P-BLOCK ELEMENTS

VII-A GROUP ELEMENTS (SUBTOPIC-I)

SUBTOPIC-I PRACTICE QUESTIONS

1. The order of electron affinity of halogens is

 $1. \ F > Cl > Br > l \qquad 2. \ Cl > Br > F > l \qquad 3. \ Cl > F > Br > l \qquad 4. \ l > Br > Cl > F$

2. Halogens are coloured because

- 1. Their atoms have high electronegativity
- 2. Their molecules are held together by weak vanderwaals forces

3. Their molecules absorb visible light causing the excitation of outer electrons to higher energy levels.

4. Their atoms absorb energy causing the excitation of outer electrons to higher energy levels

3. Fluorine does not show variable oxidation states due to

- 1. Its high electronegativity2. Smallest size of its atoms
- 3. Low bond dissociation energy 4. Non availability of d-orbitals

4. Fluorine is more reactive than chlorine because

- 1. F F bond is weaker than Cl-Cl bond 2. Fluorine does not have d-orbitals
- 3. Fluorine has high ionization energy
- 4. Electron affinity of fluorine is lesser than that of chlorine

5. Which of the following is known as a super halogen?
1. Chlorine 2. Bromine 3. Fluorine
6. Halothane is

1. CF_2Cl_2 2. $CF_3CHClBr$ 3. C_2F_4 4. All

www.sakshieducation.com

4. Iodine

7. The order of bond energy of halogens is

1.
$$F_2 < Cl_2 < Br_2 < I_2$$
2. $F_2 > Cl_2 > Br_2 > I_2$ 3. $Cl_2 > Br_2 > F_2 > I_2$ 4. $Cl_2 > F_2 > Br_2 > I_2$

8. The order of reactivity of halogens with hydrogen is

1. $F_2 < Cl_2 < Br_2 < I_2$ 2. $F_2 > Cl_2 > Br_2 > I_2$

3.
$$F_2 > Br_2 > Cl_2 > I_2$$

4. $F_2 > I_2 > Br_2 > Cl_2$

9. At ordinary temperature and pressure, chlorine is a gas, bromine is a liquid and iodine is solid this is because

1. Of these three, chlorine is the lightest and iodine is the heaviest

2. Chlorine has a lowest specific heat 3. Chlorine molecule is the least stable

4. Intermolecular forces are weakest in chlorine and strongest in Iodine.

10. Halogen molecules are

- 1. Diatomic and from X_2^{-2} ions 2. Diatomic and form X^{-1} ions
- 3. Monoatomic and form X_2^{2-} ions 4. Monoatomic and form X^- ions

11. Iodine is liberated when chlorine is passed through an acidified solution of potassium iodide because

- 1. Chlorine is powerful reducing agent than iodide
- 2. Chlorine is powerful oxidizing agent than iodide
- 3. Chlorine is more electronegative than iodide
- 4. Chlorine is less electronegative than iodine

12. One gas bleaches the colors of flowers by reduction and the other by oxidation. The two gases are respectively

1. Cl_2 and SO_2 2. H_2S and Br_2 3. SO_2 and Cl_2 4. NH_3 and SO_3

13. Oxidizing action increases in the following order

 $1. \ Cl < Br < I < F \qquad 2. \ Cl < I \ Br < F \qquad 3. \ I < Cl < Br \qquad 4. \ I < Br < Cl < F$

14. Which of the following pairs is not correctly matched?

1. A halogen which Liquid is at room temperature – Bromine

2. The most electronegative element – Fluorine

3. The most reactive halogen – Fluorine 4. The strongest oxidizing halogen – Iodine

15. Halogen atoms have

- 1. High ionization energy, high electron affinity, and low electronegativity.
- 2. High ionization energy, high electronegativity and high electron affinity.
- 3. High ionization energy, low electron affinity and high electronegativity
- 4. Low ionization energy, high electron

16. In dilute aqueous solution HF is a weaker acid than HI, because

- 1. H F bond energy is greater than HI bond energy
- 2. The hydration energy of F^{-} is higher than that of I^{-}
- 3. Of the presence of hydrogen bonds in HI
- 4. Fluorine is a stronger base as compared to iodine.

