3. Nuclear Fission and Fusion

A. Nuclear Fission:

1. The process of splitting up of the nucleus of a heavy atom into two nuclei more or less of equal fragments when bombarded with neutron simultaneously releasing a large amount of energy is called nuclear fission.

 $^{235}_{92}$ U+ $^{1}_{0}$ n \rightarrow ($^{236}_{92}$ U) \rightarrow $^{141}_{56}$ Ba+ $^{92}_{36}$ Kr + 3^{1}_{0} n + Q.

2. Where Q is energy released which is about 200 MeV.

- 3. This phenomenon was first observed by Strassmann and Hann. It was explained by Neils Bohr and J.A. Wheeler on the basis of liquid drop model of the nucleus. According to liquid drop model, the nucleus behaves like a liquid drop and owing to surface tension it tries to be perfectly spherical in shape. When a neutron is absorbed by the nucleus, a compound nucleus is formed and some excitation energy is imparted to the nucleus. This excitation energy tries to deform the nucleus where as the surface tension of the nucleus tries to keep the nucleus in spherical shape. Due to the struggle between the surface tension and the excitation energy, strong oscillations are set up inside the compound nucleus. These oscillations will distort the shape of the compound nucleus from spherical to ellipsoid.
- 4. If the excitation energy is sufficiently large, the ellipsoidal nucleus may attain the dumb bell shape. In this case the effect of nuclear attractive force is decreased because of the much increased surface area of the nucleus. Further the coulombic repulsive force drives the two portions of the dumb bell still farther and the nucleus undergoes fission, liberating two nuclei Ba and Kr and neutrons. These newly liberated neutrons are called prompt neutrons. In this process the products are not always the same, their atomic number varies from 34 to 58. Hence the number of prompt neutrons will also change with the mass number of the products. The products, emitted neutrons finally become stable. These occur within few seconds after the fission reaction. These are called delayed neutrons. They play an important role in controlling the nuclear chain reaction in a nuclear reactor.
- **5.** Chain Reaction : A chain reaction is a self propagating process in which a number of neutrons multiply rapidly during fission till the whole fissionable material is disintegrated.
- 6. Neutron multiplication factor K and conditions required for sustained chain reaction :

In the fission of uranium nuclei, on an average 2.5 neutrons are emitted per fission. The neutrons produced in a fission event are fast neutrons and are referred to as "neutrons of first generation". There is certain probability for some neutrons to escape without participating in further fission process. Therefore all emitted neutrons are not available for further fissions. The basic conditions for self sustained chain reaction is that at least one neutron should be available. The requirements are given below.

- a) Fast neutrons should be changed into slow neutrons by passing through moderators.
- b) At least one thermal neutron should be available to initiate the fission reaction.
- c) The state of the chain reaction depends on the neutron multiplication factor 'K' which is defined as v_{-} number of neutrons in present generation
- number of neutrons in the previous generation

when K<1, the number of neutrons in successive generations decreases and the chain reaction cannot continue. This state is called 'sub-critical state'.

If K=1, the chain reaction will proceed at a steady rate and this state is called 'critical state'.

If K>1, the number of neutrons increases and the reaction is said to be 'supercritical'.

7. Critical mass : If the mass of uranium is too small, the neutron may escape without participating further fission. To start the fission reaction mass of material should be more than the critical mass or critical size.

8. Principal and working of a nuclear reactor :

The device giving large amount of nuclear energy through fission process at a controlled rate is called a nuclear reactor or atomic pile. The first nuclear reactor was put into operation in Chicago (USA) in 1942 by Fermi. In the nuclear reactor the first fission reaction results in the production of fast neutrons. If fast moving neutrons are allowed to pass through moderator they become thermal neutrons. Subsequently these thermal neutrons are utilized for further fission reactions to produce a large amount of energy.

9. Essential features of a nuclear reactor :

- i) Nuclear Fuel: The fissionable material used in the reactor is called nuclear fuel.
- ii) The uranium isotopes ${}_{92}U^{235}$ and ${}_{92}U^{238}$, plutonium ${}_{94}Pu^{236}$ and thorium ${}_{90}Th^{232}$ are commonly used as fuels in the reactors. The rods of these fuels are tightly sealed in aluminium cylinders.
- iii) **Moderators :** The purpose of the moderator is to slow down the fast moving neutrons produced as a result of nuclear fission. Some of the suitable materials used as moderators are heavy water, beryllium, carbon in the form of pure graphite, hydrocarbon plastics etc.
- iv) **Control rods**: These are the materials used in the nuclear reactors that can absorb the neutrons and control the nuclear chain reaction. Cadmium or boron rods are generally used for this purpose. When the control rods are completely inserted into the carbon blocks, they absorb neutrons to such an extent that the chain reaction completely comes to halt.
- v) **Safety rods:** These are used to reduce the neutrons rate to less than one abruptly to stop the chain reaction whenever required.
- vi) **Protective Shielding :** To prevent the spreading of the radioactive effect to the space around the nuclear reactor, lead blocks, concrete walls of thickness 10 m are used.
- vii) **Coolant :** The material used to absorb the heat generated in the reactor is called coolant. Commonly used coolants are light water, heavy water and sodium gas.

The coolant releases the heat energy to water and is thus converted into steam, which is used to run the turbines. These turbines in turn generate the power.

10. Radio-isotopes (Uses):

- i) Radio-isotopes are produced in nuclear reactor.
- ii) Isotopes are used to test wear and tear of engine parts like piston rings, gears, ball bearings and helps in deciding the efficiency of lubricants.
- iii) Radio-iodine $({}_{53}I^{131})$ has half life of 8 days is used in determining functioning of thyroid gland, information about the size and location of brain tumour.
- iv) Restriction in blood circulation can be detected using radio sodium.
- v) Leukemia disease is treated by radiation from radio-isotopes of phosphorus.
- vi) To find the age of ancient objects found in excavations, manuscripts etc., the technique of radiocarbon dating is used.
- vii) Radio-isotopes are used to test the metal castings and weldings.

11. Radiation hazards:

- i) Damage to the intestinal mucosa, impairment of the production of the blood corpuscles, damage to the system of producing antibodies which are important in the defence against infections, damage to the lens of the eye, production of cancers including leukemia etc.
- ii) The radiation damage to human beings is due to (i) intake of radioactive materials and (ii) exposure to radiation.
- iii) Radio-iodine is extremely dangerous as it is concentrated in the thyroid gland, a very sensitive organ.
- iv) Irradiation of the body with small dose of γ -rays or X-rays increases the body temperature.
- v) Radiation causes genetic mutation.
- vi) Radon inhaled is injurious to lungs.
- vii) Because of small penetrating power of α -radiation into our bodies, its damage is the least. The main external hazard is posed by γ -rays and neutrons.

- viii)To prevent radiation hazards, rules have been worked out by International Commission of Radiation Protection (ICRP).
- ix) Tolerance doses which are permissible for individuals when exposed professionally.

B. Nuclear Fusion:

1. The process of the formation of a single stable nucleus by fusing two or more lighter nuclei is called nuclear fusion.

