D&F-BLOCK ELEMENTS

INTRODUCTION

1.	The following belongs to d-block but it is not a transition element
	1) Mn 2) Fe 3) Zn 4) Cr
2.	The following is not a typical transition element
	1) Cu 2) Ag 3) Au 4) Mn
3.	Which of the following statement regarding transition elements is false
	1) Their atoms contain partially filled'd' orbitals
	2) They are capable of showing variable valencies
	3) All of their ions are colourless
	4) They form complexes readily
4.	Which set of elements is transitional in character?
	1) Fe, Co, Ni 2) Ru, Rh, Pd 3) Os, Ir, Pt 4) all the above
5.	Which of following is a true transition element?
	1) Zinc 2) Cadmium 3) Aluminium 4) Iron
6.	Which of the following is not an element of first transition series?
	1) Fe 2) Co 3) Ni 4) Ag
7.	Which of the following set of elements does not belongs to transitional elements?
	1) Fe, Co, Ni 2) Cu, Ag, Au 3) Ti, Zr, Hf 4) Ga, In, Tl
8.	In the transition elements the incoming electron occupies [n-1]d sublevel in preference to
	1) np 2) ns 3) [n-1]d 4) [n+1]s
9.	Catalytic activity of transition elements and their compounds is due to their
	1) Small size 2) Vacant d-orbitals
	3) Higher densities 4) Colour
10.	Best conductor of electricity is
	1) Cu 2) Al 3) Au 4) Ag
11.	Transition metals are good electrical conductors because
	1) They are metals 2) They are solids
	3) They have free electrons in outer energy levels 4) they are hard.
12.	Which of the following set of elements are transition elements?
	1) Po, At, Rn 2) Ga, In, Tl 3) Cs, Ba, La 4) Ac, Ku, Ha
13.	Which of the following is not correct about transition metals?
	1) Their melting and boiling points are high
	2) Their compounds are generally coloured
	3) They can form ionic or covalent compounds
ightharpoons	4) They do not exhibit variable valency
14.	The only liquid element in'd' block is
	1) Hg 2) Sc 3) Zn 4) Th
15.	Total number of elements present in VIII B group is
	1) 3 2) 6 3) 12 4) 8
16.	Chemically Zinc group elements closely resemble
	1) I A group 2) II A group 3) III A group 4) IV A group
17.	The following is not a noble metal
	1) Au 2) Cu 3) Ag 4) Pt

18.	The transition metal present in vitamin B ₁₂ is
	1) Fe 2) Co 3) Ni 4) Na
19.	Incorrect statement is
	1) d-block elements usually form coloured ions
	2) Mn ⁺² ions are much more capable of forming complexes than the Zn ⁺² ions
	All the entions of d block elements are paramagnetic.
	4) All the cations of d-block elements are paramagnetic
ELF	ECTRONIC CONFIGURATION
20.	General electron configuration of d-block elements is
	1) $_{\text{ns}}2_{\text{np}}6_{\text{nd}}1-10$ 2) $_{\text{(n-1)}}d^{1-10}$ $_{\text{ns}}0-2$ $_{\text{np}}0-6$
01	3) $(n-1) d^{1-10} ns^{1-2}$ 4) $nd^{1-9}ns^{0-2}$
21.	The ground state electronic configuration of chromium is against 1) Hund's rule 2) Pauli's principle
	3) Auf-bau principle 4) Boyle principle
22.	Which of the following is the stable electron configuration of Fe ⁺³ ion?
	1) $3d^64s^02$) $3d^54s^03$) $3d^64s^2$ 4) $3d^44s^2$
23.	The following has pseudo-inert gas configuration in the (n-1) shell.
	1) Typical transition elements 2) Zinc group elements
	3) Both 4) Neither
24.	The general configuration (n-1) d ³ ns ² indicates that particular element belongs to the following
	group
	1) II B 2) I B 3) V B 4) III B
25	Which of the following ion has same number of unpaired electrons as that of V^{3+} ion
2.	1) Cr^{+3} 2) Mn^{+2} 3) Ni^{+2} 4) Fe^{+3}
26.	Which one of the following pairs of ions has the same electronic configuration? 1) Fe ⁺² and Mn ⁺²
	2) Fe^{+3} and Mn^{+2}
	3) Pr^{+3} and Fe^{+3}
	4) Mn^{+2} and Ni^{+2}
27.	In which of the following elements, the configuration is against Auf-bav rule?
	1) Ni, Pd, Pt 2) Sc, Ti, Zr 3) Pd, Pt, Cu 4) Fe, Cr, Mn
28.	The configuration of chromium atom in ground state is
	1) [Ar] $3d^4 4s^1$ 2) [Ar] $3d^5 4s^1$ 3) [Ar] $3d^6 4s^2$ 4) [Ar] $3d^7 4s^2$
29.	Which of the following has more unpaired d-electrons?
	1) Zn^+ 2) Fe^{2+} 3) Ni^+ 4) Cu^+
30.	The outer electron configuration of first transition series is $(n-1)d^{1-10} ns^{1-2}$. The value of n is
21	1) 3 2) 4 3) 5 4) 6 A transition metal 'x' has the configuration [Ar] 3d ⁴ in its +3 oxidation state. The element is
31.	1) Mn 2) Fe 3) Ti 4) K
	1) Mil 2)10 3) 11 T) IX

