KINETIC THEORY OF GASES

GAS LAWS

A perfect gas at $27^{\circ}C$ is heated at constant pressure so as to double its volume. The increase

2011

in temperature of the gas will be

	a) $600^{\circ}C$	b) 327°C	c) $54^{\circ}C$	d) $300^{\circ} C$				
2.	Air inside a closed	container is saturated with	water vapour. The air	pressure is p and the				
	saturated vapour p	ressure of water is \overline{p} . If the	e mixture is compressed	to one-half of its volume				
	by maintaining tem	perature constant, the pre	ssure becomes					
	a) $2(p + p)$	b) $2p + p$	c) $(p + \overline{p})/2$	d) $p+2\overline{p}$				
20 1	10							
201 3. 4. 5. 7.	If pressure of CO_2	(real gas) in a container is g	given by $p = \frac{RT}{2V - b} - \frac{9}{4b^2}$, then mass of the gas in				
	container is							
	a) 11J	b) 22 J	c) 33 J	d) 44 J				
4.	A closed vessel con	tains 8g of oxygen and 7g o	f nitrogen. The total pro	essure is 10 atm at a				
	_	If now oxygen is absorbed	•	ole absorbent the				
	pressure of the rem	naining gas (in atm) will be						
	a) 2	b) 10	c) 4	The air pressure is p and the appressed to one-half of its volume $\frac{T}{a} = \frac{9}{4b^2}$, then mass of the gas in $\frac{1}{a} = \frac{9}{4b^2}$, then mass of the gas in $\frac{1}{a} = \frac{9}{4b^2}$, then mass of the gas in $\frac{1}{a} = \frac{9}{4b^2}$, then mass of the gas in $\frac{1}{a} = \frac{9}{4b^2}$, then mass of the gas in $\frac{1}{a} = \frac{9}{4b^2}$, then mass of the gas in $\frac{1}{a} = \frac{9}{4b^2}$, then mass of the gas in $\frac{1}{a} = \frac{9}{4b^2}$, then mass of the gas in $\frac{1}{a} = \frac{9}{4b^2}$, then mass of the gas in $\frac{1}{a} = \frac{9}{4b^2}$, then mass of the gas in $\frac{1}{a} = \frac{1}{a} = \frac{9}{4b^2}$, then mass of the gas in $\frac{1}{a} = \frac{1}{a} = $				
5.	Ideal gas and real g	gas have major different of						
	a) phase transition		b) temperature					
	c) pressure		d) none of these above	e				
200	09							
6.	By what percentage	e should the pressure of a g	given mass of a gas be in	creased, so as to decrease				
	-	at a constant temperature	_	,				
	a) 5%	b) 7.2%	c) 12.5%	d) 11.1%				
7. When a van der Wall's gas undergoes free expansion, then its temperature								
	a) decreases		b) increases					
	c) does not change	ature of the gas						
8.	An electron tube w	as sealed off during manuf	acture at a pressure of	1.2×10 ⁻⁷ mm of mercury				
8.	at $27^{\circ}C$. Its volume	at $27^{\circ}C$. Its volume is $100cm^{3}$. The number of molecules that remain in the tube is						
	a) 2×10^{16}	b) 3×10^{15}	c) 3.89×10^{11}	d) 5×10^{11}				

2008

- 9. At $10^{\circ}C$ the value of the density of a fixed mass of an ideal gas divided by its pressure is x. At $110^{\circ}C$ this ratio is
 - a) x

- b) $\frac{383}{283}x$
- c) $\frac{10}{110}x$
- d) $\frac{283}{383}x$
- 10. A balloon contains $500m^3$ of He at 27^0C and 1 atm pressure. The volume of He at -3^0C and 0.5 atm pressure will be
 - a) $700m^3$
- b) $900m^3$

- c) $1000m^3$
- d) $500m^3$
- 11. The phenomenon of Brownian movement may be taken as evidence of
 - a) Kinetic theory of matter

b) EMT of radiation

c) Corpuscular theory of light

d) photoelectric phenomenon

2007

12. The figure below shows the plot of $\frac{pV}{nT}$. Versus p for oxygen gas at two different temperatures

Read the following statements concerning the above curves

- i) The dotted line corresponds to the 'ideal' gas behaviour
- **ii**) $T_1 > T_2$
- iii) The value of $\frac{pV}{nT}$ at the point where the curves meet on the y-axis is the same for all gases

Which of the above statements is true?