 $^2_1\text{H}+~^2_1\text{H}\rightarrow~^4_2\text{He}+24~\text{MeV}$.

- 2. If the energy released per nucleon in fusion is considered, then it is much higher in a fusion reaction than in the fission reaction, which is almost 7 times.
- 3. To carry out the fusion of two nuclei temperature nearly equal to 10⁷ K is required. Once the fusion takes place the energy released can maintain the minimum required temperature for further and the fusion continues. Nuclear fusion reaction is also termed as thermo nuclear reaction. The secret behind the production of energy of the sun and the stars is nothing but the thermo nuclear reactions (Nuclear fusion).
- 4. Hydrogen bomb is based on the principle of nuclear fusion.

5. Energy of the Sun and the Stars:

Scientists proposed two types of cyclic processes for sources of energy in the sun and stars. The first one is known as carbon-nitrogen cycle and the second one is proton-proton cycle.

1. Carbon-Nitrogen Cycle: Bethe (1938) proposed a set of reactions taking place in the central part of the sun and stars in which carbon and nitrogen act as catalysts.

$${}^{1}_{1}H + {}^{12}_{6}C \rightarrow {}^{13}_{7}N + Q_{1}$$

$${}^{13}_{7}N \rightarrow {}^{13}_{6}C + {}^{0}_{1}e$$

$${}^{1}_{1}H + {}^{13}_{6}C \rightarrow {}^{14}_{7}N + Q_{2}$$

$${}^{1}_{1}H + {}^{13}_{7}N \rightarrow {}^{15}_{8}O + Q_{3}$$

$${}^{15}_{8}O \rightarrow {}^{15}_{7}N + {}^{0}_{1}e + Q_{4}$$

$${}^{1}_{1}H + {}^{15}_{7}N \rightarrow {}^{12}_{6}C + {}^{4}_{2}H e$$

All the above reactions are added to give the following net nuclear reaction.

$$4_1^1 H \rightarrow {}_2^4 He + 2_1^0 e + Q$$

The above set of six reactions is called carbon-nitrogen cycle. In this process the four protons are fused to form 2 positrons and helium nuclei releasing 26.72 MeV of energy.

2. Proton-Proton Cycle : Recent experiments show that the carbon-nitrogen cycle comes at a rather late stage in the life of the stars. Scientists proposed another nuclear fusion cycle process which takes place comparatively at low temperatures than carbon-nitrogen cycle and gives the same amount of energy as shown below.

$${}^{1}_{1}H + {}^{1}_{1}H \rightarrow {}^{2}_{1}H + {}^{0}_{1}e + Q_{1}$$

$$^1_1\text{H} + \,^2_1\text{H} \rightarrow \,^3_2\text{He} + \text{Q}_2$$

$${}^{1}_{1}H + {}^{3}_{2}He \rightarrow {}^{4}_{2}He + {}^{0}_{1}e + Q_{3}$$

on adding $4_1^1H \rightarrow {}_2^4He + 2_1^0e + Q$

Energy released in this cycle is 24.6 MeV.

6. At the interior of sun, the temperature is of the order of $2x10^6$ K at which both of the above mentioned processes are equally probable. Stars having temperature more than that of sun obtain their energy

from carbon-nitrogen cycle and the stars at low temperature follow proton-proton cycle in energy emission.

- 7. Positron is the anti-particle of electron and was first discovered by Anderson, although theoretically its existence was predicted by Dirac.
- 8. Pair production :

A γ -ray can disintigrate in to positron and an electron.

 $\gamma \rightarrow e^+ + e^-$

The minimum energy of γ -ray to produce pair is 1.02 MeV.

9. **Pair annihilation :** An electron and positron have the same mass and spin. However, they have the opposite charge. They annihilate each other, with the emission of 2 photons, when they come into contact. This is represented by the equation.

 $e^- + e^+ = 2\gamma$

The two photons move in opposite direction.

QUESTION BANK

- 1. The radioactivity of a sample is 'X' at a time ' t_1 ' and 'Y' at a time ' t_2 '. If the mean life time of the specimen is τ , the number of atoms that have disintegrated in the time interval ($t_1 t_2$) is :
 - 1) $Xt_1 Yt_2$ 2) X-Y 3) $\frac{X-Y}{\tau}$ 4) $(X-Y)\tau$
- Let F_{pp},F_{pn} and F_{nn} denote the magnitudes of the nuclear force by a proton on a proton ,by a proton on a neutron and by a neutron on a neutron respectively when the separation is less than one fermi, then

1) $F_{pp}>F_{pn}=F_{nn}$ 2) $F_{pp}=F_{pn}=F_{nn}$ 3) $F_{pp}>F_{pn}>F_{nn}$

4) Fpp<Fpn=Fnn

In sun, the important source of energy is
1) proton-proton cycle
3) carbon-caron cycle

2) carbon-nirtogen cycle

4) nitrogen-nitrogen cycle

- 4. A free neutron decays spontaneously into:
 - 1) a proton, an electron and an anti-neutrino
 - 2) a proton, an electron and a neutrino
 - 3) a proton and electron
 - 4) a proton, an electron, a neutrino and an anti-neutrino
- 5. Particles and their anti-particles have:
 - 1) the same masses but opposite spins
 - 2) the same masses but opposite magnetic moments.
 - 3) the same masses and same magnetic moments