32.	The outer electronic 1) $5 s^2 4d^4$	c configuration of 2) $5 s^1 4d^5$	the element Mo 3) $5 s^2 5p$	· ·	
33.	,	,	,	ration is not as expec	ted
55.	1) III B	2) IV B	3) VI B	4) II B	ica
34.	*	*	*	· · · · · · · · · · · · · · · · · · ·	s ² . The atom belongs
57.	to	icvers of all atom	nave the co	iniguration's p a	s . The atom belongs
	1) Copper family	2) Zinc family	3) Iron far	nily 4) Mangane	se family
35.		•		· ·	electrons are present
	1) 13	2) 2	3)15	4)3	
36.	Of the following out	er electronic conf	igurations of ato	oms, the highest oxid	ation state is achieved
	by which one of the	em?			
	1) $(n-1)d^8 ns^2$	2) $(n-1)d^5$ ns	$_{1}^{1}$ 3) $(n-1)$	$d^3 ns^2$ 4) $(n-1)d$	5 ns 2
37.	Abnormal electroni	c configurations a	re observed in		
	1) Cu, Cr	2) Pd, Pt	3) Cr, Ni	4) Both 1 &	2
oco	CURANCE OF TRA	ANSITION ELEM	MENTS		
38.	In the following pai	r of d-block elem	ents, the first m	ember is a liquid at re	oom temperature and
	the second member	is mostly availab	le in the earth's	crust. The pair is	
	1) Hg, Fe	2) Hg, Tc	3) Hg, Zn	4) Hg, Au	
39.	The chemical formu				
	$\ \ 1\big)\ Fe_{\scriptscriptstyle 2}O_{\scriptscriptstyle 3}$	2) Fe_3O_4	3) FeCO	$4) MnO_2$	
40.	The mineral of silve	er is			
	1) Argentite	2) Horn silver	3) Sylvine	4) Both 1 an	nd 2
41.	The mineral of Mar	nganese is			
	1) Pyrolusite	2) Haematite	3) Siderite	e 4) Rulite	
42.	Calamine is the mir	neral of			
	1) Fe	2) Zn	3) Co	4) Ti	
43.	The chemical formu	ala of chromite mi	ineral		
	$FeO.Cr_2O_3$	$_{2)} FeS_{2} _{3)} Z_{1}$	nS 4) Ag	S_2S	
CHA	ARACTERISTIC O	F 3d SERIES	,		
44.	Which of the follow	ving group elemer	nts exhibits high	melting and boiling	points
	1) IVB 2	2) VB	3) VIB	4) IIB	-
45.	Transition elements	have high MP&	BP due to		
	1) Use of ns electro	ns	2) use of (n-1)	d electrons only	
	3) Both ns and (n-1)d electrons	4) use of np ele	ectrons	
46.	Which group eleme	ents exhibits highe	est densities		
	1) IIIB	2) IVB	3) VIB	4) VIIIB	
47.	Which element exh	ibits highest densi	ity in 3d series		
	1) Sc 2	2) Cr	3) Zn	4) Cu	