17. The order HF < HCl < HI corresponds to which of the following properties

1. Bond length 2. Thermal stability 3. Ionic character 4. Dipole moment

18. The manufacture of fluorine is carried out by

- 1. Electrolysis of aqueous HF 3. Electrolysis of anhydrous HF mixed with KHF₂
- 3. Heating anhydrous HF and MnO₂ 4. Heating a mixture KF, MnO₂, and conc. H₂SO₄

19. Dry and fused KHF₂ on electrolysis gives

	1. H_2 at anode and L_2	F_2 at cathode	2. H_2 at cathode and	F_2 at anode			
	3. H_2 at cathode and	O_2	4. Both H_2 and F_2 at	cathode			
20.	KF combines with	HF to from KHF ₂ . Th	e compound contains	the species:			
	1. K^+ , F^- and H^+	2. K^+ , F^- and HF	3. K^+ and $[HF_2]^-$	4. $[KHF]^+$ and F^-			
21.	The T-shaped intrl	nalogen compound is					
	1. ClF_3 2. IC	I 3. <i>Cl</i>	F_5 4. IF_5				
22.	HF is not stored in	glass bottles because					
	1. It reacts with visil	ole part of light	2. It reacts with sodi	um oxide of the glass			
	3. It reacts with the	aluminium oxide of the	e glass				
	4. It reacts with SiO	$_2$ of the glass					
23.	Correct order of bo	oiling points of hydro	gen halides is				
	1. $HF > HCl > HBr$	>HI	2. HF > HCl	> HBr < HI			
	3. HCl < HBr < HI <	< HF	4. HF < HCl	< HBr < HCl			
24.	Available chlorine	in a good sample of b	leaching powder is				
	1. 75%	2. 20-25%	3. 50-75%	4.35-38%			
25.	Cl_2O_6 is the mixed anhydride of						
	1. $HOCl + HClO_2$	2. $HClO_2 + HClO_3$	3. $HClO_3 + HClO_4$	4. $HClO + HClO_3$			
26.	The number of long	e pairs on chlorine at	om is ClO^-, ClO_2^-, ClO	r_3^-, ClO_4^- ions are			
	1. 0,1,2,3	2. 1,2,3,4	3. 4,3,2,1	4. 3,2,1,0			

27. The order of basic strength of $ClO^-, ClO^-_2, ClO^-_3, ClO^-_4$ is

1.
$$ClO_4^- > ClO_3^- > ClO_2^- > ClO^-$$
 2. $ClO_4^- > ClO_2 > ClO > ClO_3^-$

 3. $ClO^- > ClO_2 > ClO_2^- > ClO_4^-$
 4. $ClO^- > ClO_4 > ClO_2^- > ClO_2^-$

28. Decreasing order of the oxidizing strengths of the oxyacids of chalorine

1. $HClO > HClO_2 > HClO_3 > HClO_4$	2. $HClO_4 > HClO_4 > HClO_2 > HClO$

3. $HClO_3 > HClO_2 > HClO > HClO_4$ 4. $HClO_2 > HClO > HClO_4 > HClO_3$

29. Chlorine atom, in the third excited state, reacts with fluorine to form a compound 'x'. The formula and shape of 'x' are

1. ClF_5 , pentagonal	2. ClF_4 , Tetrahedral		
3. ClF_4 , pentagonal bipyramidal	4. ClF_7 , pentagonal bipyramidal		

30. Number of sigma and pi bonds in ClO_2^- ion

- 1. 2σ and 2π 2. 2σ and 1π 3. 1σ and 2π 4. 3σ and 2π
- **31.** Which one of the following sequences represents the correct increasing order of bond angle in the given molecules?

1. $H_2O < OF_2 < OCl_2 < ClO_2$	2. $OCl_2 < ClO_2 < H_2O < OF_2$
3. $OF_2 < H_2O < OCl_2 < ClO_2$	4. $ClO_2 < OF_2 < OCl_2 < H_2O$

32. Which of the following represents the correct order increasing pK_a values of the given acids?

1.
$$HClO_4 < HNO_3 < H_2CO_3 < B(OH)_3$$

2. $HNO_3 < HClO_4 < B(OH)_3 < H_2CO_3$
3. $B(OH)_2 < H_2CO_4 < HClO_4 < HNO_3$
4. $HClO_4 < HNO_3 < B(OH)_2 < H_2CO_3$

- **33.** Oxidation state of chlorine in hypochlorous acid is
 - 1. +1 2. +2 3. -1 4. -2

