CO-ORDINATION COMPOUNDS

1.	Potassium ferrocyanide is an exam	ple for					
	1) Complex salts 2) Normal salts	3) Double salts	4) Basic salts				
2.	Example for a coordination compo						
	1) KCl Mg Cl ₂ 6H ₂ O	·	2 (SO ₃).24 H ₂ O				
	3) CoCl ₃ 6N H ₃	4) Fe SO ₄ (NF	$H_4)_2 SO_4 6 H_2O$				
3.	Which is a double salt?						
	1) Carnallite	2) Potassium ferroc	•				
	3) Potasium ferricyanide	4) Nessler's reagen					
4.	Which forms equal number of moles of ions, when one mole it is dissolved in excess of water						
	1) Ferrous ammonium sulphate, Carnallite						
	2) Carnallite, Alum						
	3) Alum, Potassium ferrocyanide						
_	4) Potassium ferrocyanide, Potassiu	•					
5.	Which answers all the tests of the c	constituent ions?					
	1) Mohr's salt						
	2) Nessler's reagent3) Lithium aluminium hydride						
	4) Prussian blue coloured complex						
	4) Trussian ofte coloured complex						
	CHARACTERISTIC	CS OF COMPI	FY COMPOLIN	JDS			
	CHARACTERISTI	CS OF COMITE	EX COMI OUN	(D)			
6.	In which of the following transition metal complexes does the metal exhibit zero oxidation state						
0.	1) [Co (NH ₃) ₆] Cl ₃ 2) [Fe (H ₂ O) ₆] SO ₄						
	3) [Ni (CO)4] 4) [Fe (H ₂ O)6						
7.			f Potassium Ferricvani	de is dissolved in			
, .	The number of moles of ions produced when one mole of Potassium Ferricyanide is dissolved in water is						
	1) 2 2) 4 3) 5 4)	6					
8.	Total number of moles of ions that	can be obtained from	each mole of [Co (NH	3)3 Cl3] is			
	1) 1 2) 0 3) 3 4)	4					
9.	The number of ions formed in aque	eous solution by the co	ompound [Co (NH ₃) ₄ (Cl ₂] Cl is			
	1) 2 2) 3 3) 4 4)	5					
10.	The following does not give a preci	ipitate either with AgN	NO ₃ or BaCl ₂				
		Co (NH ₃) ₃ Cl ₃]					
	3) [Co (NH ₃) ₄ Cl ₂]Cl 4)	$\left[Co(NH_3)_2Cl_4\right]Cl$					
11	/ L (3/4 21 /						
11.	Which of the following has highest 1) [Co (NH ₃) ₆] Cl ₃	molar conductivity? 2) [Co (NH ₃) ₅	·Cll Cla				
	3) [Co (NH ₃) ₄ Cl ₂] Cl	4) [Co (NH ₃) ₃					
	5) [CO (1113)4 CIZ] CI	+) [CO (11113)3	(-13]				