- a) i only
- b) i and ii only
- c) all of these
- d) none of these
- 13. One litre of an ideal gas at $27^{\circ}C$ is heated at a constant pressure to $297^{\circ}C$. Then, the final volume is approximately
 - a) 1.2 L
- b) 1.9L

c) 19L

d) 2.4L

2006

- 14. Two balloons are filled one with pure He gas and the other by air, respectively. If the pressure and temperature of these balloons are same then the number of molecules per unit volume is
 - a) more in the He filled balloon

b) same in both balloons

c) more in air filled balloon

d) in the ratio of 1:4

16. the equation of state for 5 g of oxygen at a pressure p and temperature T, when occupying a

b) low pressure and high temperature

d) low pressure and high temperature

d) pV = (5/16) RT

c) pV = (5/2) RT

2005

2004

15. Real gases obey ideal gas laws more closely at

b) pV = 5RT

a) low pressure and low temperature

c) high pressure and low temperature

volume V, will be a) pV = (5/32) RT

17.	If a given mass of gas occupies a volume of 10cc at 1atm pressure and temperature $100^{\circ}C$.						
	What will be its volume at 4 atm pressure, the temperature being the same?						
	a) 100 cc	b) 400 cc	c) 104 cc	d) 2.5 cc			
18.	Two gases of equal r	nasses are in thermal equi	librium. If p_a , p_b and	V_a , V_b are their			
	respective pressure and volumes, then which relation is true						
	a) $2p_aV_a = p_bV_b$	b) $p_a \neq p_b, V_a \neq V_b$	c) $\frac{p_a}{V_a} = \frac{p_b}{V_b}$	$d) p_a V_a = p_b V_b$			
		Various Spe	eds of Gas				
201	.0						
19.	The temperature of an ideal gas is increased from 120K to 480K. If at 120K, the root men square speed of gas molecules is v, then at 480K, it will be						
	a) 4v	b) 2v	c) $\frac{v}{2}$	d) $\frac{v}{4}$			
20.	_	e of an ideal gas is increase molecules is v, then at 480		If at 120K, the root mean			
	a) 80K	b) -73K	c) 3K	d) 20K			
200	08						
21.	_	in hydrogen at NTP is1270 atio 4: 1 by volume will be	$0ms^{-1}$. Then, the speed in	n a mixture of hydrogen			
	a) 317ms ⁻¹	b) 635ms ⁻¹	c) 830ms ⁻¹	d) 950ms ⁻¹			

www.sakshieducation.com

2006

200	70							
22.	Assertion (A): The same	he root mean square and	l most probable speeds of	the molecules in a gas are)			
	Reason (R): The Maxwell distribution for the speed of molecules in a gas is symmetrical.							
	a) Both assertion	and reason are true and re-	ason is the correct explanat	tion of assertion				
	b) Both assertion	and reason are true but rea	ason is not the correct expl	anation of assertion				
	c) Assertion is tru	e but reason is false	d) Both assertion a	nd reason are false				
23.	The temperature	The temperature of $H_{_2}$ at which the rms velocity of its molecules is seven times the rms						
	velocity the mole	ecules of nitrogen at 300	K is					
	a) 2100K	b) 1700 K	c) 1350 K	d) 1050 K				
24.	If at NTP velocit is	y of sound in a gas is 115	$50ms^{-1}$, then the rms velo	city of gas molecules at N	ГР			
	a) $1600ms^{-1}$	b) 1532.19 <i>ms</i> ⁻¹	c) $160ms^{-1}$	d) zero				
25.	When temperatu	ire of an ideal gas is incr	eased from $27^{\circ}C$ to 227°	C , its rms speed is change	d			
	from $400ms^{-1}$ to v_s . The v_s is							
	a) $516 ms^{-1}$	b) $450 ms^{-1}$	c) $310 ms^{-1}$	d) 746 ms ⁻¹				
		Pressure an	d Energy of Gas					
20 1	10		<i>O</i> ,					
26.	Assertion (A): If a gas container in motion is suddenly stopped, the temperature of the gas rises							
	Reason (R): The kinetic energy of ordered mechanical motion is converted into kinetic energy of random motion of gas molecules							
	a) Both assertion and reason are true and reason is the correct explanation of assertion							
	b) Both assertion and reason are true but reason is not the correct explanation of assertion c) Assertion is true but reason is false							
	d) Both assertion and reason are false							
27.	The kinetic energy of 1g molecule of a gas at normal temperature and pressure is $(R=8.31\ J/mol\text{-}K)$							
	a) $1.3 \times 10^2 J$	b) $2.7 \times 10^2 J$	c) $0.56 \times 10^4 J$	d) $3.4 \times 10^3 J$				
28.	Which one of the	e following is not an assu	mption in the kinetic the	ory of gases				
	a) the volume occupied by the molecules of the gas is negligible							
	b) the force of attraction between the molecules is negligible							
	c) the collision between molecules are elastic							
	d) all molecules have some speed							

