value of 5 is $5 \times 10^{4} = 50000$

Place value of 2 is $2 \times 10^4 = 20000$

- * 10 lakh = 1 million
- * 10 million = 1 crore
- * 100 million = 10 crore
- * 100 crore = 1 billion
- * 1 google = 10^{100}
- * 1 google plex = $10^{10^{100}}$
- * Mahasamudram = 10^{52}

- * Asankhya = 10^{140}
- * Tallakshana = 10^{53}
- * Anuyoga formula = 2^{96} (number of living things)
- * The place value of a number increase 10 times when it moves from right to left.
- * The place value of number decreases 10 times when it moves from left to right.

- * The largest three digit number = 999 * The smallest three digit number = 100

Various types of numbers:

1. Natural numbers	2. Whole numbers	3. Positive integers
4. Negative integers	5. Integers	6. Even numbers
7. Odd numbers	8. Prime numbers	9. Composite numbers
10. Twin primes	11. Co-prime numbers	12. Perfect numbers

1. Naural numbers (N): Counting numbers starting from '1' are called natural numbers. Ex. N = {1, 2, 3, 4, 5}

2. Whole numbers (W): All natural numbers together with zero is called whole numbers. Ex. W = {0, 1, 2, 3, 4}

3. Positive integers (I^+) : The natural numbers are also called positive integers.

Ex. $I^+ = \{+1, +2, +3, +4 \dots\}$

4. Negative integers (I⁻): The set of negative numbers is called negative integers.

Ex. $I^{-} = \{-1, -2, -3, -4 \dots\}$

5. Integers (I): The set of 'I' of all natural numbers, 0, and negative numbers called set of integers.

Ex. I = { ...-4, -3, -2, -1, 0 1, 2, 3, 4}

6. Even number: Integers divisible by two are called even numbers.

Ex. {..... -8, -6, -4, -2, 0, 2, 4, 6, 8 ...}

General formula = 2N (N = Natural number)

www.sakshieducation.com

7. Odd numbers: Integers not divisible by 2 are called odd numbers.

Ex. { -7, -5, -3, -1, -0, -1, 3, 5, 7}

General formula = 2N + D

8. Prime numbers: A number which has '1' and itself only as factors is called prime number.

Ex: 2, 3, 5, 7, 11, 13, 17.....

Primes in 100 Natural numbers

Cod	le Natural numbe	ers Primes No	o.of primes
D	1-10	2, 3, 5, 7	4
D	11-20	11, 13, 17, 19	4
В	21-30	23, 29	2
В	31-40	31, 37	2
С	41-50	41, 43, 47	3
В	51-60	53, 59	2
В	61-70	61, 67	2
С	71-80	71, 73, 79	3
В	81-90	83, 89	2
А	91-100	97	1
		То	tal 25

Number of primes can be found with the help of the code "DD BBC BBC BA"

DD Delhi Doordarshan

BBC British Broad Costing Company

BA Bachelor of Arts

Ex: 1. How many primes are there in less than 100 natural numbers? Ans: (b)

a) 20 b) 25 c) 28 d) 30

2. How many numbers of primes between natural numbers 11 to 80? Ans: (c)

a) 16 b) 17 c) 18 d) 19

D + B + B + C + B + B + C = 4 + 2 + 2 + 3 + 2 + 2 + 3 = 18

www.sakshieducation.com

www.sakshieducation.com

		WW.Sullonicadoution.o			
3. How many p	Ans: (d)				
a) 2	b) 3	c) 4	d) 5		
C + B 2 + 3	= 5				
4. The least prin	ne number is?			Ans: (b)	
a) 1	b) 2	c) 3	d) 4		
5. Which one of the following only prime numbers which is even also? Ans: (b)					
a) 1	b) 2	c) 4	d) 6	~	
Test for checking primes greater than "100" natural numbers					
Let, $x = given number$,					
"k" be an integer very near to \sqrt{x} such that $k > \sqrt{x}$					
If 'x' is not divisible by any of the numbers less than k, then 'x' is prime otherwise it is not					
a prime.					
Ex: Test 191 is prime (or) not					

100

Ans: let, x = 191 $k = \sqrt{196} = 14$

 $K = \sqrt{196} = 12$ $14 > \sqrt{191}$

The primes less than 14 are.. 2, 3, 5, 7, 11, 13

191 is not divisible by any of the above. So 191 is a prime number.

Ex: Test 104 is Prime or not..