6.	 opposite spins and same magnetic moments Consider the following two statements A and B and identify the correct answer given below: 											
	A: Nuclear density is same for all nuclei											
	B: Radius of the nucleus (R) and its mass number (A) are related as $\sqrt{A} \propto R^{1/6}$											
	1) Both A and B are true	2) Both	A and B are f	alse								
	3) A is true and B is false	4) A is t	false B is true									
7.	The mass defect in a particular nuc	lear reaction	is 0.3grams.	The amount of energy liberated in								
	kilowatt hours is : (C=3x10 ⁸ m/s)											
	1) $7.5 \times 10^5 KWH$ 2) $7.5 \times 10^4 KWH$	3) 7.5	$\times 10^3 KWH$	4) $7.5 \times 10^6 KWH$								
8.	Consider the following statements A and B.											
	Identify the correct choice in the give	n answer.										
	(A) p-p, p-n, n-n forces between nucle	ons are not e	equal and char	ge dependent								
	(B) In nuclear reactor the fission r	eaction will	be in acceler	ating state if the value of neutron								
	reproduction factor k >1											
	1) Both A and B are correct	2) Both A an d B are wrong										
	A is wrong and B is correct	4) A is (correct and B i	is wrong.								
9.	True masses of neutron, proton and	deutron in a.	m.u are1.0089	93,1.00813 and 2.01473 respectively.								
	The packing fraction of the deutron ir	i a.m.u is										
	1) 11.65 x 10 ⁻⁴ 2) 23.5 x 10 ⁻⁴	3) 73.6	x10 ⁻⁴	4) 47.15 x 10 ⁻⁴								
10.	ue masses of neutron, proton and deutron in a.m.u are1.00893,1.00813 and 2.01473 respectively. le packing fraction of the deutron in a.m.u is 11.65 x 10 ⁻⁴ 2) 23.5 x 10 ⁻⁴ 3) 73.6 x10 ⁻⁴ 4) 47.15 x 10 ⁻⁴ heavy nucleus at rest breaks into two fragments which fly off with velocities 8:1. The ratio of radii fragments is 1:2 2) 1:4 3) 4:1 4) 2:1 omic mass of ${}_{6}^{13}C$ is 13.00335 amu and its mass number is 13.0. If 1amu=931 MeV, binding energy of the neutrons present in the nucleus is: 0.24 MeV 2) 1.44 MeV 3) 1.68 MeV 4) 3.12 MeV the following particles are Baryons: Nucleons and hyperons 2) Nucleons and leptons											
	of fragments is											
	1) 1:2 2) 1:4	3) 4:1		4) 2:1								
11.	Atomic mass of ${}^{13}_{6}C$ is 13.00335 amu	and its mass	number is 13.0	0. If 1amu=931 MeV, binding energy								
	of the neutrons present in the nucle	us is:										
	1) 0.24 MeV 2) 1.44 MeV	3) 1.68	MeV	4) 3.12 MeV								
12.	The following particles are Baryons:	The following particles are Baryons:										
	1) Nucleons and hyperons	2) Nucl	eons and lept	ons								
	3) Hyperons and leptons 4) Hyperons and Bosons											
13.	Electron belongs to the following clas	s of elementa	ary particles									
	1) Hardon 2) Lepton	3) Bosc	on	4) Baryon								
14.	Assertion(A): Nuclear forces arise	from strong	g Coulombic	interactions between protons and								
	neutrons.											
	Reason (R): Nuclear forces are indepe	ndent of the	charge of the	nucleons.								
	1) Both A and R are true and R is the c	correct explar	nation of A									
	2) Both A and K are true but K is the r	but P is true	planation of A									
15	5) A is true, but K is faise 4) A is faise,	but K is true										
13	1) Photon 2) Pion	ai spiri is. 3) Prot	on	4) K-meson								
16	Matching nairs in the two lists given h	elow are	on	+) K meson								
	List-I	List-II										
	A) Gravitions E)	Hyperons										
4	B) Baryons F)	Positrons										
	C) Pions G)	Particles wit	h zero mass ai	nd with aspin of unity								
	D) Leptons H) Decay to –n	nesons									
	I)	Massless part	ticles with pro	bable spin of two units.								
	1) A-E,B-H,C-G,D-I 2) A-I,B-E,C-H,D-F	: 3) A-H,	B-F,C-I,D-E	4) A-F,B-G,C-E,D-H								
17.	A nucleus splits into two nuclear parts	s having radii	in the ratio 1:	2. Their velocities are in the ratio								

	1) 8:1 2) 6:	1 3	3) 4:1	4) 2:1							
18.	A: Density of nucleus is in	ndependent of its r	mass number								
	B: Beryllium is used as a n	noderator in nuclea	ar reactors								
	1) Both A and B are correc	ct 2	2) Both A and B are wr	ong							
	3) A is correct. B is wrong	Z	, 4) A is wrong. B is corr	ect							
19	In Carbon-Nitrogen fusion	n cycle , protons ai	re fused to form a hel	ium nucleus, positrons and release							
_0.	some energy The number	er of protons fuse	d and the number of	nositrons released in this process							
	respectively are										
		,									
	1) 4,4 2) 4,2	<u> </u>) 2,4 125 .	4) 4,0							
20.	The ratio of radii of nuclei	$i_{13}Al^2$ and $52Te^{-1}$	IZS IS								
	1) 1 : 5 2) 2:	5 3	3) 4 : 5	4) 3 : 5							
21.	In a nuclear reactor using second is	$^{\rm g} U^{235}$ as a fuel , t	the power output is 4	4.8MW. The number of fissions per							
	Energy released per fission =200MeV, 1ev = 1.6x10 ⁻¹⁹ J)										
	1) 1.5x10 ¹⁷ 2) 3x10 ¹⁹	9 3) 1.5x10 ²⁵	4) 3x10 ²⁵								
22	If $M(A \cdot 7)$ M _n and M _n d	enote the masses	of the nucleus $\frac{A}{X}$	proton and neutron respectively in							
	(1, 1, 2, 2, 3, 2, 3, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,	AeV/c^2 and BE repu	resents its honding en	argy in MeV then							
	$1 \wedge 1 \wedge 7 = 7 \wedge 1 \wedge 7 \wedge 7$	леу/сјана встері Л вс	2 N A (A 7) = 7 A + (A	$7NA PE/c^2$							
	1) $IVI(A,Z) = ZIVI_p + (A-Z)I_1$ 2) $VI(A,Z) = ZVI_p + (A-Z)I_1$	$v_{\rm in} - DE$	2) $VI(A,Z) = ZIVI_p + (A A) NA(A Z) = ZNA + (A)$	-2 $ V _n - DE/C$							
22	$\frac{5}{100} \frac{1}{100} = \frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{100} = \frac{1}{100} \frac{1}{100$	vi _n — DE/C umbars in the ratio	4) $IVI(A,Z) = ZIVI_p + (A)$	-ZJIVIn + BE							
23.	Two nuclei nave mass no $(2)^{1/3}$	umpers in the ratio	2) 1-2	al 2.1							
24	1) (3) ² :1 2)) 1:1 f. hd	3) 1:3	4) 3:1							
24.	The ground state energy	The ground state energy of hydrogen atom is -13.6 eV. When its electron is in the first excited state,									
	Its excitation energy is										
25	1) 10.2 eV 2)		3) 3.4 eV	4) 6.8 eV							
25. I wo radioactive materials X_1 and X_2 have decay constants 5λ and λ respectively. If initially have the same number of nuclei, then the ratio of the number of nuclei of X to that X will be											
	nave the same number	of nuclei, then the	ratio of the number of	of nuclei of X_1 to that X_2 will be $1/e$							
	after a time										
	1) $1/4\lambda$ 2)	e/λ	3) <i>λ</i>	4) $\frac{1}{\lambda}$							
	· · · · · · · · · · · · · · · · · · ·			2							
26.	In the nuclear decay give	en below ${}^{A}_{Z}X \rightarrow^{A}_{z+1}$	$Y \rightarrow_{Z-1}^{A-4} B^* \rightarrow_{Z-1}^{A-4} B$ th	e particles emitted in the sequence							
	are										
	1) γ, β, α 2)	β, γ, α	3) <i>α</i> , <i>β</i> , <i>γ</i>	4) β, α, γ							
27.	The number of beta pa	articles emitted by	/ a radioactive substa	nce is twice the number of alpha							
	particles emitted by it. The resulting daughter is an										
	1) isomer of parent 2)	isotone of parent	3) isotope of parent	4) isobar of parent							
28.	In a Rutherford scatteri	ing experiment wh	en a projectile of cha	rge z_1 and mass M_1 , approaches a							
	target nucleus of charge	e_{z_2} and mass M_2 .	the distance of closes	approach is r0. The energy of the							
	projectile is	2		6,							
	1) directly proportional	t0 7172	2) inversely proporti	onal to 71							
	3) directly proportional	to mass M ₁	4) directly proportion	nal to $M_1 \times M_2$							
29	Which of the following o	con he detected hy	a magnet ?								
25.	1) gamma rays 2)	heta ravs	3) radio waves	4) ultra-violet rays							
30	The ratio of the radii of t	the nuclei of $ \Lambda I^{27}$	andTe ¹²⁵ is approvi	mately							
50.	1) 6·10 21	13.57	3) 20.177	A) 14.73							
21	The number of neutrons	s in an atom V of at	omic number 7 and m	$\tau_1 \pm \tau_2 = 0$							
JT.		5 m an atom A OI dt 7	3) Λ_7								
วา	$\pm j L^{-A}$ Z)	r c hangos with the m	JIA-L								
JZ.	THE LAUIUS OF A HULIEUS (changes with the fi	iass number A OF the F	1001003 03							