200)9							
29.	A sealed container with negligible coefficient of volumetric expansion contains helium (a monoatomic gas). When it is heated from 300K to 600K, the average KE of helium atoms is							
	a) halved		b) unchanged					
	c) doubled		d) increased by	factor $\sqrt{2}$				
200)8							
30.		nd B having equal voluen, mark the correct s	ume contain equal masses statement	s of hydrogen in A an	d helium			
	a) the pressure exerted by hydrogen is half to that exerted by helium							
	b) the pressure exerted by hydrogen is equal to that exerted by helium							
	c) average KE of the molecule of hydrogen is half the average KE of the molecules of helium							
	d) the pressure exerted by hydrogen is twice that exerted by helium							
200)7							
31.	piston of A is free the gas in each cy temperature of g	e to move, while that o ylinder. If the rise in t as in B is	oin equal amounts of an in the same of B is held fixed. The same of gas in A is	ne amount of heat is a 300K, then rise in				
	a) 30K	b) 18K	c) 50K	d) 42K				
200)6							
32.			oy keeping temperature o	constant. What is the	on kinetic			
	a) increase		b) decrease					
	c) no change		d) can't be dete	rmined				
200)4							
33.	At which of the f	_	would the molecules of §	gas have twice the ave	erage			

c) 586°C

d) 313°C

b) $80^{\circ}C$

Degrees of Freedom and Specific Heat

2010

34. Mean free path of gas molecule at constant temperature is inversely proportional to

a) p

b) V

c) m

d) n (number density)

2009

35. At ordinary temperature, the molecules of an ideal gas have only translational and rotational kinetic energies. At high temperatures they may also have vibrational energy. As a result of this at higher temperature (C_V = molar heat capacity at constant volume)

a) $C_V = \frac{3}{2}$ R for a monoatomic gas

b) $C_V > \frac{3}{2}$ R for a monoatomic gas

c) $C_V < \frac{5}{2}$ R for a diatomic gas

d) $C_V = \frac{5}{2}$ R for a diatomic gas

2008

36. A given mass of a gas is compressed isothermally until its pressure is doubled. It is then allowed to expand adiabatically until its original volume is restored and its pressure is then found to be 0.75 of its initial pressure. The ratio of the specific heat of the gas is approximately

a) 1.20

b) 1.41

c) 1.67

d) 1.83

37. Assertion (A): Mean free path a gas molecules varies inversely as density of the gas Reason (R): Mead free path varies inversely as pressure of the gas

a) Both assertion and reason are true and reason is the correct explanation of assertion

b) Both assertion and reason are true but reason is not the correct explanation of assertion

c) Assertion is true but reason is false

d) Both assertion and reason are false

2007

38. The degrees of freedom of a molecule of a tri-atomic gas are

a) 2

b) 4

c) 6

d) 8

KEY

1) d	2) b	3) b	4) d	5) c	6) d	7) a	8) c	9) d	10) b
11) a	12) c	13) b	14) b	15) b	16) a	17) d	18) d	19) b	20) d
21) b	22) d	23) d	24) b	25) a	26) a	27) d	28) d	29) c	30) d
31) d	32) c	33) d	34) d	35) a	36) b	37) b	38) c		