- 34. In the reaction $2Br^- + X_2 \rightarrow Br_2 + 2X^-, X_2$ is
 - 1. Cl_2 2. Br_2 3. I_2 4. N_2

35. Which of the following is correct about the reaction?

 $3NaClO \xrightarrow{heat} NaClO_3 + 2NaCl$

- 1. It is disproportionate reaction
- 2. Oxidation number of Cl decreases as as well as increases in this reaction
- 3. This reaction is used for the manufacture of halates
- 4. All of the above
- **36.** A greenish yellow gas reacts with an alkali metal hydroxide to form a halite which can be used in fire works and safety matches. The gas and halite respectively are
 - 1. Br_2 , $KBrO_3$ 2. Cl_2 , $KClO_3$ 3. I_2 , $NalO_3$ 4. Cl_2 , $NaClO_3$

37. The reaction of $KMnO_4$ and HCI results in

1. Oxidation of Mn in KMnO₄ and production of CI₂

- 2. Reduction of Mn in $KMnO_4$ and production of H_2
- 3. Oxidation of Mn in $KMnO_4$ and production of H_2
- 4. Reduction of Mn in $KMnO_4$ and production of CI_2

38. In the oxyacids of chlorine Cl-O bond contains

1. $d\pi - d\pi$ Bonding 2. $p\pi - d\pi$ Bonding 3. $p\pi - p\pi$ Bonding 4. None of the above

39. Which of the following statement is incorrect?

- 1. ICl is a good conductor of electricity in fused state
- 2. Cl_2O_7 is an anhydride of perchloric acid
- 3. Melting and boiling points of HBr is less than HCl
- 4. F2 does not form oxy-acids

40. Auto-oxidation of bleaching powder gives

- 1. Only calcium chlorate 2. Only calcium chloride
- 3. Only calcium hypochlorite 4. Both (1) and (2)

41. A halogen (X) reacts with Sulphur gives a compound (y). (y) reacts with ethylene to give Mustard gas. Then

1. $x = Cl_2$; $y = S_2Cl_2$ 2. $x = Cl_2$; $y = SCl_4$ 3. $x = Cl_2$; $y = S_2Cl$ 4. $x = Cl_2$; $y = SCl_2$

42. Hybridization of chlorine atom is ClO^- , ClO_2^- , ClO_3^- , and ClO_4^- respectively

1. sp^2 , sp^2 , sp^2 , sp^2 2. sp, sp, sp, sp 3. sp^3 , sp^3 , sp^3 , sp^3 4. sp, sp^2 , sp^3 , sp^2

43. An easy way of obtaining Cl_2 gas in the laboratory is

1. By heating NaCl and conc. H_2SO_4 2. By heating NaCl and MnO_2

3. By mixing HCl and $KMnO_4$ 4. By passing F_2 through NaCl solution

44. Identify the false statement about bleaching powder

1. Amount of Cl_2 liberated when it is treated with excess of dilute acid is known as available chlorine

- 2. Bleaching powder is priced according to its crystal size
- 3. Good quality of bleaching powder contains 35 38% available chlorine

4. When stored for longer periods it changes to calcium chlorate and calcium chloride

45. Bleaching powder on treatment with x gives O_2 , with Y gives Cl_2 and with Z gives Chloroform. X,Y and Z are respectively

- 1. H_2SO_4 , $CoCl_2$ and Ethyl alcohol 2. $CoCl_2H_2SO_4$ and ethyl alcohol
- 3. $CoCl_2H_2SO_4$ and methyl alcohol 4. Etheyl alcohol, $CoCl_2H_2SO_4$