12.	Transition elements form complexes readily because						
	1) Small size of cati	on	2) Large i	onic Char	ge		
	3) Vacant d orbitals		4) All the	above			
13. Which of the following is cationic complex?							
	K_4 [Fe(CN) ₆]						
	$_{2)}$ $\left[Ni(CO)_{_{4}} \right]$	_					
	$(3) \left[\text{Co}(\text{NH}_3)_3 \text{Cl}_3 \right]$						
	$\underbrace{\left[\operatorname{Cu}\left(\operatorname{NH}_{3}\right)_{4}\right]}_{4}\operatorname{Se}$						
14.	The no. of moles [Cr(NH ₃) ₄ Cl ₂]Cl	of AgCl obtained	when ex	cess Agi	NO ₃ 18	added to one mo	ole of
	1) 1 2) 2	3) 3	4) 4				
15.	_	[Co (H ₂ O) ₅ SO ₄]Cl	_	precipitat			
	1) BaCl ₂ (aq)	2) AgNO _{3 (aq)}	3) both 1		1) neither		
16.	_	ions requires three mo	oles of Agl	NO ₃ for th	ne comple	ete precipitation of	all the
	chloride ions presen 1) One litre of 1M [2) Th	raa litras a	f 1M [Co	(NH ₃) ₄ Cl ₂] Cl	
		[Co (NH ₃) ₆] Cl ₃ Cl ₂ Cl ₂		the above	n iwi [Co	(NH3)4 Cl2] Cl	
17.	Bonds present in K ₄		7, 411	the above			
17.	1) Only ionic	; [1 c (c14)6] are	2) Only o	ovalent			
				2) Only covalent4) Ionic, covalent and coordinate covalent			
	3) Tome and Covare) folile, c	ovalent an	ia cooran	inte covarent	
	1.10	GANDS AND CO	ODDIN	ATION	NHIMBI	r D	
18.	Ligand in a metal ca		-OKDIN	ATION	NUNIDI	L.K.	
10.	1) NH ₃	2) CO	3) CN-	/	4) SCN-		
19.		cy of Ni in Ni (CO)4 i		4	F) SCN		
19.				4) 1			
	1) 2	2) 4	3) 0	4) 1			
20.	According to Werne	er's theory of valency	transition	metals nos	ceccec		
20.	1) Only one type of	•	2) two typ	-			
			4) four ty				
	J. J.		<i>y</i> - - - - - - - -				
21.	The no. of moles of	AgCl ppted when ex	cess of Ag	NO_3 is m	ixed with	one mole of [Cr (N	$NH_3)_4$
	Cl ₂] Cl is						
	1) 0	2) 1	3) 2	4	1) 3		
22.	A bidentate ligand is	S					
	1) Oxalate ion	2) Carbon monoxide	3) Nit	ronium io	n	4) Water	
23.	Which is a polydent	ate ligand					
	1) EDTA	2) Ethylene diamine	3) Ox	alate ion	4)	CO	
	www.sakshieducation.com						

- 24. An ambident ligand is
 - 1) CO
- 2) CN
- 3) CO_2
- $_{4)} H_{2}O$

IUPAC NOMENCLATURE OF CO-ORDINATION COMPOUNDS

IUPAC name for the complex 25.

$$I_{S} \left[Cu(NH_3)_4 \right] SO_4$$

- 1) cupramonium sulphate
- 2) copper sulphate tetra ammonia
- 3) tetramine copper sulphate
- 4) copper amonium sulphate
- HexaaquoTitanium Chloride is represented as 26.

$$\begin{bmatrix} \text{Ti}(H_2O)_6 \end{bmatrix} \text{Cl}_3$$

$$\begin{bmatrix} \text{Ti}(H_2O) & \text{Cl} \end{bmatrix} \text{C}$$

$$_{2)}$$
 [TiCl₃] 6H₂O

$$[Ti(H_2O)_5Cl]Cl_2$$

$$\begin{bmatrix} Ti(H_2O)_3 Cl_3 \end{bmatrix}$$

Which of the following is not a neutral molecular complex?

$$\left[\operatorname{Co}\left(\operatorname{NH}_{3}\right)_{3}\operatorname{Cl}_{3}\right]$$

$$_{2}$$
 [Ni(CO)₄]

$$\left[Ni(CO)_{4}\right] \qquad \left[Cu(NH_{3})_{4}\right]SO_{4}$$

4) All

BONDING AND EFFECTIVE ATOMIC NUMBER

Which does not obey EAN rule? 28.

1.
$$K_4 \Big[Fe(CN)_6 \Big]$$
 2. $K_3 \Big[Fe(CN)_6 \Big]$

$$_{2}$$
 $K_{3}[Fe(CN)_{6}]$

3.
$$\left[Co(NH_3)_6\right]Cl_3$$
 4. $\left[Ni(CO)_4\right]$

$$[Ni(CO)_4]$$

Which follows EAN rule?

$$Fe(CO)_5$$

$$_2$$
 $Ni(CO)_4$

$$K_4[Fe(CN)_6]$$

4. All are correct

- 30. The complex follows the EAN rule. Then the value of x is
 - 1.3
- 2.4
- 3.5
- 4.6
- Assertion (A): Racemic mixture has a net rotation of zero.

Reason (R): Racemic mixture contains optically inactive isomers.