48.	The only eleme	ent that exhibits	positive SRP valu	e	
	1) V	2) Zn	3) Fe	4) Cu	
OXI	DATION STAT	TES OF 3d SE	RIES		
49.	The following of	does not show v	variable valency		
	1) Mn	2) Fe	3) Zn	4) Cr	
50.	Element which	can show +2,	+3, +4 +6 and +7 o	xidation states is	
	1) Cr	2) Mn	3) Co	4) V	
51.	Maximum oxid	ation state exhi	ibited by Osmium	is	
	1) +8	2) +7	3) +6	4) +5	
52.	An element M l exist?	has the electron	n configuration [Ar] $3d^54s^2$. Which one of its ox	ide is unlikely to
	1) MO ₂	2) M_2O_3	3) MO ₄	4) M ₂ O ₇	
53.	Which of the fo	ollowing elemen	nt exhibits maximu	ım oxidation state	
	1) Mn	2) Co	3) Fe	4) Zn	
54.	In which of the 1) Fe (CO) ₅	following com 2) Fe ₂ O	•	e lowest oxidation state 4) FeSO ₄ (NH ₄) ₂ SO ₄ . 6H ₂ 0	0
55.	The stable oxid	ation states of	Cr are		
	1) + 3, + 6	2) + 3, + 4	3) + 1, + 4	4) + 2, + 5	
56.	Which of the fo	ollowing elemen	nt forms an oxide v	with highest Valency.	
	1) V	2) Cr	3) Mn	4) Fe	
57.	An element has	[Ar]3d ⁴ confi	guration in its +3	oxidation state Atomic num	ber of the elemen
	is				
	1) 25	2) 26	3) 22	4) 19	
58.	Number of d-el	ectrons in chro	mium of [Cr (H ₂ O	$[0)_6]^{+3}$ ion are	
	1) 1	2) 2	3) 3	4) 4	
59.	Maximum num	ber of unpaired	d electrons is presen	nt in	
	1) Ti ⁺²	2) Sc $+3$	3) Cr^{+3}	4) Mn^{+2}	
60.	Due to the loss	of the followin	g electrons, Transi	tion metals exhibit variable va	alency
	1) ns	2) ns and np	3) (n-1) d	4) (n-1)d and ns	
ATO	MIC AND ION	VIC RADII OF	F 3d SERIES		
61.	Which of the fo	ollowing pairs o	of elements have sa	me radii?	
	1) Zr,Hf	2) Sc, Y	3) La, AC	4) Zn, Co	d
62.	The correct ord	er of atomic siz	zes is		
	1) Sc < Y < La	2) Ti < Z	Sr < Hf 3) $Sc > 3$	> Y $>$ La 4) All	
COL	OURS OF TRA	ANSITION M	ETAL IONS		
63.	Which of the fo	ollowing cation	is colourless in its	aqueous solution?	

2) Sc^{+3} 3) Fe^{+3}

1) Cu^{+2}

4) Co^{+3}

64.	Which of the following ion is	coloured in	n its aqueous soluti	on?
	1) Cd^{+2} 2) Zn^{+2}	3) Sc^{+3}	4) Ti ⁺	3
65.	Transition metals are coloured	due to the	following electron	nic transition
	1) d - s 2) d - d	3) s - p	4) f -	s
66.	Cuprous ion is colorless while	cupric ion	is coloured because	se,
	1) Cuprous ion has completed	d-orbitals	while cupric ion ha	as incomplete d-orbitals
	2) Cuprous ion has exactly ha	lf-filled'd'	orbitals	
	3) Cupric ion has completely a orbitals	filled'd' or	bitals, while Cupro	ous ion has incompletely filled'd'
	4) Cupric ion has half - filled			
67.	The following ion is colored i	n aqueous s		
	1) Zn^{2+} 2) Cd^{+2}		3) Co^{3+}	4) all the above
68.	Colour of ferrous ion is			
	1) Red 2) Blue		3) Pale green	4) Pale yellow
69.	In which pair, both ions are co		•	
	1) Sc^{+3} , Zn^{+2} 2) Cu^{+2}	Ti ⁺⁴	3) Ti^{+3} , Co^{+3}	4) Cd ⁺² , Mn ⁺²
70.	The absorbed and emitted cole	ours of hyd	rated ion are respe	ctively
	1) Pink and green 2) blue a	nd red	3) red and blue	4) green and pink
71.	The following ion shows colo	ur not due	√0101014101010V A0101011	
	1) $Cr_2O_7^{2-}$ 2) MnO		3) CrO ₄ ²⁻	4) All
72.	The compound having Blue collin CuSO ₄		4 . 5H ₂ O	
	3) PbSO ₄ 4) HgSO	4		
73.	Coloured complexes absorb ra	adiations in	the	
	1) Visible region 2) infrare	ed region	3) ultraviolet reg	ion 4) far infrared
74.	The splitting of degenerated d		kes place into which	ch of the following two sets.
	1) d_{xy} , d_{z^2} , d_{xz} and d_{yz} , d_{x^2-y}	2		
	2) d_{xy}, d_{yz}, d_{zx} and $d_{x^2-y^2}, d_{zz}$	2		
	3) $d_{xy}, d_{x^2-y^2}, d_{z^2} \text{ and } d_{yz}, d_{z^2}$ $d_{xy}, d_{x^2-y^2}, d_{xz} \text{ and } d_{yz}, d_{z^2}$	xz		
75.	The colour of MnO ₄ ⁻ ion is d	ue to		
4 V	1) Unpaired' electrons	2) d - d tı	ransition	
	3) d - p transition	4) charge	e transfer	
76.	During the splitting of degene energy	rate d-orbit	tals under the influ	ence of ligand the average d-orbital
	1) remains same	2) increa	ses	
	3) decreases	4) may i	ncrease or decrease	2
77.	The order of colours exhibited	l by and ior	ns are respectively	
	1) green, blue, yellow		2) blue, green, ye	ellow
	3) yellow, blue, green		4) blue, yellow, g	green