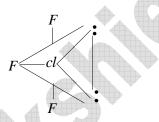
46.	$Cl_2 \xrightarrow{Cold.dil NaOH} x + y + z$. Here x,y and z are						
	1. NaCl, NaClO ₃ and H ₂ O		2. NaCl, NaOCl a	nd H ₂ O			
	3. NaCl, NaClO ₄ a	and H ₂ O	4. NaCl, NaClO ₂	and H ₂ O			
47.	Chlorine is passe chlorine in the pi)H solution. What is t	the oxidation numbers of			
	11 and +5	21 and +3	3. +1 and +7	4. +1 and -1			
48.	In cold water Ble	eaching powder ionize					
	1. Ca^{2+}, Cl^{-} and Ca^{2+}, Cl^{-}	C10 ⁻	2. <i>CaO</i> , <i>Cl</i> [−]				
	3. Ca^{2+}, Cl^{-} and C	ClO_3^-	4. Ca^{2+}, Cl^{-} and (<i>ClO</i> ₂			
49.	Bromine is added to cold dilute aqueous solution of NaOH. The mixture is boiled. Which						
	of the following statements is not true?						
	1. During the reac	tion bromine is presen	t in four different oxid	ation states			
	2. The greatest dif	ference between the v	arious oxidation states	of bromine is 5			
	2 On acidification	2. On acidification of the first winters becaming is formed					

- 3. On acidification of the final mixture, bromine is formed
- 4. Disproportionation of bromine occurs during the reaction

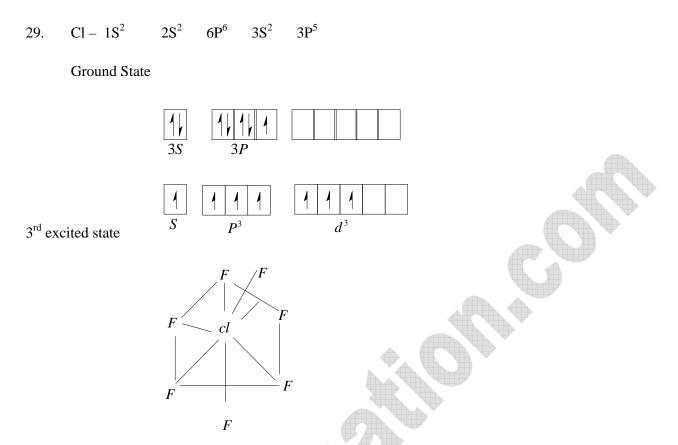
501

50. The correct sequence of arrangement of the following compounds in order of decreasing oxidation numbers of iodine is

1. HIO_4 , HI, I_2ICl_5 2. HIO_4 , ICl_5 , HI, I_2 3. ICl_5 , HIO_4 , I_2HI 4. HIO_4 , ICl_5 , I_2 , HI


VII-A GROUP ELEMENTS

SUB TOPIC-I KEY


1) 3	2) 3	3) 4	4) 1	5) 3	6) 2	7) 3	8) 2	9) 4	10) 2
11) 2	12) 3	13) 4	14) 4	15) 2	16) 1	17) 1	18) 3	19) 3	20) 3
									$\frown \bigcirc$
21) 1	22) 4	23) 3	24) 4	25) 3	26) 4	27) 3	28) 3	29) 4	30) 2
									\rightarrow
31) 3	32) 1	33) 1	34) 1	35) 4	36) 2	37) 4	38) 2	39) 3	40) 3
41) 1	42) 3	43) 3	44) 2	45) 2	46) 2	47) 4	48) 1	49) 2	50) 4

SUB TOPIC-I (SOLUTIONS)

- 1. The E.A of F_2 is less them E.A Cl_2
- $20. \qquad KHF_2 \to K^+ [HF_2]^-$
- 21.

- 23. Due to hydrogen boding Hf contains high Boiling Point.
- 24. The % of available chlorine is good sample of bleaching power is 35-38%
- 25. $HClO_3 + HClO_4 \rightarrow Cl_2O_6 + H_2O$