- 1. both A and R are true, R properly explains A
- 2. both A and R are true, R does not explain A
- 3. A is true, but R is false
- 4. A is false, but R is true

32.	Ammonium ions are detected w 1) Nessler's reagent 3) Tollen's reagent	2) Bors	sch reagent ing's solution		
33.	The complex $\left[\text{Fe}(\text{H}_2\text{O})_5 \text{NO} \right]^2$	is formed i	n the brown ri	ing test for nitrates when freshly	7
	prepared FeSO ₄ solution is ad of con.H ₂ SO ₄ . Select correct st 1) Color change is due to charg 2) it has iron in +1 oxidation sa 3) it has magnetic of 3.87 BM of 4) all are correct statements	atement about e transfer te and nitosyl	t this complex.		
34.	the formation of:	0	-	orange color on acidification d	ue to
35.	1) Cr ³⁺ 2) Cr ₂ C Blue solution of CuSO ₄ on tre		3) CrO ₄ - xcess KCN given	4) Cr ₂ O ₃ ves colourless solution due to the	ne
	1) Formation of CuCN				
	2) Formation of Cu(OH) ₂				
	3) Formation of $\left[Cu(CN)_4 \right]^{2-}$				
	4) Cu^{2+} is reduced by CN^{-} t	O Cu+ which	n forms comple	$\operatorname{ex}\left[\operatorname{Cu}(\operatorname{CN})_{4}\right]^{3-}$.	
36.	Hypo $\xrightarrow{AgNO_3}$ white ppt	\xrightarrow{Hypo} solubl	e complex x_t	he x is	
30.	1) $Na_2S_2O_3$	Solder	2) $Na_2[Fe]$	$(CN)_6$	
	$3) Na_3 \left[Ag \left(S_2 O_3 \right)_2 \right]$		$ \begin{array}{ccc} & & & & & & \\ 2) & & & & & & \\ & & & & & \\ 4) & & & & & & \\ & & & & & & \\ & & & & &$		
37.	Which of the following cannot b				
	1) NaCl 2) NaBr	3) NaF		4) KCl	
4	15	KE	XY		
1) 12	3) 1 4) 1 5) 1	6) 3 7) 2	8) 2 9) 1	10) 2	
11) 1	12) 2 13) 4 14) 1 15) 21	1 6) 4	17) 4 18) 2	19) 3 20) 2	
21) 2	22) 1 23) 1 24) 2 25) 3	26) 1 27) 3	28) 2 29) 4	30) 3	
31) 3	32) 1 33) 4 34) 1 35) 4	36) 3 37) 3			

WERNER THEORY OF CO-ORDINATION COMPOUNDS

1	The groups satisfying the secon	damy valancies of a action in	a complay are called			
1.	The groups satisfying the second.	idary valencies of a cation in	a complex are called			
	1) Radicals					
	2) Electron deficient Molecules					
2	3) Primary valencies	4) Ligands				
2.	The primary valence of the met	•				
	1) Neutral molecules	2) positive ions				
	3) Negative ions	4) all				
3	IUPAC name of the complex is					
	1) Cobalt trichloride penta ame					
	2) Penta amine carbonyl chlorid					
	3) Trichloro penta amino cobal					
	4) Pentamine chloro cobalt chlo					
4.	No of ionizable & non-ionizable	•				
_		0, 3				
5.		cess ammonia due to the form	nation of a soluble complex whose			
	formula is	11.).101				
	1) [Ag (NH ₃] Cl 2) [Ag (N					
	3) [Ag (NH ₃) ₃]Cl 4) [Ag (N					
6.			excess of ammonia. Its formula is			
	1) $[Cu (NH_3)_4]^{+3}$ 2) $[Cu (NH_3)_4]^{+3}$	$H_3)_4]^{+2}$				
	3) $[Cu (NH_4)_3]^{+2}$ 4) $[Cu (NH_4)_3]^{+2}$	VIOLUIA VIOLUISIONIO				
7.	Zn ⁺² dissolves in excess of Na	OH due to the formation	on of			
	1) Soluble Zn (OH) ₂	2) Soluble Na ₂ [Zn (OH) ₄]				
	3) Soluble Na (Zn (OH) ₃]	4) ZnO				
8.	Which of the following cannot	act as a ligand				
	1) BF ₃ 2) NH ₃ 3) NO ⁺	4) CN ⁻				
9.	Which of the following is not a	draw back of Werner's theo	ry?			
	1) does not explain the valency	of metal ions in the complex	K			
	2) does not give any explanation	n for the colour of complex	compounds			
	3) does not explain the magnet	ic behaviour of complex com	pounds			
	4) does not correlate electronic	configuration of the metal w	ith the formation of complex			
10	The primary and secondary val	ency of Co in the complex re	espectively are			
	1) 6 & 3 2) 3 & 6 3) 4 & 3 4)	3 & 5				
11.	Number of ions satisfying both	primary and secondary vale	ncy are in			
	1) 1 2) 2 3) 3 4)	4				
12	Pick out the incorrect statemen	t				
i) Primary valency of a transition metal ion in complex represents its oxidation number						
	ii) Zn^{2+} is colorless					
	iii) $MnCl_2$ exhibit green color in aqueous solution					
	iv) Fe, Co, Ni are examples of diamagnetic in nature					
	1) Only i, ii 2) Only ii	3) Only iii,iv	4) Only iv			