78.	Which one of the form 1) ScCl ₃	ollowing comp 2) TiCl ₄	pound is both coloured 3) CrCl ₃	d and paramagnetic? 4) CuCl		
				,		
79.	_		wing salt has colour	N. Cl		
	1) $\operatorname{Zn}(NO_3)_2$	2) NiSO ₄	3) CaCl ₂ 4	₄₎ NaCl		
80.	Ti ³⁺ is purple, but	Ti ⁴⁺ is colour	rless. This is because			
			${\sf d}^0$ configuration of T			
	_		$ m d^{10}$ configuration of T			
	_		1 configuration of Ti ⁴			
	4) d ¹⁰ configuratio	n of Ti ³⁺ and	d ¹ configuration of T	'i ⁴⁺		
CAT	ALYTIC PROPER	RTIES				
0111						
81.	The catalyst used in	n the oxidation	n of 1° alcohol to alde	hydes		
	1) $2) \text{ Fe} + 1$	Mo	3) Pt + Ir	4) Raney Ni		
82.			s Catalyst in the hydro			
	1) V ₂ O ₅ 2) Pd			4) Ni		
83.	The catalyst used in	n the polymeri	zation of ethylene is			
	D A I + T; CI		g Cl			
	1) $R_3Al + TiCl_4$		$SnCl_4$			
	3) Ni	4) Pt			
MA(GNETIC PROPER	TIES				
84.	The ion having max	ximum magne	tic moment is			
	1) Co ⁺³	2) Cr+3	3) Ni ⁺²	4) Cu ⁺¹		
85.	Which of the follow	ving ion is dia	,	,		
	1) Zn ⁺²	2) Cr ⁺³	3) Fe ⁺³	4) Mn^{+2}		
86.	The following meta	al shows ferror	magnetic nature			
	1) Co	2) Cr	3) Cu	4) Mn		
87.	The following spec	_	by a magnetic field			
	1) Hg^{+2}	2) Fe ⁺²	3) Co^{+3}	4) Ni^{+2}		
88.	AN 1111 3 0	substance, the	e field strength of sub	stance (B) and applied field strength (H))	
	are related as	0) D 11	2) D II	6 B 44		
90	1) B = H The fellowing is no	2) B < H	3) B > H	4) B >>> H		
89.	The following is not 1) Fe	2) Co	3) Y	4) Ni		
90.	Substances which a	ŕ	•	netic field are called		
	1) Diamagnetic) paramagnetic			
	3) Ferromagnetic) antiferromagnetic			
91.	Magnetic moment	of diamagnetic	c substance in Bohr M	lagnetons is		
	1) 1.73	2) 2.83	3) 5000	4) zero		
	www.sakshieducation.com					