 ClF_7 Pentagonal bipy ramidal is geomethy sp^3d^3 is hybridisations

32.
$$P^{ka} \alpha \frac{1}{strength of \ acid}$$

$$33. \quad HOCl \to OH + C$$

$$34. \qquad 2Br + Cl_2 \to Br_2 + 2Cl$$

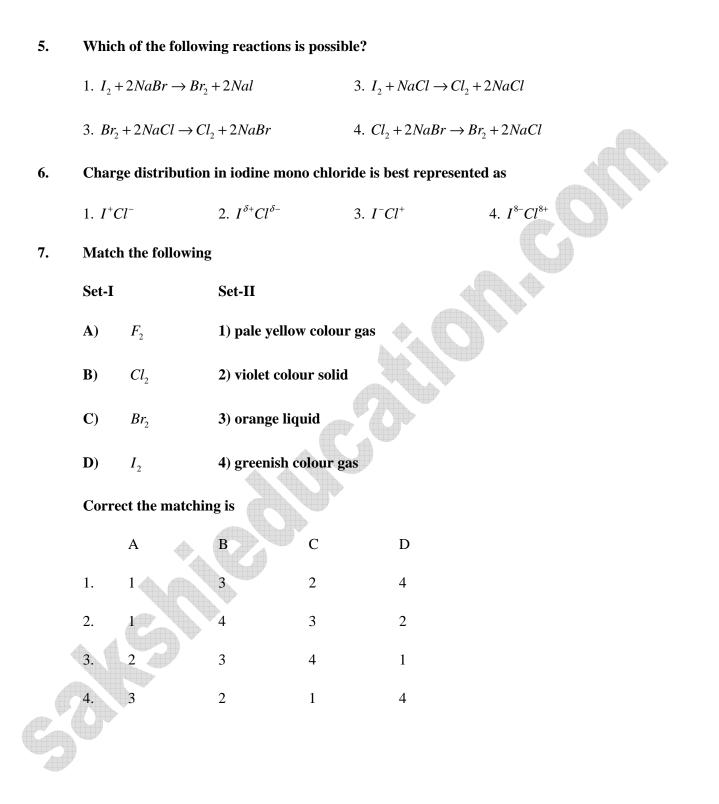
35.
$$Na \, ClO \rightarrow Na \, ClO_2 + 2Na \, Cl$$

$$36. \qquad 3Cl_2 + 6KOH \rightarrow 5KCl + KClO_3 + 3H_2O$$

- 39. Due to high molecular weight HBr contains high B.P.
- 41. $Ls + \frac{Cl_2}{x} \rightarrow \frac{S_2Cl_2}{y}$ Mustard gas

$$S_2Cl_2 + ClO_2 = CH_2 \rightarrow$$

42. In all oxy acids chlorine under go sp^3 hybridizations.


47.
$$Cl_2 + 2NaOH \rightarrow NaH + NaOCl + H_2O$$

VIIA GROUP ELEMENTS (SUBTOPIC-II)

Fluorine, Chlorine, Bleaching power, Inter halogen compounds.

- 1. Which of the following is not the characteristic of inter halogen compounds?
 - 1. They are more reactive than halogens
 - 2. They are quite unstable but none of them is explosive
 - 3. They are covalent in nature
 - 4. They have low boiling points and are highly volatile
- 2. Which of the following reaction involves redox reaction?
 - 1. $H_2 + Br_2 \rightarrow 2HBr$ 2. $HBr + AgNO_3 \rightarrow AgBr + HNO_3$
 - 3. $NaBr + HCl \rightarrow NaCl + HBr$ 4. $Na_2O + H_2SO_4 \rightarrow Na_2SO_4 + H_2O_4$
- 3. Which of the following statement is incorrect?
 - 1. ICl is a good conductor of electricity in fused state
 - 2. Cl_2O_7 is an anhydride of perchloric acid
 - 3. Melting and boiling points of HBr is less than HCl
 - 4. F_2 does not form oxy-acids
- 4. One mole of fluorine is reacted with two moles of hot and concentrated KOH The products formed are HF, H_2O and O_2 . The molar ratio of KF, H_2O and O_2 respectively is

1. 1:1:2 2. 2:1:0.5 3. 1:2:1 4. 2:1:2

8. **Observe the following statements?**

- I. Bleaching powder is used in the preparation of Chloroform
- II. Bleaching powder decomposes in the presence of $CoCl_2$ to liberate O_2

III. Aqueous KHF_2 is use in the preparation of Fluorine.

- 1. I,II and III are correct2. Only II is correct
- 2. Only I and III are correct 4. Only I and II are correct.

9. Assertion (A): Bleaching powder is also known as calcium chloro hypo chlorite

Reason (R): Bleaching powder is a mixed salt of calcium chloride and perchlorite

- 1. A and R are true, R is correct explanation of A
- 2. A and R are true, r is not correct explanation of A
- 3. A is true, but R is false 4. A is false, but R is true
- **10.** Assertion (A): Fluorine occurs in nature in the combined state only

Reason (R): Fluorine is very reactive element.