	1) r ∝ A ^{2/3}	2) r ∝ A ^{1/3}	3) r ∝ A ⁰	4) r ∝ A								
33.	The density of a nucl	ear matter varies with	mass number A as									
	1) d $\propto A^3$	2) d $\propto A^2$	3) d ∝ A	4) d $\propto A^0$								
34.	The average binding	energy of nucleus is	,									
	1) 8 eV	2) 8 keV	3) 8 MeV	4) 8 BeV								
35.	In a fusion process a proton and a neutron combine to form a deuterium nucleus. If m and r											
	denote the mass of a	proton and the mass	of a neutron respectiv	elv. the mass of the deuterium								
	nucleus is											
	1) equal to $(m_{r}+m_{r})$		2) greater than (m ₂ +	m_)								
	3) less than (m_p+m_p)		4) it has no relation with the given masses									
36	The nuclei $_{c}C^{13}$ and	₇ N ¹⁴ can be described	as									
	1) isotones	2) isobars	3) isomers	4) isotopes								
37	Slow neutrons are so	metimes referred to a	s thermal neutrons because									
071	1) they are a sort hea	at radiations										
	2) they are in therma	l equilibrium										
	3) they are canable of	if generating heat										
	4) their energies are of the same order as that of melecular energies at ambient temperatures											
38												
50.	as	indificer of field of is										
	1) N<7	2) N+7	3) N>7	4) N >7								
39	In the reaction repre	sented by $_{7}X^{A} \rightarrow _{7}_{3}Y^{A}$	$^{-4} \rightarrow 7.2 Y^{A-4} \rightarrow 7.1 K^{A-4} t$	he decays in the sequence are								
00.	1) α.β. γ	2) $\beta_1, \gamma_2, \alpha$	3) γ , α , β	4) α , γ , β								
40	The number of neutr	ons in a chain reaction	increases in	·/ ~/// P								
40.	1) arthmatic progression 2) geometric progression											
	3) harmonic progress	sion	4) none of these	51011								
41	Hydrogen homh is ha	ased on the principle o	f									
71.	1) fission	2) fusion	3) electrolysis	4) ionization								
42	A good moderator sh	ould	of cleation of the	i) ionization								
	1) be a gas		2) have appetite for i	neutrons								
	3) be light in mass nu	umber	4) all of these									
43.	The main source of energy in the sun is due to											
	1) the burning of hydrogen in oxygen											
	2) fusion of uranium present in the sun											
	3) the energy liberated in the fusion protons during the synthesis of heavier nuclei											
	4) gravitational contraction											
44.	In the nuclear decay,	$_{7}N^{13} \rightarrow _{6}C^{13}+()+()$ the	e particles represented	l by the two parentheses are								
	1) neutron and γ - ray	V	2) positron and neutrino									
	3) positron and antin	, eutrino	4) positron and electron									
45.	During a nuclear fusion reaction											
	1) a heavy nucleus breaks into two fragments by itself											
	2) a light nucleus bombarded by thermal neutrons braks up											
	3) a heavy nucleus bombarded by thermal neutrons breaks up											
	4) two light nuclei combine to give a heavier nucleus and possibly other products											
46.	Fusion reactions take	e place at high tempera	ature because									
	1) atoms are ionised	at high temperature										
	2) molecules break u	p at high temperature										
	3) nuclei break up at	high temperature										
	4) kinetic energy is h	igh enough to overcon	ne repulsion between	nuclei								

60	1) only a, b & c are tr 3) only a and c are tru	ue Je		2) only b and d are true 4) only b and c are true								
60.	Which of the followin	ng is true regarding nu	clear fusion									
	a) the probable reaction in high temperature stars is carbon nitrogen cycle b) it is generally observed on the earth											
	c) the probable react	ion in low-temperatur	e stars is proton-proto	on cycle								
	d) it takes place at a t	temperature of about	10 ⁴ K									
	1) only a and b are true 2) only b and d are true											
	3) only a and c are tru	le		4) only c and d are true								
61.	Identify the correct o	rder of increasing ord	er of B.E per nucleon o	of the following nuclei								
	a) Helium	b) Carbon	c) Oxygen	e) Iron								
	1) a-b-c-d	2) d-c-b-a	3) c-b-d-a	4) c-b-a-b								
62.	Match the following											
	List I		List II									
	a) Artificial Radioactiv	vity	e) Bethe									
	b) Carbon-Nitrogen c	ycle	f) Fermi									
	c) Carbon dating		g) Rutherford									
	d) Transmutation of a	atomic										
	1) a-e b-f c-g d-b	$2) = f + e - c + d - \sigma$	$\begin{array}{c} \text{IDDDy} \\ \text{3) } \text{2-b} \ b \ \sigma \ c \ f \ d \ o \end{array}$	1) arg brb cre drf								
63.	Match the following	2) a-i, b-e, c-ii, u-g	5) a-11, b-g, c-1, u-e	4) a-g, b-ii, c-e, d-i								
001	List I		List II									
	a) Liquid Sodium		e) Moderation									
	b) Pu-239		f) Control rod									
	c) Graphite		g) Fuel									
	d) Cadmium steel		h) Coolant									
	1) a-f, b-g, c-e, d-h	2) a-h, b-g, c-e, d-f	3) a-e, b-g, c-f, d-h	4) a-h, b-g, c-f, d-e								
Assert	tion & Reason : In eac	h of the following que	stions, a statement is	given and a corresponding								
	statement or reason	is given just below it.	In the statements, mai	rks the correct answer as								
	2) If both Assertion and Reason are true but Reason is not the correct explanation of Assertion.											
	2) If Accortion is true	hut Reason are true bu	it Reason is not the co	rrect explanation of Assertion.								
	 a) It Assertion is true but Reason is false. a) If both Assertion and Reason are false. 											
64.	[A] : At least one ther	mal neutron should b	e available to initiate t	he fission reaction.								
•	[R]:The state of the c	hain reaction depends	s onthe neutrons multi	plication factor.								
65.	[A]: Neutron flux in th	ne interior of a nuclea	r reactor can be increa	ised using neutron reflector.								
	[R]:Fast neutrons can	be changed into slow	neutrons or thermal i	neutrons.								
66	[A] : Cadmium or Bor	on rods are generally	used as control rods.									
([R] : Cadmium or Bor	on rods slows down fa	ast moving neutrons.									
67	[A] : In the fission of t	uranium nuclei on an a	average 2.5 neutrons a	are emitted per fission.								
	[R] : In the fission of u	uranium, the number	of promt neutrons will	change with the products.								
68.	[A]:The penetrating p	ower of neutron is hi	gh.									
	[R]:Neutron is charge	e less.										
69	[A]:The velocity of de	-Broglie's wave associ	ated with a moving pa	article is greater than the								
	velocity of light.											
70	[K]:de-Broglie waves	are not electromagne	tic waves.									
70	[A]: Density of the hu	icieus is aimost same i is indonondont of ator	or all nuclei.									
71	Δ] · Nuclear density is	s same for all nuclei										
/ ⊥	Aj . Nuclear density is											
		www.saksl	nieducation.com									