92.	The magnetic moment	of Fe ²⁺ in B.M					
	1) 2.84	3.87	3) 1.73	4) 4.90			
93.	For first row transition	metal ions the mag	gnetic moment in B	ohr magnetons is calcu	ulated by the		
	formula			_			
	$\sqrt{n(n+1)}$ 2	$\sqrt{4S(S+1)}$	3) $\sqrt{n(n+2)}$	- 	2 0 2		
	1) v · · · · 2) • • •	3) v \	4) botl	n 2 & 3		
94.	For 2nd row and 3rd rocalculated by the form	ula	_	_	etons is		
	1) $\sqrt{4S(S+1)+L(L)}$	$(x+1)$ 2) $\sqrt{4S(S)}$	$(5+1)$ 3) \sqrt{n}	(n+2) _{4) All}			
95.	If the magnetic momenthe compound is	nt of a complex con	npound is 2.8 B.M.	the number of unpaire	ed electrons in		
	1) 1 2) 2	3) 3	4) 4				
96.	Bohr Magneton value						
	1) $9.273 \times 10^{-24} \text{ erg T}$	n=1	9.273×10 ⁻²⁴ J 4) 9.273×10 ⁻¹⁰ c	T^{-1}			
	27 9.273×10 ⁻¹⁷ J T ⁻¹		9.273×10^{-10} c	al T ⁻¹			
	3)	,					
97.	The observed magnetic	c moment value $^{(\mu)}$	obs) is higher than	calculated magnetic m	noment value		
	for (μ_{cal})						
	1) Ti ⁺³ 2) V ⁺² 3) Co^{+2} 4) Cr^{+2}					
	2) \ 3	, 60 ., 61					
INTI	ERSTITIAL COMPO	UNDS	7				
98.	Which of the following	g elements form int	erstitial compound	₂ 9			
70.	Which of the following elements form interstitial compounds? 1) Alkali metals 2) Transition metals						
	3) Halogens 4) Noble gases						
99.	Hydrogen occupies the		and N occupy the	following holes			
	1) Tetrahedral and octa		2) Octahedral and tetrahedral				
	3) Octahedral and octa		4) Tetrahedral and				
100.	Formation of interstitia	al compound makes	*				
) more ductile	3) more metallic	4) more hard			
101.	Which of the following	g is not a interstitial	compounds?				
	1) TiC 2) MoC	3) $Fe_{0.82}O$	4) Cr_2O_3			
102.	ZnO is white in cold a	nd yellow when hot	because				
	1) ZnO sublimes			2) ZnO melts			
	3) It forms non stoichi	ometric compound	at high temperature	es 4) All			
. –							
	OY FORMATION						
103.	The non transition met	tal present in Germa	an silver is				

3) Ni

4) Pb

1) Cu

2) Zn

104.	Transition metal pre 1) Ni	esent in the alloy Gun 2) Zn	metal is 3) Sn	4) Cu
105.	•	e reduction of nitrites		4) P
	1) Gun metal	2) Devarda's alloy	3) Solder metal	4) Bronze
106.	Invar is used in			
	1) Furnaces	2) Pendulum rods	3) Guns	4) Bells.
107.	The common metal	present in german sil	ver, bell metal and	brass is
	1) Fe	2) Cu	3) Zn	4) Sn
108.	Which of the follow	ing is an alloy of a m	etal and a non-meta	al?
	1) Bronze	2) electron	3) nichrome	4) steel
109.	Which of the follow	ing elements is alloye	ed with copper to	o form brass
	1) Pb	2) Bi	3) Sb	4) Zinc
110.	Gun metal is made f	rom		
	1) Cu, Sn, Zn	2) Cu, Sn	3) Ni, Fe, Cr	4) Cu, Zn
111.	Which of the follow	ring methods can be u	sed for the prepara	tion of alloys?
	1) Melting a mixture	e of metals		
	2) Simultaneous elec	trolytic deposition of	metals	7
	3) By mixing the aq	eous solution of the n	netal salts	
	4) Both 1 & 2			
112.	Which of the follow	ing is non-ferrous all	oy?	
	1) Invar	2) Nichrome	3) Wood metal	4) Steel
113.	Which of the follow	ring properties of elen	nents can be modifi	ied by the formation of alloys?
	1) resistance to corre	osion	2) toughness	
	3) malleability & du	ectility	4) All	
POT	ASSIUM PERMAN	IGANATE		
114	When reacts with acid	dified		
	1) Only is oxidized		Only is oxidized	
	3) Is oxidized and is		•	
115.]	In permanganate ion,	manganese has an ox	kidation number of	+7. Therefore it is
		hybridized 3) hydrol	•	
	AND AND W			number of Mn decreases by
	1) 1 2) 2 Potassium permangai	- / -	4) 5 t in neutral alkalin	e as well as acidic media. The final
	products obtained fro	m it in the three cond		
	1) MnO_4^{2-}, Mn^{3+} and			
	$_{2)}\mathit{MnO}_{2}$, MnO_{2} an			
	$_{3)}MnO_{2}$, MnO_{2}^{+} and			
4	$_{4)}MnO_{1}MnO_{2}$ and	Mn^{2+}		