		\	www.sakshi	nieducation.com
13.	When one mole of formed the comple		x is treated wi	with excess of solution, 143.5 g of white precipitate is
	1) $CoCl_3.6NH_3$,	2) $CoCl_3.5NH_3$	I_3
	3) <i>CoCl</i> ₃ .4 <i>NH</i> ₃	4	4) $CoCl_3.3NH_3$	I_3
		VALEN	CY BOND TH	HEORY AND SHAPES OF
		C	OORDINATI	ION COMPOUNDS
14.	The shape of the	complex sp	ecies will be so	equare planar if its coordination number is
	1) 2 2) 6	3) 5	4) 4	

- Which one of the following acts as a Lewis base in complexes? 1) CO₂ 2) BF₃ 3) NH₃ 4) BCl₃
- Which of the following is inner orbital complex? 16
 - 1) $[CoF_6]^{-3}$
 - 2) $[Cu(H_2O)_6]^{+2}$
 - 3) $[Co(NH_3)_6]^{+2}$ 4) All
- sp^3d^2 hybridisation is present in 17.
 - 1) $[CoF_6]^{-3}$
- $2) [Ni(CO)_{\downarrow}]$
- 3) $[Co(NH_3)_6]^{+2}$
- 4) All
- The shape of is
 - 1) Square Planar
- 2) Trigonal bipyramidal
- 3) Octahedral
- 4) Tetrahedral
- 19. Match the following.

Set-I Set-II

- A) Co-ordination number 3
- B) Co-ordination number 2 C) Co-ordination number 5
- D) Co-ordination number 7
- 3) Linear 4) Trigonal planar

1) Pentagonal bipyramidal

2) Trigonal bipyramidal

The correct matching is

	A	В	C	D
1)	4	3	2	1
2) 3)	1	2	3	4
3)	4	3	1	2
4)	3	1	2	4

- 20. The hybrdisation of the complex is $[NiCl_4]^{-2}$
 - 1) sp^{3}

- 2) dsp^2 3) sp^3d 4) sp^3d^2
- The hybridsation of the complex is $[Cu(NH_3)_4]^{+2}$
 - 1) sp^3 2) sp^3d 3) dsp^2 4) sp^3d^2
- The hybridsation of the complex is $Fe(CO)_5$
 - 1) sp^3d^2 2) dsp^3 3) sp^3 4) d^2sp^3