[R] : Radius of the nucleus (R) and its mass number (A) are related as $\sqrt{A}\,\alpha\,R^{1/6}\,.$

- 72 [A] : A fusion reaction is a powerful source of energy.
 - [R] :Fusion reaction takes place at a very high temperature (10⁶ K).
- 73 [A] : Electrons are not expected to be found inside the nucleus.[R] : Electrons are much lighter than protons or neutrons.

1)	4	2)	2	3)	1	4)	1	5)	2	6)	3	7)	4	8)	3	9)	3	10)	1
11)	3	12)	1	13)	2	14)	4	15)	3	16)	2	17)	1	18)	3	19)	2	20)	2
21)	1	22)	3	23)	2	24)	1	25)	1	26)	4	27)	3	28)	3	29)	2	30)	1
31)	3	32)	3	33)	4	34)	3	35)	3	36)	1	37)	4	38)	4	39)	4	40)	2
41)	2	42)	3	43)	3	44)	2	45)	4	46)	4	47)	1	48)	3	49)	1	50)	3
51)	3	52)	4	53)	2	54)	3	55)	1	56)	4	57)	2	58)	4	59)	1	60)	3
61)	1	62)	2	63)	2	64)	3	65)	1	66)	2	67)	3	68)	2	69)	1	70)	3
71)	2	72)	3	73)	3														

Solutions

VEV .

1.

Ans: 4

Sol: The relation between $t_{1/2}$ and λ is $t_{1/2} = \frac{0.693}{2}$

```
\lambda t_1 = X \dots (1)

\lambda t_2 = Y \dots (2)

from (1) and (2)

\lambda (t_1 - t_2) = X - Y \implies t_1 - 1

but \tau = \frac{1}{\lambda}
```

$$\therefore t_1 - t_2 = (X - Y) \tau$$

2. Ans: 2

Sol. Nuclear forces are charge independent

3. Ans: 1

Sol. Because of nuclear fusion proton – proton cycle takes place

4.

Ans: 1

Sol. $_{o}n^{1} \longrightarrow_{_{-1}e^{0}} +_{_{1}}H^{1} + v$

5. Ans: 2

Sol.Same masses but opposite electromagnetic properties like charge, magnetic moment etc.

6.

Ans : 3

Sol: Density remains constant

 $(A): \rho = \text{constant}$

(B) : (B)
$$R \propto A^{1/3} \left[\sin c e \ R = R_0 A^{1/3} \right]$$

 $\Rightarrow R^3 \propto A$
 $\Rightarrow R^{3/2} \propto \sqrt{A}$

7.

Ans: 4 Sol: From Einstein mass – energy equivalence $\Delta E = \Delta MC^2$ $= 0.3 \times 10^{-3} \times (3 \times 10^8)^2$ $= 2.7 \times 10^{13} J = \frac{2.7 \times 10^3}{3600 \times 10^3}$ $= 0.75 \times 10^7 \text{ KWH}$ $= 7.5 \times 10^6 \text{ KWH}$

8.

Ans :3

A: The p-n, p-p and n-n nuclear forces are equal and charge independent.

B: $K = \frac{Neutrons in one generation}{Neutrons in one generation}$

Neutrons in the previous generation

Where k is called neutron multiplication factor

If K > 1, the neutron population keeps on increasing after the completion of each neutron cycle which takes time of the order of a millisecond. Which is called as super critical state

9.

Sol: Packing fraction = $\frac{M-A}{A}$, where M is the atomic mass and A is the mass number.

$$P = \frac{M-A}{A} = \frac{2.01473 - 2}{2} = 73.6 \times 10^{-4}$$

10.

Ans:1

Sol Momentum conservation gives

$$m_1 v_1 = m_2 v_2$$

$$\Rightarrow \frac{v_1}{v_2} = \frac{8}{1} = \frac{m_2}{m_1}$$

$$\Rightarrow \frac{m_2}{m_1} = \frac{1}{8} \approx \frac{A_1}{A_2}$$

$$\frac{R_1}{R_2} = \left(\frac{A_1}{A_2}\right)^{1/3} = \left(\frac{1}{8}\right)^{1/3} = \frac{1}{2}$$

11. Ans: 3

Sol: Mass defect = 0.00335 amu

$$= \left[\frac{(0.00335)(931)}{13}\right] 7$$
$$= 1.679 = 1.68 \, MeV$$

12.

Ans: 1 Sol. Nucleons and hyperons are called Baryons 13. Ans: 2 Sol. As electrons have lighter mass. Therefore they belong to leptons 14. Ans: 4 15 Ans: 3 Sol. Proton Possesses half integral spin. 16 Ans: 2 17. Ans: 1 Sol: $R = R_0 A^{1/3}$ $\frac{A_1}{A_2} = \frac{M_1}{M_2} = \frac{R_1^3}{R_2^3} = \frac{1^3}{2^3} = \frac{1}{8}$ [since mass = volume x density] $M_1V_1 = M_2V_2$ [from law of conservation of momentum] $\Rightarrow \frac{V_1}{V_2} = \frac{M_2}{M_1} = 8$

18.

Ans: 3
Sol: A:
$$\rho = \frac{mass of nucleus}{volume} = \frac{A \times M_p}{4\pi R^3 / 3}$$
$$= \frac{3M_p}{4\pi} \frac{A}{(r_0 A^{1/3})^3} = \frac{3M_p}{4\pi r_0^3} = \text{constant [since m_p and r_0 are constant]}$$

B: A good moderator must be light (low atomic weight) must be capable of scattering neutrons with a high probability, but should not absorb neutrons. Therefore Beryllium is not suitable for moderator

19.

Sol:
$$4_1H^1 \rightarrow_2 He^4 + 2_1e^0 + 2\gamma$$

4 protons fuses and 2 positron are released

20.