118. When is fusc 1), purple gr		H, a colore 2) , purp	-	l is formed, the 3), brown	product and its color is 4), black	
POTASSIUM D	ICHROM	ATE				
119. Number of r	noles of red	_	ne mole of ic		1) 1/5	
1) 3		2) 1/3		3) 6	4) 1/6	
120. Chromyl chl	oride when	dissolves	in NaOH sol	lution gives yel	low solution. The yellow	solution
$Cr_2O_7^{2-}$	2) Ci	$c_2O_4^{2-}$ 3	CrO_5	4) Cr	$_{2}O_{3}$	*
· · · · · · · · · · · · · · · · · · ·			•	· · · · · · · · · · · · · · · · · · ·	, the product formed is	74
1) Na_2Cr_2C	O_7 O_7 O_7	$_{2}O_{3}$ 3	Na_2CrO_4	4) K_2	- VIIII	
122. Number of r		•				
1) 1/3	2) 3) 1/6	4) 6		
123. Number of (2) 7		nate ion is	4) 4		
124. In dichroma	,	3) 0	4) 4		
1) 4 Cr-O bo		ivalent	2) 6 C	r-O bonds are	equivalent	
3) all Cr-O b	_			STORE A VIOLENCE	non-equivalent	
125. Chromite or		•	,			
$_{1)}$ FeCr $_{2}O_{4}$	$_{2}$ Fe	$O.Cr_2O_3$	3)	$FeCr_2O_7$	4) Both (1) and (2)	
126. When is pas			and the		4) Doill (1) and (2)	
1) The soluti	_		Solution	2) The	e solution is decolourised	
3) Is reduce				4) Green is fo		
KEY						
LEVEL - I	.					
01) 3 02)	4 03) 3	04) 4	05) 4			
06) 4 07)	4 08) 1	09) 2	10) 4			
11) 3 12)	4 13) 4	14) 1	15) 3			
16) 2 17) 2	2 18) 2	19) 4	20) 3			
21) 3 22) 3	2 23) 3	24) 3	25) 3			
26) 2 27) 3	3 28) 2	29) 2	30) 2			
31) 1 32) 2	2 33) 3	34) 4	35) 2			
36) 4 37)	4 38) 1	39) 3	40) 4			
41) 1 42) 2		44) 2	45) 3			
46) 4 47) 4	·	49) 3	50) 2			

51) 1

56) 3

61) 1

66) 1

52) 3

57) 1

62) 1

67) 3

53) 1

58) 3

63) 2

68) 3

54) 1

59) 4

64) 4

69) 3

55) 1

60) 4

65) 2

70) 4

71) 4	72) 2	73) 1	74) 2	75) 4
76) 1	77) 2	78) 3	79) 2	80) 1
81) 1	82) 4	83) 1	84) 1	85) 1
86) 1	87) 1	88) 3	89) 3	90) 1
91) 4	92) 4	93) 4	94) 1	95) 2
96) 2	97) 3	98) 2	99) 1	100) 4
101) 4	102) 3	103) 2	104) 4	105) 2
106) 2	107) 2	108) 4	109) 4	110) 1
111) 4	112) 3	113) 4	114) 3	115) 2
116) 4	117) 2	118) 1	119) 4	120) 2
121) 3	122) 1	123) 3	124) 2	125) 4
126) 4				

F-BLOCK ELEMENTS

LANTHANIDES INTRODUCTION

- 1. Lanthanoids are:
 - 1) 14 elements in the seventh period (At. no. 90 to 103) that are filling 5f sublevel.
 - 2) 14 elements in the sixth period (At. No. 58 to 71) that are filling 4f sublevel
 - 3) 14 elements in the seventh period (At. No.58 to 71) that are filling 4f sublevel.
 - 4) 14 elements in the sixth period (At.No.90 to 103)
- 2. Which of the following Lanthanoid is radioactive?
 - 1) Cerium
- 2) Promethium
- 3) Thulium
- 4) Lutetium
- 3. The most common Lanthanoid is
 - 1) Lanthanum
- 2) Cerium
- 3) Samarium
- 4) Plutonium
- 4. Non-Lanthanoid atom is
 - 1) La