BONDING AND EFFECTIVE ATOMIC NUMBER

- The effective atomic number of iron ion is $\left\lceil Fe(CN)_6 \right\rceil^{3-}$
 - 1.34 2, 36
- 3, 37
- 4.35
- Which does not obey EAN rule 24.
 - 1) $Fe(CO)_5$
- 2) $K_4 \lceil Fe(CN)_6 \rceil$
- 3) $\left\lceil Cu(NH_3)_4 \right\rceil SO_4$ 4) $\left\lceil Co(NH_3)_6 \right\rceil Cl_3$
- The effective atomic number of central metal ion is wrongly calculated in the following complexe?
 - 1. In $\left[Ni(CO)_4\right]$ the EAN of Ni is 36
 - 2. In $K_2 \lceil Ni(CN)_4 \rceil$ the EAN of Ni is 36
 - 3. In $K_3 \lceil Fe(CN)_6 \rceil$ the EAN of Fe 35
 - 4. In $\left[Cr(NH_3)_6 \right] Cl_3$ the EAN of Cr is 33

CRYSTAL FIELD THEORY

- 26. The crystal field splitting energy for octahedral complex (Δ_a) and tetrahedral complex (Δ_b) are related as
 - 1) $\Delta_t = \frac{4}{9} \Delta_o$
- $2) \quad \Delta_t = 0.5 \Delta_o$
- 3) $\Delta_t = 0.33\Delta_o$ 4) $\Delta_t = \frac{9}{4}\Delta_o$
- 27. Which of the following is a correct Irving-Williams order? (Tendency of complex formation)
 - 1) $Mn^{2+} < Fe^{2+} < Co^{2+} < Ni^{2+}$
 - 2) $Ni^{2+} < Co^{2+} < Fe^{2+} < Mn^{2+}$
 - 3) $Fe^{2+} < Mn^{2+} < Ni^{2+} < Co^{2+}$
 - 4) $Co^{2+} < Mn^{2+} < Fe^{2+} < Ni^{2+}$
- 28. Which order is correct in spectrochemical series of ligands?
 - 1) $Cl^- < F^- < C_2O_4^{2-} < NO_2^- < CN^-$
 - 2) $CN^- < C_2O_4^{2-} < Cl^- < NO_2^- < F^-$
 - 3) $C_2O_4^{2-} < F^- < Cl^- < NO_2^- < CN^-$
 - 4) $F^- < Cl^- < NO_2^- < CN^- < C_2O_4^{2-}$

ISOMERISM IN COMPLEXES

- 29. The property of possessing at least one atom that is attached to four non-identical groups is called
 - 1. Polarization
- 2. Chirality
- 3. Enantiomerism
- 4. Meridionity
- 30. A racemic mixture has a net rotation
 - 1. to right of original plane
- 2. to left of original plane
- 3. to right or left of original plane

- 31. Optical isomer has
 - A) Property of chirality
 - B) Almost identical chemical properties
 - C) Almost identical physical properties
 - D) Similar rotation of plane polarized light
 - 1. A, B, C are correct
 - 2. B, C, D are correct
 - 3. A, C, D are correct
 - 4. A, B, D are correct

APPLICATION OF COMPLEXES IN QUALITATIVE ANALYSIS

- 32. The central metal ion in haeme is
 - 1) Fe^{+2} 2) Co^{+3} 3) Mn^{+2} 4) Mg^{+2}
- 33. The central metal present in chlorophyll is
 - 1) Mg 2) Co 3) Fe 4) Ca
- 34. Nessler's reagent is
 - 1) K_2HgI_4
- 2) K_2HgI_2
- 3) K_2HgCl_4
- 4) HgI_2
- 35. The metal ion present in Vitamin B₁₂ is......
 - 1) *Co*³⁺
- 2) Co^{2+} 3)
- Fe^{2+}
- 4) Fe^{3+}
- 36. The coordination number of Fe (II) in Oxyhaemoglobin is.....
 - 1)6
- 2)4
- 3)8
- 4)10

KEY

- 1) 4
- 2) 3
- 3) 4
- 4) 2 5) 2

10) 2

- 6) 2
- 7) 2
- 8) 1
- 9) 1

- 11) 1
- 12) 3
- 13) 3
- 14) 4 15) 3

- 16) 3
- 17) 1
- 18) 3
- 19) 1 20) 1

- 21)3
- 22) 2
- 23) 4
- 24) 3 25) 2

- 26) 1
- 27) 1
- 28) 4
- 29) 2 30) 4

34) 1

- 31) 1
- 32) 1
- 33) 1
- 35) 1