Ans:4

Sol: $R = r_0 A^{1/3}$

$$\frac{R_1}{R_2} = \left(\frac{A_1}{A_2}\right)^{1/3} = \left(\frac{27}{125}\right)^{1/3} = \frac{3}{5}$$

21. Ans :1

Sol: Power of reactor P = $\frac{nE}{t}$

Where 'n' is number of fissions, 't' is time and 'E' is energy released per fission

22. (3):

$$ZM_p+(A-Z)M_n - M(A,Z)$$

 $= mass effect = \frac{B.E.}{c^2}$
 $\Rightarrow M(A,Z) = ZM_p + (A-Z)M_n - \frac{B.E.}{c^2}$

23. (2):
$$A_1 : A_2 = 1:3$$

Their radii will be in the ratio
 $R_0 A_1^{1/3} : R_0 A_2^{1/3} = 1:3^{1/3}$
Density $= \frac{A}{\frac{4}{3}\pi R^3}$
 $\therefore \rho_{A_1} : \rho_{A_2} = \frac{1}{\frac{4}{3}\pi R_0^3 \cdot 1^3} = \frac{3}{\frac{4}{3}\pi R_0^3 \cdot (3^{1/3})^3}$

Their nuclear densities will be the same.

24. (1)

-13.6 eV

Energy of electron in nth orbit = When n = 1 $E_{n_1} = -13.6 eV$ When n = 2 $E_{n_2} = -3.4 eV$ $\frac{n=2}{2}E_2 = -\frac{13.6}{4}eV$

1st excitation energy $E_{n_2} - E_{n_1} = (-3.4 + 13.6) = 10.2 \text{ eV}$

25 (1)
$$X_1 = N_0 e^{-\lambda_1 t}; X_2 = N_0 e^{-\lambda_2 t}$$

 $\frac{X_1}{X_2} = e^{-1} = e^{(-\lambda_1 + \lambda_2)t}; e^{-1} = e^{-(\lambda_1 - \lambda_2)t}$
 $\therefore t = \left|\frac{1}{\lambda_1 - \lambda_2}\right| = \frac{1}{(5\lambda - \lambda)} = \frac{1}{4\lambda}$

H atom

26 🥌

(4)

Because of β emission atomic number increases by 1 unit, α - particle atomic number increases by 2 units & mass number by 4 units.

$${}^{A}_{Z}X \xrightarrow{\beta^{-}} {}^{A}_{Z+1}Y \xrightarrow{\alpha} {}^{A-4}_{Z-1}B^{*} \xrightarrow{\gamma} {}^{A-4}_{Z-1}B$$

First X decays by β^- emission emitting \overline{v} , antineutrino simultaneously. Y emits α resulting in the excited level of B which in turn emits a γ ray.

27 (3)
$$_{Z}^{A} X \xrightarrow{2\beta^{-}} _{Z+2}^{A} Y_{1} \xrightarrow{\alpha} _{Z}^{A-4} Y_{2}$$

The result daughter is an isotope of the original parent nucleus.

28. (1) : Energy of the projectile is the potential energy at closest approach, $\frac{1}{4\pi\varepsilon_0} \frac{z_1 z_2}{r}$

Therefore energy $\propto z_1 z_2$.

PREVIOUS EXAMINATION QUESTIONS (AIPMT)

2012

- 1. Electron in hydrogen atom first jumps from third excited state to second excited state to second excited state and then from second excited to the first excited state. The ratio of the wavelengths $\lambda_1 : \lambda_2$ emitted in the two cases is a) $\frac{7}{5}$ b) $\frac{27}{20}$ c) $\frac{27}{5}$ d) $\frac{20}{7}$
- a) $\frac{7}{5}$ b) $\frac{27}{20}$ c) $\frac{27}{5}$ d) $\frac{20}{7}$ 2. If the nuclear radius of ²⁷Al is 3.6 fermi, the approximate nuclear radius of ⁶⁴Cu in Fermi is a) 2.4 b) 1.2 c) 4.8 d) 3.6
- A mixture consists of two radioactive materials A₁ and A₂ with half lives of 20s and 10s respectively. Initially the mixture has 40g of A₁ and 160 g of A₂. The amount of the two in the mixture will become equal after
 - a) 60s b) 80 s c) 20 s d) 40 s
- 4. An electron of a stationary hydrogen atom passes from the fifth energy level to the ground level. The velocity that the atom acquired as a result of photon emission will be

a)
$$\frac{24hR}{25m}$$
 b) $\frac{25hR}{24m}$ c) $\frac{25m}{24hR}$ d) $\frac{24m}{25hR}$

(m is the mass of the electron, R, Rydberg constant and h Planck's constant)

- 2011
- 5. The wavelength of the first line of Lyman series for hydrogen atom is equal to that of the second line of Balmer series for a hydrogen like ion. The atomic number Z of hydrogen like ion is
- a) 3
 b) 4
 c) 1
 d) 2

 6. The half life of a radioactive isotope X is 50 years. It decays to another element Y which is stable. The two elements X and Y were found to be in the ratio of 1:15 in a sample of a given rock. The age

of the rock was estimated to be

a) 150 years b) 200 years c) 250 years d) 100 years

- 7. The power obtained in a reactor using U^{235} disintegration in 100kW. The mass decay of U^{235} per hour is
 - a) 10 microgram b) 20 microgram c) 40 microgram d) 1 microgram
- 8. A radioactive nucleus of mass M emits a photon of frequency v and the nucleus recoils. The recoil energy will be
 - a) $Mc^2 hv$ b) $h^2 v^2 / 2MC^2$ c) zero d) hv
- 9. A nucleus $\int_{n}^{m} X$ emits one α particle and two β -particles. The resulting nucleus is

a)
$$\frac{m-6}{n-4}X$$
 b) $\frac{m-6}{n}X$ c) $\frac{m-4}{n}X$ d) $\frac{m-4}{n-2}Y$

10. Fusion reaction takes place at high temperature because

a) nuclei break up at high temperature b) atoms get ionized at high temperature c) kinetic energy is high enough to overcome the coulomb repulsion between nuclei

d) molecules break up at high temperature

11. An electron in the hydrogen atom jumps from excited state n to the ground state. The wavelength so emitted illuminates a photosensitive material having work function 2.75 eV. If the stopping potential of the photoelectron is 10 V, then the value of n is a) 2 b) 3 c) 4 d) 5 2010 The mass of $a_3^7 Li$ nucleus is 0.042 u less than the sum of the masses of all its nucleons. The binding 12. energy per nucleon of $\frac{7}{3}Li$ nucleus is nearly. a) 46 MeV b) 5.6 MeV c) 3.9 MeV d) 23 MeV 13. The activity of a radioactive sample is measured as N_0 counts per minute at t = 0 and N_0 /e counts per minute at t = 5 minutes. The time (in minutes) at which the activity reduces to half its value is b) $\frac{5}{\log_2 2}$ a) $\log_e \frac{2}{5}$ c) 5 log₁₀2 d) 5log_e2 The energy of a hydrogen atom in the ground state is -13.6 eV. The energy of a He⁺ ion in the first 14. excited state will be d) -6.8 eV b) -27.2 eV c) -54.4 eV a) -13.6 eV An alpha nucleus of energy $\frac{1}{2}mv^2$ bombards heavy nuclear target of charge Ze. Then the distance 15. of closest approach for the alpha nucleus will be proportional to d) $\frac{1}{v^4}$ a) $\frac{1}{Ze}$ c) $\frac{1}{m}$ b) v^2 The decay constant of a radio isotope is λ . If A₁ and A₂ are its activities at times t₁ and t₂ 16. respectively, the number of nuclei which have decayed during the time (t₁-t₂) b) A₁ - A₂ c) $(A_1 - A_2)/\lambda$ a) $A_1t_1 = A_2t_2$ d) $\lambda(A_1 - A_2)$ The binding energy per nucleon in deuterium and helium nuclei are 1.1 MeV and 7.0 MeV, 17. respectively. When two deuterium nuclei fuse to form a helium nucleus the energy released in the fusion is a) 23.6 MeV b) 2.2 MeV c) 28.0 MeV d) 30.2 MeV KEY 3.d 7.c 1. d 2. c **4.**a **5.d** 6.b 8. b 9.c 10.c 11.c **12.b 13.d** 14.a 15.c 16.c 17.a SOLUTIONS 2012 (d) 1. excited state) nd excited state) 2(1st excited state) -n = 1(Ground state) According to Rydberg formula $\frac{1}{\lambda} = R \left| \frac{1}{n_f^2} - \frac{1}{n_i^2} \right|$ In first case, $n_f = 3$, $n_i = 4$