2) Lu

3) Pr

- 4) Pm
- 5. Lanthanides are characterized by the filling of the
 - 1) Penultimate 4f energy level
 - 2) antipenultimate 4f energy level
 - 3) penultimate 5f energy level
 - 4) antipenultimate 5f energy level

	WWW.saksmeducatiomeen
d -block elements form	n complexes because they have:
1) Vacant orbitals	2) small sizes
3) Higher nuclear char	ge 4) all of the above
, ,	ed up progressively in actinoids
	2) 5f
3) 6d	4) 7s
The correct statement ((s) from among the following is/are:
<i>'</i>	ements form coloured ions.
iii) All d and f-block el	lements are paramagnetic.
	2) i and ii
3) ii and iii	4) All
ECTRONIC CONFIG	URATION AND OXIDATION STATES
Which of the following	g is not the configuration of Lanthanoid
1) [Xe]4f ¹⁰ .6s ²	2) [Xe] 4f ¹ 5d ¹ .6s ²
3) [Xe]4f 145d106s1	4) [Xe]4f ⁷ 5d ¹ .6s ²
The electronic configu	ration of f-block elements is represented by
	V AND WHITE
, , , , , , , , , , , , , , , , , , , ,	
, , , , , , , , , , , , , , , , , , , ,	
	Action controls. Action control
	2) +3 and +4
	4) +2 and +3
	•
	<i>8</i>
ATTICLE ATTICLE	2) 4f 86s ²
pr Autoropy	4)4f ⁷ 5d ² 6s ¹
3) 11 05	1,11 54 65
The +3 ion of which or	ne of the following has half filled 4f sub shell?
	3) Gd 4) Ac
,	g elements shows more number of oxidation states in its compounds?
-	2) Gd
,	4) Eu
	+2 and +3 oxidation states are common is
	1) Vacant orbitals 3) Higher nuclear char Which sub shell is fille 1) 4f 3) 6d The correct statement (i) All the d and f-block elii) All d and f-block elii) All d and f-block elii) All d and f-block elii) and iii ECTRONIC CONFIG Which of the following 1) [Xe]4f 10.6s2 3) [Xe]4f 145d106s1 The electronic configur 1) (n-2) f 1-14(n-1) d0 2) (n-2) f 1-14(n-1) d0 3) (n-2) f 1-14(n-1) d0 4) (n-2) f 1-14(n-1) d0 The electronic configur 1) [Xe] 4f 05d16s2 3) [Xe] 4f 25d06s2 The most common oxi 1) +2 and +4 3) +3 and +5 The outer shell electron Gd (Z = 64) is 1) 4f 75d16s2 3) 4f 96s1 The +3 ion of which or 1) La 2) Lu Which of the following 1) Am 3) La

2) Eu

1) La

4) Nd

- 18. Cerium (Z = 58) is an important member of the Lanthanides. Which of the following statements about cerium is incorrect?
 - 1) The +3 oxidation state of cerium is more stable than the +4 oxidation state.
 - 2) The common oxidation states of cerium are +3 and +4
 - 3) Cerium (IV) acts as an oxidizing agent
 - 4) The +4 oxidation state of cerium is not known in solutions.
- 19. The element with the electronic configuration [Xe] 4f ¹⁴5d¹6s² is a
 - 1) Representative element
 - 2) Transition element
 - 3) Actinide element
 - 4) Lanthanide element

CHEMICAL REACTIVITY OF LANTHANIDES

- 20. Which of the following ion is paramagnetic?