Ans: Let x = 104

 $k = \sqrt{121} = 11$ $11 > \sqrt{104}$

Primes less than 11 are..2, 3, 5, 7. '104' is divisible by '2'. So 104 is not a prime number.

* The largest prime number known so far is $(2^{2281}-1)$ which is a number of about 700 digits.

Formulae related to prime numbers

I. Euclidians formula: If one is added to the product of consecutive primes starting from 2 then the resultant number is a prime number.

Ex: i. $2 \times 3 + 1 = 7$ (prime number)

- ii. $2 \times 3 \times 5 + 1 = 31$ (prime number)
- iii. $2 \times 3 \times 5 \times 7 + 1 = 211$ (prime number)

II. Leonards formula (or) Eulers formula: If n < 40 then $(n^2 - n + 41)$ is a prime number.

III. Fermat's formula: The numbers in the form of $(2^{2^n}+1)$ are prime numbers but it is true for

n = 1, 2, 3, 4

Note: All prime numbers other than 2 are odd numbers but all odd numbers are not prime numbers.

9. Composite numbers: "The natural numbers which have factors other than "1" and themselves are called composite number.

Ex: 4, 6, 9, 10, 12, 15,

 $9 = 3 \times 3$ other than 1 and 9 $10 = 2 \times 5$ other than 1 and 10

* "1" is neither prime nor composite number.

* A composite number may be even (or) odd.

* Prime number has two factors.

* Composite number has minimum three factors.

10. Twin primes: If the difference of two prime numbers is 2 then they are called twin primes

Ex: (3, 5); (5, 7); (11, 13); (17, 19); (29, 31),

11.Co-primes: "If two numbers have only 1 as common factor then the numbers are called coprimes. (or) If h.c.f of two numbers is "1" then they are called co-primes.

Ex: (3,15), (4,19)....

12. Perfect numbers: "If the sum of factors of number except itself is equal to the same number then the number is called perfect number".

Ex: 6, 28, 496...

6 1, 2, 3 1+2+3=628 1, 2, 4, 7, 14 1+2+4+7+14=28

* Successor of a number is - One more than the number

Ex: The successor of 99 is 100

The successor of 999 is 1000

The successor of 40299 is 40300

* **Predecessor of a number:** One less than the number

Ex: The predecessor of 40,300 is 40,299

* Two smallest 3-digit number formed by using the digits 6, 3 & 8 is..

Ans: The required number is 3,689

* The smallest 3 digit number formed by using the digits 0, 3 & 5 is..

Ans: The required number is "305"

* Write the greatest three digit number formed by using the digits 7, 6 & 4 is..

Ans: Required numbers is "764"

* The smallest four digit number formed by using the digits 1, 3 & 8 and repeating 8 is twice.

om

Ans: Required number is 1388

* Write the smallest four digit number of four different digits.

Ans: Required number is 1023

* Write the greatest four digit number of four different digits.

Ans: The greatest four different digits are 9, 8, 7 & 6. The required number = 9876

Ex: 1. What is the difference between the largest numbers and the least number written with the figures 3, 4, 7, 0, & 3 ?

a) 70983 b) 43893 c) 43983 d) 43883

Ans: Largest number = 74330

Least numbers = 30347

Difference = 74330 - 30347 = 43983

2. What is the difference between the largest number and few least number ... with the figures 3, 4, 1, 7...

a) 6084 b) 6184 c) 5084 d) 6048

Ans: 7431-1347= 6084

3. Find the difference of the place value and face value of 9 in 29735?

a) 8881	b) 8991	c) 9001	d) 8899
Ans: Place value of	of $9 = 9000$	Face value of $9 = 9$	Difference = 8991

www.sakshieducation.com

www.sakshieducation.com

x=80x=50 x whene 'x' is a prime number 4. Evaluate a) 450 b) 600 c) 463 d) 468 $\begin{bmatrix} x = n \\ \sum x \\ x = n_1 \end{bmatrix}$ This symbol is called Sigma. It means sum of numbers from n_1 to n_2 Ans: sum of prime numbers between 50 and 80. Sum = 53 + 59 + 61 + 67 + 71 + 73 + 79 = 463 go to this value what to sum 5. If 'x' is a composite number find the value of 1 = 2+3+4+5 = 14 x = 40 $\sum x$ x=30 Start at this value a) 240 b) 245 c) 247 d) 250

Ans: Composite numbers between 30 and 40 are.. 32, 33, 34, 35, 36, 38, 39

Sum = 247