$$\therefore \frac{1}{\lambda_{1}} = R \left[\frac{1}{3^{2}} - \frac{1}{4^{2}} \right] = R \left[\frac{1}{9} - \frac{1}{16} \right] = \frac{7}{144} R \qquad \dots \dots (i)$$

In second case, $n_{f} = 2$, $n_{i} = 3$
$$\therefore \frac{1}{\lambda_{2}} = R \left[\frac{1}{2^{2}} - \frac{1}{3^{2}} \right] = R \left[\frac{1}{4} - \frac{1}{9} \right] = \frac{5}{36} R \qquad \dots \dots (ii)$$

Divide (ii) by (i), we get
$$\frac{\lambda_{1}}{\lambda_{2}} = \frac{5}{36} \times \frac{144}{7} = \frac{20}{7}$$

(c)
Nuclear radius, $R = R_{0}A^{1/3}$ where R_{0} is a constant and A is the mass number
$$\therefore \frac{R_{Al}}{\lambda_{1}} = \frac{(27)^{1/3}}{3} = \frac{3}{3}$$

$$R_{Cu} = \frac{4}{3} \times R_{Al} = \frac{4}{3} \times 3.6 \quad \text{Fermi} = 4.8 \text{ fermi}$$

3. (d)

2.

Let after t s amount of the A_1 and A_2 will become equal in the mixture

As
$$N = N_0 \left(\frac{1}{2}\right)^n$$

Where n is the number of half-lives

For A₁, N₁ =
$$N_{01} \left(\frac{1}{2}\right)^{t/10}$$

For A₂, N₂ = $N_{02} \left(\frac{1}{2}\right)^{t/10}$
According to question, N₁ = N₂
 $\frac{40}{2^{t/20}} = \frac{160}{2^{t/10}}$
 $2^{t/10} = 4(2^{t/20}) \text{ or } 2^{t/10} = 2^{2}2^{t/2}$
 $2^{t/10} = 2^{\left(\frac{t}{20}+2\right)}$
 $\frac{t}{10} = \frac{t}{20} + 2 \text{ or } \frac{t}{10} - \frac{t}{20} = 2$
Or $\frac{t}{20} = 2 \text{ or } t = 40 \text{ s}$

(a)

4.

According to Rydberg formula

$$\frac{1}{\lambda} = R \left[\frac{1}{n_f^2} - \frac{1}{n_i^2} \right]$$

Here, n_f = 1, n_i = 5

$$\therefore \frac{1}{\lambda} = R \left[\frac{1}{1^2} - \frac{1}{5^2} \right] = R \left[\frac{1}{1} - \frac{1}{25} \right] = \frac{24}{25} R$$

According to conservation of linear momentum, we get

Momentum of photon = Momentum of atom

$$\frac{h}{\lambda} = mv$$
 or $v = \frac{h}{m\lambda} = \frac{h}{m} \left(\frac{24R}{25}\right) = \frac{24hR}{25m}$

2011

5. (d) The wavelength of the first line of Lyman series for hydrogen atom is

$$\frac{1}{\lambda} = R \left[\frac{1}{1^2} - \frac{1}{2^2} \right]$$

The wavelength of the second line of Balmer series for hydrogen like ion is

4

$$\frac{1}{\lambda} = Z^2 R \left[\frac{1}{2^2} - \frac{1}{4^2} \right]$$

Or $\frac{3}{4} = \frac{3Z^2}{16}$ or $Z^2 = 4$ or $Z = 2$

6. (b)
$$\frac{N}{N_0} = \left(\frac{1}{2}\right)^n$$

Where n is number of half lives

$$\therefore \frac{1}{16} = \left(\frac{1}{2}\right)^n \text{ or } \left(\frac{1}{2}\right)^4 = \left(\frac{1}{2}\right)^n \text{ or } n =$$

Let the age of rock be t years,.

::
$$n = \frac{t}{T_{1/2}}$$

Or $t = nT_{1/2} = 4 \times 50$ years = 200 years

7. (c) According to Einstein's mass energy relation

E = mc² or
$$m = \frac{E}{r^2}$$

Mass decay per second

$$\frac{\Delta m}{\Delta t} = \frac{1}{c^2} \frac{\Delta E}{\Delta t} = \frac{P}{c^2} = \frac{1000 \times 10^3 W}{\left(3 \times 10^8 \, m/s\right)^2}$$

$$=\frac{10^{6}}{9\times10^{16}}$$
 kg/s

106

Mass decay per hour

$$= \frac{\Delta m}{\Delta t} \times 60 \times 60 = \left(\frac{10^6}{9 \times 10^{16}} kg / s\right) (3600 s)$$
$$= 4 \times 10^{-8} kg = 40 \times 10^{-6} g = 40 \mu g$$

8.

. (b) Momentum of emitted photon

$$= p_{photon} = \frac{hv}{c}$$

From the law of conservation of linear momentum, Momentum of recoil nucleus

 $Mv = \frac{hv}{c}$

Where v is the recoil speed of the nucleus

Or
$$v = \frac{hv}{Mc}$$

The recoil energy of the nucleus
 $= \frac{1}{2}Mv^2 = \frac{1}{2}M\left(\frac{hv}{Mc}\right)^2 = \frac{h^2v^2}{2Mc^2}$ (Using (i))

9. (c) When an alpha particle $\binom{4}{2}He$ is emitted, the mass number and the atomic number of the daughter nucleus decreases by four and two respectively. When a beta particles (β^{-}) is emitted, the atomic number of the daughter nucleus increases by one but the mass number remains the same.

$${}^{m}_{n}X \xrightarrow{\alpha} {}^{m-4}_{n-2}Y \xrightarrow{2\beta^{-}} {}^{m-4}_{n}X$$

10. (c) Extremely high temperature needed for fusion make kinetic energy large enough to overcome coulomb repulsion between nuclei. Because of this they are called as thermonuclear reactions.