HINTS

Gas Law

1.
$$V \propto T$$

Here,
$$\frac{V_1}{V_2} = \frac{T_1}{T_2}$$

$$V_1 = V$$
 then $V_2 = 2V$ and $T_1 = 300K$

$$\therefore \frac{1}{2} = \frac{300}{T_2}$$

$$T_2 = 600 K$$

$$T_2 = 327^0 K$$

So,
$$\Delta t = 327 - 27$$

$$=300^{\circ}C$$

3.
$$\left(p + \frac{\mu^2 a}{V^2}\right)(V - \mu b) = \mu RT$$

$$p = \left(\frac{\mu RT}{V - \mu b}\right) - \frac{\mu^2 a}{V^2}$$

Given equation,
$$p = \left(\frac{RT}{2V - b} - \frac{a}{4b^2}\right)$$

On comparing the given equation with this standard equation, we get

$$\mu = \frac{1}{2} d$$

Hence,
$$\mu = \frac{m}{M} \Rightarrow$$
 mass of gas

$$m = \mu M = \frac{1}{2} \times 44 = 22g$$

$$4. p_{mix} = p_1 + p_2$$

$$=\frac{\mu_1 RT}{V} + \frac{\mu_2 RT}{V}$$

$$= \frac{m_1}{M_1} \cdot \frac{RT}{V} + \frac{m_2}{M_2} \cdot \frac{RT}{V}$$

$$=\frac{8}{32}.\frac{RT}{V}+\frac{7}{28}.\frac{RT}{V}=\frac{RT}{2V}$$

$$10 = \frac{RT}{2V}....(i)$$

When oxygen is absorbed then for nitrogen by pressure

$$p = \frac{7}{28} \frac{RT}{V}$$

$$p = \frac{RT}{4V}$$
....(ii)

From eqs (i) and (ii) we get

Pressure of the nitrogen p = 5 atm

9.
$$pV = nRT$$

or
$$pV = \frac{m}{M}RT$$

or
$$\frac{pV}{m} = \frac{1}{M}RT$$
 or $\frac{p}{\rho} = \frac{RT}{M}$

or
$$\frac{\rho}{p} = \frac{1}{T}$$

$$\therefore \frac{\rho_1 / p_1}{\rho_2 / p_2} = \frac{T_2}{T_1} \Rightarrow \frac{x}{(\rho_2 / p_2)} = \frac{383}{283}$$

Or
$$\frac{\rho_2}{p_2} = \frac{283}{383}x$$

10.
$$\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2}$$

Or
$$V_2 = \frac{p_1 V_1 T_2}{p_2 T_1}$$

$$\therefore V_2 = \frac{1 \times 500 \times (273 - 3)}{0.5 \times (273 + 27)}$$

$$V_2 = \frac{1 \times 500 \times 270}{0.5 \times 300}$$

$$V_2 = 900m^3$$

13.
$$\frac{V_1}{V_2} = \frac{T_1}{T_2}$$

So,
$$V_2 = \frac{V_1 T_2}{T_1}$$

$$\therefore V_2 = 1 \times \frac{(297 + 273)}{(27 + 273)}$$

$$\Rightarrow V_2 = \frac{570}{300}$$

$$\Rightarrow V_2 = 1.9L$$

16. No. of moles
$$n = \frac{m}{molecular\ weight} = \frac{5}{32}$$

$$pV = nRT$$

$$\Rightarrow pV = \frac{5}{32}RT$$

17.
$$\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2}$$

Here
$$T_1 = T_2$$

And
$$p_1 = 1atm$$
, $V_1 = 10cc$, $p_2 = 4atm$

Now from eq (i)
$$p_1V_1 = P_2V_2$$

$$10\times1=4\times V_2$$

$$V_2 = 2.5cc$$

Various Speeds of Gas

19.
$$v_{rms} = \sqrt{\frac{3RT}{M}}$$

So,
$$\frac{v_1}{v_2} = \sqrt{\frac{T_1}{T_2}}$$

Now,
$$T_1 = 120K$$
, $T_2 = 480K$, $v_1 = v$

So,
$$\frac{v_1}{v_2} = \sqrt{\frac{120}{480}} = \sqrt{\frac{1}{4}} = \frac{1}{2}$$

