4) POTENTIOMETER

1. Potentiometer:

- i) It is a device which is used to
 - a) compare the e.m.f.s of two cells,
 - b) to determine the e.m.f of a cell
 - c) determine the internal resistance of a cell
 - d) calibrate a voltmeter and an ammeter
 - e) determine the current in a circuit,
 - f) determine unknown resistance,
 - g) measure thermo emfs.
- ii) A cell of E and internal resistance r in the primary circuit maintains uniform potential gradient along the length of its wire.
- iii)Current through the potentiometer wire, $i = \frac{E}{r + R}$
- iv)Potential gradient or potential drop per unit length = $\frac{iR}{\ell}$ where 'l' is the total length of potentiometer wire, 'R' is the total resistance of the wire and 'i' is the current through potentiometer wire due to primary circuit.
- v) If a resistance R_s is connected in series with the potentiometer wire then $i = \frac{E}{r + R + R_s}$.
- vi)potential drop per unit length $= \left(\frac{E}{r + R + R_s}\right) \frac{R}{\ell}$

vii) Comparison of emfs using potentiometer:

- a) ℓ_1 and ℓ_2 are balancing lengths when two cells of emfs, E_1 and E_2 are connected in the secondary circuit. one after the other then, $\frac{E_1}{E_2} = \frac{\ell_1}{\ell_2}$
- b) By sum and difference method,

$$\frac{E_1 + E_2}{E_1 - E_2} = \frac{L_1}{L_2} \ \, {\rm or} \, \, \frac{E_1}{E_2} = \frac{L_1 + L_2}{L_1 - L_2} \, .$$

viii) Internal resistance of a cell

$$r = \left(\frac{E - V}{V}\right) R = \left(\frac{\ell_1 - \ell_2}{\ell_2}\right) R$$

When ℓ_1 = balancing length for the cell connected in the secondary circuit.

 ℓ_2 = balancing length when a resistance R is connected in parallel to the cell.

E = emf of the cell in the secondary circuit

V = Terminal voltage

- ix) The sensitivity of potentiometer can be increased by decreasing the potential gradient. i.e., by increasing the length of potentiometer wire for a given B.
- x) The best instrument for accurate measurement of the e.m.f of cell is potentiometer because it does not draw current from cell.
- xi)Potentiometer acts like a voltmeter of infinite resistance.
- xii) E_b (emf of battery in the primary circuit) must be greater then E_c (emf of cell in the secondary circuit) otherwise e.m.f will not be balanced even over the complete length of wire.
- xiii) + ve terminals of both battery and cell must be connected at same point otherwise I_b and I_c will be in same direction and null point is never obtained.