11 (c) Here, Stopping potential, V0= 10 V Work function, W = 2.75 eV According to Einstein's photoelectric equation $eV_0 = hv - W$ Or $hv = eV_0 + W$

= 10 eV + 2.75 eV = 12.75 eV(i)
When an electron in the hydrogen atom makes a transition from excited state n to the gound state (n=1), then the frequency (
$$v$$
) of the emitted photon is given by
 $hv = E_n - E_1$
 $hv = -\frac{13.6}{2} - (-\frac{13.6}{2})$

[: For hydrogen atom, $E_n = -\frac{13.6}{n^2} eV$]

According to given problem

$$-\frac{13.6}{n^2} + 13.6 = 12.75$$

$$\frac{13.6}{n^2} = 0.85 \Rightarrow n^2 = \frac{13.6}{0.85} = 16$$
Or n = 4
2010
12
(b) For $\frac{7}{3}Li$ nucleus,
Mass defect, $\Delta M = 0.042u$
 \therefore 1 u = 931.5 MeV/c²
 $\therefore \Delta M = 0.042 \times 931.5$ MeV/c²
 $= 39.1$ MeV/c²
Binding energy, E_b = ΔMc^2

.....(i)

$$= \left(39.1 \frac{MeV}{c^2}\right)c^2$$

= 39.1 MeV
Binding energy per nucleon, = $\frac{39.1MeV}{7}$ = 5.6 MeV

13 (d) According to Radio activity law
$$R = R_0 e^{-\lambda t}$$

Where,

 R_0 = initial activity at t = 0

R = activity at time t

 λ = decay constant

According to given problem,

 $R_0 = N_0$ counts per minute

 $R = \frac{N_0}{N_0}$ counts per minute

t = 5 minutes

Substituting these values in equation (i), we get

$$\frac{N_0}{e} = N_0 e^{-5\lambda}$$
$$e^{-1} = e^{-5\lambda}$$
$$5\lambda = 1 \text{ or } \lambda = \frac{1}{5} \text{ per minute}$$

At t = T_{1/2}, the activity R reduces to $\frac{R_0}{2}$

Where $T_{1/2}$ = half life of a radioactive sample From equation (i), we get

$$\frac{R_0}{2} = R_0 e^{-\lambda T_{1/2}} = 2$$

Taking natural logarithms of both sides of above equation, we get

 $\lambda T_{1/2} = \log_e 2$ Or $T_{1/2} = \frac{\log_e 2}{\lambda} = 5\log_e 2$ minutes

14. (a) Energy of an hydrogen like atom like He^+ in an n^{th} orbit is given by

$$E_n = -\frac{13.6Z^2}{n^2} eV$$

For hydrogen atom, Z= 1
$$\therefore \quad E_n = -\frac{13.6}{n^2} eV$$

For ground state, n = 1

:.
$$E_1 = -\frac{13.6}{1^2} eV = -13.6 eV$$

For He+ ion, Z=2
 $E_n = -\frac{4(13.6)}{n^2} eV$

For first excited state, n = 2

$$\therefore \qquad E_2 = -\frac{4(13.6)}{(2)^2}eV = -13.6\,eV$$

Hence, the energy in He^+ ion in first excited state is same that of energy of the hydrogen atom in grounds state i.e. -13.6 eV.

15. (c) At the distance of closest approach d, Kinetic energy = Potential energy

$$\frac{1}{2}mv^2 = \frac{1}{4\pi\varepsilon_0}\frac{(2e)(ze)}{d}$$

Where,

Ze = charge of target nucleus

2e = charge of alpha nucleus

 $\frac{1}{2}mv^2$ = kinetic energy of alpha nucleus of mass m moving with velocity v

Or
$$d = \frac{2Ze^2}{4\pi\varepsilon_0 \left(\frac{1}{2}mv^2\right)} \therefore d \propto \frac{1}{m}$$

16 (c) : $A_1 = \lambda N_1$ at time t₁

 $A_2 = \lambda N_2$ at time t₂

Therefore, number of nuclei decayed during time interval (t_1-t_2) is

$$N_1 - N_2 = \frac{\left[A_1 - A_2\right]}{\lambda}$$

17. (a):
$${}_{1}H^{2} + {}_{1}H^{2} \rightarrow {}_{2}He^{4} + \Delta E$$

The binding energy per nucleon of a deuteron = 1.1 MeV \therefore Total binding energy = $2 \times 1.1 = 2.2 \text{ MeV}$ The binding energy per nucleon of a helium nuclei = 7 MeV \therefore Total binding energy = $4 \times 7 = 28 \text{ MeV}$

AIIMS QUESTIONS

a)

- 1. Assertion : Mass defect in nuclear reactions is less than 1% Reason : In nuclear reaction, change in BE/N is generally less than 1%
- Assertion : It is desirable to slow down fast moving neutrons to sustain controlled chain reactions Reason : Slow moving neutrons efficiently collides with U²³⁵.
- 3. Half life of a radio-active element is 8 years, how much amount will be present after 32 years?

$$\frac{1}{4}$$
 b) $\frac{1}{8}$ c) $\frac{1}{16}$ d) $\frac{1}{32}$

4. The nucleus $\int_{n}^{m} X$ emits one α particle and 2β -particles. The resulting nucleus is a) $\int_{n-2}^{m-4} Y$ b) $\int_{n-4}^{m-6} Z$ c) $\int_{n-4}^{m-6} Z$ d) $\int_{n-4}^{m-4} X$

5. Assertion : At rest, radium is decayed into Radon and an α -particle. They both moves back to back of each other.

Reason : Splitting of radioactive particle is based on conservation of linear momentum

- 6. Assertion : More energy is released in fusion than fission Reason : More number of nucleons take part in fission
- 7.. Assertion : γ -radiation emission occurs after α and β decay

Reason : Energy levels occur in nucleus

SOLUTIONS:

1.

Sol: (a)

(c)

2.

Sol:

The average energy of a neutron produced in fission of U235 is 2 MeV. These neutrons unless slowed down will escape from the reactor without interacting with uranium nuclei, unless a large amount of fissionable material is used for sustaining the chain reaction. What we needs to do is to slow down the fast neutrons by elastic scattering with light nuclei. Chadwick's experiment showed that in an elastic collision with hydrogen neutron almost come to rest.

3. Sol:

(c) Here, $T_{1/2} = 8$ years T = 32 years

Using, N =
$$N_0 \left(\frac{1}{2}\right)^{\frac{t}{T_{1/2}}}$$

 $\left(\frac{N}{N_0}\right) = \left(\frac{1}{2}\right)^{\frac{32}{8}} = \left(\frac{1}{2}\right)^4$
 $\left(\frac{N}{N_0}\right) = \frac{1}{16}$

4.

Sol:

(d)

Emission of α -particle decreases the mass number and the atomic number and the atomic number by 4 and 2 respectively. Emission of β -particle increases the atomic number by 1 while the mass number remains unchanged.

After the emission of the one α -particle and two β -particles

Decreases in mass number = 4-0 = 4

Decreases in atomic number = 2-2=0

 \therefore The resulting the nucleus is ${}^{m-4}X$

5.

Sol:

6.

Sol: (b)

(a)

7..

Sol: (a)