$$\Rightarrow \frac{v}{v_2} = \frac{1}{2}$$

$$\Rightarrow v_2 = 2v$$

$$20. \quad C = \sqrt{\frac{3RT}{M}}$$

$$\frac{T}{M}$$
 = constant

$$\frac{T}{2} = \frac{273 + 47}{32}$$

Or
$$\frac{T}{2} = \frac{320}{32} = 10$$

Or
$$T = 20 \text{ K}$$

$$\rho_m = \frac{4V \times 1 + V \times 16}{5V}$$

As
$$v \propto \left(\frac{1}{\rho}\right)^{1/2}$$

:. Velocity in mixture =
$$\frac{1270}{(4)^{1/2}} = 635 ms^{-1}$$

23.
$$v_{rmp} = \sqrt{\frac{3RT}{m}}$$

$$\frac{v_1}{v_2} = \sqrt{\frac{T_1}{M_1} \times \frac{M_2}{T_2}}$$

$$\frac{v_H}{v_N} = \sqrt{\frac{T_H}{M_H}} \times \frac{M_N}{T_N}$$

$$7 = \sqrt{\frac{T_H \times 28}{2 \times 300}}$$

$$49 = \frac{T_H \times 28}{600}$$

$$T_H = \frac{49 \times 600}{28} = 1050K$$

24.
$$R = \frac{8.3}{4.2} cal \ g \ mol^{-1} - K^{-1}$$

$$C_V = C_P - R = \left(4.8 - \frac{8.3}{4.2}\right) = 2824$$

$$\gamma = \frac{C_p}{C} = \frac{4.8}{2.824} = 1.69$$

Since,
$$v = \sqrt{\left(\frac{3}{\gamma}\right)}v_s = \sqrt{\frac{3}{1.69}} \times 1150 = 1532.19 \text{ms}^{-1}$$

25.
$$v_{rms} \propto \sqrt{T}$$

Hence,
$$\frac{v_{rms(1)}}{v_{rms(2)}} \propto \sqrt{\frac{T_1}{T_2}}$$

$$\frac{400}{v_{rms(2)}} = \frac{\sqrt{27 + 273}}{\sqrt{227 + 273}} = \sqrt{\frac{300}{500}}$$

$$v_{rms(2)} = v = \sqrt{\frac{500}{300}} \times 400 \approx 516 \, ms^{-1}$$

www.sakshieducation.com

Pressure and Energy of Gas

$$27. \quad E = \frac{f}{2}RT$$

$$E_{\text{trans}} = \frac{3}{2}RT = \frac{3}{2} \times 8.31 \times (273 + 0) = 3.4 \times 10^3 J$$

31.
$$E = \frac{3}{2}kT$$
 or $E \propto T$

$$\frac{E_1}{E_2} = \frac{T_1}{T_2}$$
 or $\frac{E_1}{2E_1} = \frac{273 + 20}{T_2}$

Or
$$T_2 = 2 \times 293 = 586K = 586 - 273 = 313^{\circ}C$$

Degrees of Freedom and Specific Heat

36.
$$p \propto \frac{1}{V}$$

$$\Rightarrow \frac{p_2}{p_1} = \frac{V_1}{V_2}$$

$$\Rightarrow \frac{2p}{p} = \frac{V_1}{V_2}$$

$$\therefore \frac{V_1}{V_2} = 2$$

$$pV^{\gamma} = \text{Constant}$$

$$\frac{p_1}{p_2} = \left(\frac{V_2}{V_1}\right)^{\gamma}$$

$$\Rightarrow \frac{2p}{0.75p} = \left(\frac{2}{1}\right)^{\gamma}$$

$$\Rightarrow \log\left(\frac{8}{3}\right) = \gamma \log 2$$

$$\Rightarrow \log 8 - \log 3 = \gamma \log 2$$

$$\therefore \gamma = 1.41$$