 - 1) La^{3+} (Z = 57) 2) Lu^{3+} (Z = 71)
 - 3) Yb^{3+} (Z = 70)
- 4) Sm^{3+} (Z = 62)
- 21. Which of the following is the strongest base?
 - 1) $Lu(OH)_3$
- 2) Ce(OH)₃
- 3) $Sm(OH)_3$
- 4) Tb(OH)₃
- 22. In aqueous solution Eu^{2+} acts as?
 - 1) an oxidsing agent
 - 2) reducing agent
 - 3) can act as either of these
 - 4) can not act as either of these
- 23. The colour of Lanthanoids and Actinoids is due to
 - 1) s-f transitions
- 2) p-f transitions
- 3) d-f transitions
- 4) f-f transitions
- 24. Which of the following has tendency to act as an oxidising agent?
 - 1) Ce^{4+}
- $2) \text{ Sm}^{2+}$
- 3) Lu^{3+}
- 4) Gd^{3+}
- 25. Which of the following statement is not correct?
 - 1) is less basic than
 - 2) In Lanthanoid series ionic radius of Ln³⁺ ions decreases
 - 3) La is actually an element of transition series rather than Lanthanoid series
 - 4) Atomic radii of Zr and Hf are same because of Lanthanoid contraction
- 26. Many Lanthanoid elements are used to prepare
 - 1) Ceramic materials
- 2) water softener
- 3) Superconducting materials
- 4) Enzyme catalysts

- 27. Which of the following statement concerning Lanthanide elements is false?
 - 1) All Lanthanoids are highly dense metals.
 - 2) Most characteristic oxidation state of Lanthanide elements is +3.
 - 3) The ionic radii of trivalent Lanthanides steadily increase with increase in the atomic number
 - 4) Lanthanoids are separated from one another by ion exchange methods

LANTHANIDES CONTRACTION ITS CONSEQUENCES

- 28. A reduction in atomic size with increase in atomic number is a characteristic of elements of
 - 1) d-block
- 2) f-block
- 3) Radioactive series
- 4) high atomic masses.
- 29. The Lanthanoid contraction refers to
 - 1) Valence electrons of the Lanthanide series
 - 2) Ionic radius of the series
 - 3) The density of the series
 - 4) Nuclear mass of the series
- 30. The atomic and ionic radii (M³⁺ ions) of Lanthanide elements decrease with increase in atomic number. This effect is called
 - 1) Lanthanoid contraction
 - 2) Lanthanoid expansion
 - 3) Actinoid contraction
 - 4) Actinoid expansion
- 31. Lanthanoid contraction occurs because
 - 1) the 4f electrons, which are gradually added, create a strong shielding effect
 - 2) the 4f orbitals are greater in size than the 3d and 3f orbitals
 - 3) the 5f orbitals strongly penetrate into the 4f orbitals
 - 4) the poor shielding effect of 4f electrons is coupled with increased attraction between the nucleus and the added electrons.
- 32. The Lanthanoids contraction is responsible for the fact that
 - 1) Zr and Y have about the same radius
 - 2) Zr and Nb have similar oxidation state
 - 3) Zr and Hf have about the same radius
 - 4) Zr and Zn have the same oxidation state
- 33. The radius of La³⁺ (At.No.ofLa=57) is 1.06A. Which one of the following given values will be closest to the radius of Lu³⁺ (Atomic No. of Lu=71)
 - 1) 1.40A
- 2) 1.06A
- 3) 0.85A
- 4) 1.60A
- 34. The separation of Lanthanoids by ion exchange method is based on
 - 1) basicity of the hydroxides
 - 2) size of the ions
 - 3) the solubility of their nitrates
 - 4) oxidation state of the ion.

ACTINOIDS

- 35. The actinoids showing +7 oxidation states are
 - 1) U, Np
- 2) Pu, Am
- 3) Np, Pu
- 4) Am, Cm
- 36. Which of the following elements belongs to actinide series?
 - 1) Lu
- 2) Gd 3) Th
- 4) La
- 37. The electronic configuration of actinides cannot be assigned with degree of certainty because of
 - 1) Overlapping of inner orbitals
 - 2) Free movement of electrons over all the orbitals
 - 3) Small energy difference between 5f and 6d levels
 - 4) None of the above

KEY

- 1) 2 2) 2
- 3) 2
- 4) 1 5) 2

- 6) 4
- 7) 2 8) 1
- 9) 3 10) 1
- 11) 4 12) 2
- 2 13) 2
- 14) 1 15) 3

19) 4

- 16) 3
- 17) 2
- 18) 4
- 20) 4

35) 3

- 21) 2
- 22) 2
- 23) 4
- 24) 1 25) 1

- 26) 3
- 27) 3
- 28) 2
- 29) 2 30) 1

- 31) 4
- 32) 3
- 33) 3
- 34) 2
- 36) 3 37)