MOTION IN A PLANE

Horizontal projection

- 1. Consider a body horizontally from the top of a tower with a velocity 'u'.
 - a) It reaches the ground along a parabolic path.
 - b) Its time of descent is $\sqrt{2h/g}$.
 - c)The horizontal displacement is $R = u \sqrt{2h/g}$

d)The angle α with which it strikes the ground is given by $\tan \alpha = \frac{\sqrt{2h/g}}{u} = \frac{gt}{u}$

e) The velocity with which it hits the ground is given by $v = \sqrt{u^2 + 2gh}$ or $v = \sqrt{u^2 + (gt)^2}$.

Position after time t:

Horizontal displacement, x = u tVertical displacement, $y = \frac{1}{2}gt^2$ $= \sqrt{u^2 + 2gh} \quad \text{or} \quad v = \sqrt{u^2 + (gt)^2} .$

2. Velocity after time t :

$$v = \sqrt{u^2 + (gt)^2} = \sqrt{u^2 + 2gh}$$

If angle made with the horizontal is $\alpha \tan \alpha = \frac{gt}{u} = \frac{gt}{\sqrt{2gh}}$.

3. Equation of path:

$$y = \frac{1}{2}g\frac{x^2}{\mu^2}$$

- 4. Form a certain height. If two bodies are projected horizontally with velocities u_1 and u_2 in opposite directions.
 - a) Time after which velocity vectors are perpendicular is $t = \frac{\sqrt{u_1 u_2}}{\alpha}$
 - b) Time after which displacement vectors are perpendicular is $t = \frac{2\sqrt{u_1u_2}}{q}$
 - c) Distance between the two bodies when velocity vectors are perpendicular is $\frac{\sqrt{u_1 u_2}}{q}(u_1 + u_2)$
 - d) Horizontal distance between the two bodies when displacement vectors' are perpendicular is

$$2\frac{\sqrt{u_1u_2}}{g}(u_1+u_2)$$

- 5. Body is dropped from the window of the moving train. The path of the body appears as
 - a) Vertical straight line for an observer in the train
 - b) Parabolic for an observer outside the train
- **6.** From the top of a tower a stone is dropped and simultaneously another stone is projected horizontally with a uniform velocity. Both of them reach the ground simultaneously.

7. Motion of a body along an inclined plane :

- a) A body is projected up with a speed *u* from an inclined plane which makes an angle α with the horizontal and velocity of projection makes an angle θ with the inclined plane.
- b) The component of initial velocity parallel and perpendicular to the plane are equal to $u \cos \theta$ and $u \sin \theta$ respectively *i.e.* $u_{\parallel} = u \cos \theta$ and $u_{\perp} = u \sin \theta$.
- c) The component of g along the plane is $g \sin \alpha$ and perpendicular to the plane is $g \cos \alpha$ as shown in the figure *i.e.* $a_{\parallel} = -g \sin \alpha$ and $a_{\perp} = g \cos \alpha$.

d) Time of flight :

Time of flight on an inclined plane $T = \frac{2u_{\perp}}{a_{\perp}}$

$$T = \frac{2u\sin\theta}{g\cos\theta}$$

c) Maximum height :

Maximum height on an inclined plane $H = \frac{u_{\perp}^2}{2a_{\perp}}$

$$H = \frac{u^2 \sin^2 \theta}{2g \cos \alpha}$$

d) Horizontal range :

$$R = \frac{2u^2}{g} \frac{\sin\theta\cos(\theta + \alpha)}{\cos^2\alpha}$$

(i) Maximum range occurs when
$$\theta = \frac{\pi}{4} - \frac{\alpha}{2}$$

(ii) The maximum range along the inclined plane when the projectile is thrown upwards is given by

$$R_{\max} = \frac{u^2}{g\left(1 + \sin\alpha\right)}$$

(iii) The maximum range along the inclined plane when the projectile is thrown downwards is given by

$$R_{\max} = \frac{u^2}{g(1-\sin\alpha)}$$
 and $T^2g = 2R_{\max}$