- 1. A and R are true, R is correct explanation of A
- 2. A and R are true, r is not correct explanation of A
- 3. A is true, but R is false 4. A is false, but R is true
- **11.** Assertion (A): *ClO*₂ is a paramagnetic molecule

Reason (R): Cl atom in ClO_2 molecule is sp^3 hybridized

- 1. A and R are true, R is correct explanation of A
- 2. A and R are true, r is not correct explanation of A
- 3. A is true, but R is false 4. A is false, but R is true

Assertion (A): In BrF_3 oxidation state of "F" is + 3. 12.

Reason (R): Electro negativity of F is more than that of Bromine.

- 1. A and R are true, R is correct explanation of A
- 2. A and R are true, r is not correct explanation of A
- 4. A is false, but R is true 3. A is true, but R is false

13. Match the following

Set	-I		Set-II	۰.
A)	Teargas		1) $[C_2H_4Cl]_2 S$ 2) $COCl_2$ 3) CCl_3NO_2	
B)	Mustard	gas		
C)	Phosgen	e		
D)	Teflon		$4) \left(C_2 F_4\right)_n$	
Со	rrect the ma	tching is		
	А	В	С	D
1.	3	1	2	4
2.	1	2	4	3
3.	2	3	4	1
4.	4	2	1	3

Match the following 14.

Set-I (Cl – O bond length) Set-II (A^0)

- HClO A) 1) 1.64
- $HClO_2$ **B**) 2) 1.70
- C) $HClO_3$ 3) 1.45
- D) $HClO_4$ 4) 1.57

Correct the matching is

C)	HClO ₃		3) 1.45	
D)	HClO ₄		4) 1.57	
Corre	ect the matchin	ng is		
	А	В	С	D
1.	1	2	3	4
2.	2	3	4	1
3.	2	1	4	3
4.	2	1	3	4

15. The set with correct order of acidic strength is

1. $HClO < HClO_2 < HClO_3 < HClO_4$	2. $HClO_4 < HClO_3 < HClO_2 < HClO$
+. C7.	
3. $HClO < HClO_4 < HClO_3 < HClO_2$	4. $HClO_4 < HClO_2 < HClO_3 < HClO$

- 16. The following is incorrect statement
 - 1. Beaching powder is used as a germicide
 - 2. Chlorine is used in the preparation of insecticides like DDT.

3. Fluorine is used in Rocket Fuels

4. Na_3AlF_3 is not a insecticide

17. Find the correct statements.

- a) Electron affinity of F is less than that Cl
- b) Number of lone pairs at central chlorine atom of ClF_3 is 2
- c) Iodine absorbs radiation of violet colour and appear in yellow colour.
- d) F_2 oxidizes all other ionic halides to halogens

Find the correct answer.

1. a,c,d 2. a,b,d 3. Only c 4. All are correct

18. A black powder (x) when heated with NaCl and Conc. H_2SO_4 liberates a greenish yellow gas (y). (y) on passing through liquor Ammonia liberates chemically inert gas (Z); and on passing through boiling KOH gives (A) and (B) along with H_2O_2 . (A) When heated with (x) liberates another gas (C) and KCl. Then gases liberated are

1.
$$y = Cl_2; Z = N_2; C = O_2$$

3. $y = O_2; C = Cl_2; Z = O_2$
4. $y = Cl_2; C = NH_3; Z = O_2$

19. A halogen which is used in the preparation of TEL, an anti-knock compound in petroleum is

- 1. F_2 2. Cl_2 3. Br_2 4. I_2
- 20. Identify B in the above reaction

$$Ca(OH)_2 \xrightarrow{Cl_2,-H_2O} A$$

$$\xrightarrow{AutoOxidation} \leftarrow CaCl_2 + B$$

1. $CaOCl_2$ 2. $Ca(ClO_3)_2$ 3. $Ca(OH)_2$ 4. $Ca(ClO_2)_2$

- 21. A greenish yellow gas reacts with an alkali metal hydroxide to be used in fireworks and safety matches. The gas and the halate are
 - 1. Br_2KBrO_3 2. $Cl_2, KClO_3$ 3. I_2NalO_3 4. I_2KlO_3

22. When chlorine water is added to an aqueous solution of sodium halide in the presence of chloroform, a violet colouration is obtained. When more of chlorine water is added, the violet colour disappears and solution becomes colourless. This confirms that the halide is sodium.

	1. Chloride	2. fluoride	3. bromide	4. iodide		
23.	A liquid X is treat	ed with Na_2CO_3 soluti	on. A mixture of two	salts Y and Z are produced		
	in the solution. The mixture on acidification with sulphuric acid and distillation produces					
	the liquid X again.	Identify X.				
	1. <i>Cl</i> ₂	2. <i>Br</i> ₂	3. Hg	4. <i>I</i> ₂		
24.	10g of bleaching p	ower on reaction with	KI required 50 ml o	f hypo solution. Thus, %		
	bleaching power is	5				
	1.100	2.80	3. 63.5	4. 35.5		
25.	On exciting Cl ₂ mo	lecule by UV light, w	e get			
	1. <i>Cl</i> •	2. <i>Cl</i> [−]	3. <i>Cl</i> ⁺	4. All of these		
26.	Which halogens or	cidize water to oxygen	exothermally?			
	1. Fluorine	2. Chlorine	3. Bromine	4. Iodine		
27.	Concentrated HN	O_3 reacts with I_2 to give	/es			
	1. HI	2. HOI	3. <i>HIO</i> ₃	4. <i>HOIO</i> ₂		
28.	In KI solution, I_2 readily dissolves and forms					
	1. <i>I</i> -	2. KI_2^-	3. <i>KI</i> ₃	4. <i>KI</i> ₂		
29.	Iodine is formed w	hen potassium iodide	e reacts with a solutio	n of		
	1. $ZnSO_4$	2. <i>CuSO</i> ₄	3. $(NH_4)_2 SO_4$	4. Na_2SO_4		

30.	The lattice energy of lithium halides in the following order					
	1. LiF > LiCl > LiBr > LiI		2. LiI > LiE	Br > LiCl > LiF		
	3. $LiCl > LiF > LiBr > Lil$		4. LiBr > L	iCl > LiF > LiI		
31.	Metal halide wh	hich is insoluble in wate	r is			
	1. AgF	2. AgI	3. KBr	4. CaCl ₂		
32.	The mixture of	conc. HCl and HNO ₃ m	de in 3:1 ratio contai	ns		
	1. <i>ClO</i> ₂	2. NOCI	3. <i>NCl</i> ₃	4. N_2O_4		
33.	Which one is th	e anhydride of <i>HClO</i> ₄ ?	-			
	1. <i>ClO</i> ₂	2. Cl_2O_7	3. <i>Cl</i> ₂ <i>O</i>	4. Cl_2O_6		
34.	The reaction of	the type $2X_2 + S \rightarrow SX_4$	is shown by sulphur	when X is		
	1. Fluorine or ch	lorine	2. Chlorine only	2. Chlorine only		
	3. Chlorine and l	bromine only	4. F, Cl, Br, all			
35.	The following a	cids have been arrange	d in the order of decr	easing acid strength. Identify		
	the correct orde	er. ClOH(I) BroH (II) I	OH(III)			
	1. I > II > III	2. II > 1 > III	3. III > II > I	4. $I > III > II$		
36.	What is a produ	uct obtained in the react	tion of $HgCl_2$ and Hg ($(CN)_2$?		
4	1. $(CN)_2$		2. $Hg(CN)Cl$			
	3. $Hg[Hg(CN)]$	$[2Cl_2]$	4. Addition compo	und $HgCl_2.Hg(CN)_2$		
37.	Euchlorine is a	mixture of				
	1. $Cl_2 + ClO_2$	2. $Cl_2 + Cl_2O$	3. $Cl_2O_3 + ClO_2$	4. $Cl_2O + Cl_2O_3$		
37.	3. $Hg[Hg(CN)]$ Euchlorine is a	mixture of	4. Addition compo			

38. A dark brown solid (X) reacts with NH_3 to form a mild explosive which decomposes to give a violet colored gas. (X) Also reacts with H_2 to give an acid (Y). (Y) can also be prepared by heating its salt with H_3PO_4 . X and Y are

1. Cl_2 , HCl 2. SO_2 , H_2SO_4 3. Br_2 , HBr 4. I_2HI

- **39.** Bleaching powder is disinfectant for purification of water when water born germs are killed. But disinfectant activity is destroyed. It is due to its disproportion into
 - 1. $CaCl_2$ and Cl_2 2. $CaCl_2$ and $Ca(ClO_3)_2$
 - 2. CaO, Cl_2 and CaO, Cl_2 4. CaO, Cl_2 and $CaCl_2$
- **40.** $HClO_4 + P_2O_5 \rightarrow (A)$ and (B) A and B are
 - 1. $HClO_3, H_3PO_4$ 2. $Cl_2O_6 + HPO_3$ 3. ClO_2, H_2PO_4 4. Cl_2O_7, HPO_3
- 41. Halon 1301 is
 - 1. $CC_2F.CClF_2$ 2. $C_2F_4Br_2$ 3. CCl_3F 4. CF_3Br
- 42. Assertion: Red phosphorous is less volatile than white phosphorous

Reason: Red phosphorous has a does create tehahedhal structure

- 1. A and R are true, R is correct explanation of A
- 2. A and R are true, r is not correct explanation of A
- 3. A is true, but R is false 4. A is false, but R is true

43. Assertion: Pcl_4 is covalent in gaseous and liquid states but ionic is solid state

Reason: In solid state it have Pcl_5^+ and Pcl_6^- ions

- 1. A and R are true, R is correct explanation of A
- 2. A and R are true, r is not correct explanation of A
- 3. A is true, but R is false 4. A is false, but R is true

44. Assertion: Liquid IF_5 conducts electricity.

Reason: Liquid IF_5 conducts as, $2IF_5$ $IF_4^+ + IF_6^-$

1. A and R are true, R is correct explanation of A

2. A and R are true, r is not correct explanation of A

3. A is true, but R is false 4. A is false, but R is true

45. Assertion: Bond dissociation energy of F_2 molecule is less than that of Cl_2 molecule.

Reason: Due to inter-electronic repulsion between F atom, F - F bond length in F_2 molecule is higher than Cl – Cl bond length in Cl_2 molecule.

1. A and R are true, R is correct explanation of A

2. A and R are true, r is not correct explanation of A

3. A is true, but R is false

4. A is false, but R is true

VII-A GROUP ELEMENTS

9) 3 1)4 2) 1 3) 3 4) 2 7) 2 8) 4 10) 1 5) 4 6) 2 11) 2 12) 4 13) 1 14) 3 15) 1 16) 4 17) 2 18) 1 19) 2 20) 2 21) 2 22) 4 23) 2 24) 3 25) 1 26) 1 27) 3 28) 3 29) 2 30) 1 40) 4 31) 2 32) 2 33) 2 34) 1 35) 1 36) 4 37) 1 38) 4 39) 2 41) 2 42) 3 43) 3 44) 1 45) 1

SUBTOPIC-II KEY

VII-A GROUP ELEMENTS SUBTOPIC-II (SOLUTIONS)

24. 50ml, 2N hypo solution = 50 ml, 2N I_2 solution

= 50 ml $2NCl_2$ solution

= 50 ml $2N CaOCl_2$ solution

% of
$$CaOCl_2 = \frac{6.35}{10} \times 100 = 63.5$$

28. $KI + I_2 \rightarrow KI_3$

29.
$$CuSO_4 + 2KI \rightarrow CuI_2 + K_2SO_4$$

 $2CuI_2 \rightarrow 2CuI + I_2$

32.
$$3HCl + HNO_3 \rightarrow NOCl + 3H_2O + Cl_2$$

34. F_2 and Cl₂ more E.N. so they con displace it from it salt.

38.
$$X = H_2, Y = HI$$

$$3I_2 + 2NH_3 \rightarrow NH_3.NI_3$$

$$8NI_3.NH_3 \rightarrow 5N_2 + I_2 + 6NH_4I_2$$

$$I_2 + H_2 \rightarrow \frac{2HI}{(Y)}$$

$$3NaI + H_3Po_4 \xrightarrow{\Delta} Na_3PO_4 + 3HI$$

$$39. \quad CaCl(OCl) \to Ca(ClO_3)_2 + CaCl_2$$

40. $HClO_4 + P_2O_5 \rightarrow Cl_2O_7 + 2HPO_3$