P-BLOCK ELEMENTS

VI A GROUP ELEMENTS (SUB TOPIC-I)

SUB TOPIC-I (PRACTICE QUESTIONS)

- 1. The atomic number of sulphur is 16, in the ground state of sulphide ion, the electronic configuration is
 - 1. $1s^2 2s^2 2p^6 3s^2 3p^2$ 2. $1s^2 2s^2 2p^6 3s^2 3p^4$ 3. $1s^2 2s^2 2p^6 3s^2 3p^6$ 4. $1s^2 2s^2 2p^6 3s^2 3s^4 3p^6$
- 2. The electronic configuration $1s^2 2s^2 2p^5 3s^1$ represents which one of the following:
 - 1. An excited state of fluorine atom2. The ground state of neon
 - 3. An excited state O^{2-ion} 4. The ground state of F^{-ion}
- 3. The decreasing tendency to exist in puckered 8-membered ring structure is

1. S > Se > Te > Po 2. Se > S > Te > Po 3. S > Te > Se > Po 4. Te > Se > S > Po

- 4. Which one of the following bonds has the highest bond energy?
 - 1. O O 2. S S 3. Se Se 4. Te Te
- 5. The increasing thermal stability of the hydrides of group 16 follows the sequence
 - 1. H_2O, H_2S, H_2Se, H_2Te 2. H_2Te, H_2Se, H_2S, H_2O
 - 3. H_2S, H_2O, H_2Se, H_2Te 4. H_2Se, H_2S, H_2O, H_2Te
- 6. The correct order or increasing boiling point is
 - 1. H_2S, H_2O, H_2Te, H_2Se 2. H_2O, H_2S, H_2Se, H_2Te 3. H_2Te, H_2Se, H_2S, H_2O 4. H_2S, H_2Se, H_2Te, H_2O
- 7. $TeCl_4$ is expected to be
 - 1. Tetrahedral2. Square planar3. Octahedral4. Trigonal bipyramid

8.In
$$S_8$$
 molecule, the type of hybridization exhibited by sulphur is1. sp^2 2. sp^3 3. Sp 4. sp^3d 9.The S-S-S bond angle is S_8 molecule is1. 109.5^9 2. 105^9 3. 120^9 4. 60^9 10.The correct increasing order of dipole moments of the following is1. $H_2O < H_2S < H_2Se < Te$ 2. $H_2Te < H_2Se < H_2S < H_2O$ 3. $H_2Se < H_2Te < H_2O < H_2S$ 4. $H_2S < H_2O < H_2S < H_2Te$ 11.The correct order of decreasing stability of hexa fluorides of group VI A members is1. $SF_6 > SeF_6 > TeF_6$ 2. $TeF_6 > SeF_6 > SF_6$ 3. $SF_6 > TeF_6 > SeF_6 > TeF_6 > SeF_6 > SF_6 > SF_6$

4. It is very stable liquid

- 15. The order of acidic character of dioxides of VIA group elements is
 - 1. $SeO_2 > TeO_2 > SO_2$ 2. $SeO_2 > SO_2 > TeO_2$
 - 3. $SO_2 > SeO_2 > TeO_2$ 4. $TeO_2 > SO_2 > SeO_2$

16. Oxygen is always divalent whereas sulphur can form 2,4 and 6 bonds. This is because

- 1. Oxygen is more electronegative than sulphur
- 2. Sulphur contains d-orbitals whereas oxygen does not
- 3. Sulphur has larger atomic radius than oxygen
- 4. Sulphur is more electronegative than oxygen
- 17. The bond angles of the hydrides of group VI A elements decrease as we move down the group. The is because of
 - 1. Increase in bond pair-bond pair repulsion
 - 2. Decrease in bond pair-bond pair repulsion
 - 3. Decrease in electronegativity of the central atom
 - 4. Increase in electronegativity of the central atom
- 18. The correct order of the X-O-X bond angles are
 - 1. $F_2O > Cl_2O > Br_2O$ 2. $F_2O > Br_2O > Cl_2O$ 3. $Br_2O > Cl_2O > F_2O > F_2O$ 4. $Cl_2O > F_2O > Br_2O$
- **19.** The oxidation number of oxygen in K_2O , K_2O_2 and KO_2 respectively is

1. -2, -1, -1/2 2. -1/2, -1, -2 3. -1, -2, -1/2 4. -2, -1/2, -1

20. The order of O - O bond length in O_3, O_2 and H_2O_2 is

1. $H_2O_2 > O_2 > O_3$ 2. $H_2O_2 > O_3 > O_2$ 3. $O_3 > O_2 > H_2O_2$ 4. $O_3 > H_2O_2 > O_2$

21. $O_3 + C_2 N_2$ is used as a rocket fuel. The bonds in $C_2 N_2$ are

- 1. $3\sigma, 4\pi$ 2. $3\sigma, 3\pi$ 3. $4\sigma, 2\pi$ 4. $2\sigma, 2\pi$
- 22. The oxidation states of the most electronegative element in the product of the reaction of BaO_2 with dil. H_2SO_4 are
 - 1. 0 and 1 2. -1 and -2 3. -2 and 0 4. -2 and +1

23. Identify the incorrect statement with respect to ozone

- 1. Ozone is formed in the upper atmosphere by a photochemical reaction involving dioxygen
- 2. Ozone is more reactive than dioxygen
- 3. Ozone is diamagnetic where as dioxygen is paramagnetic
- 4. Ozone protects the earth's inhabitant by absorbing gamma-radiations

24. Oxygen does not from OF_6 because

- 1. it has a small size 2. There are no vacant d-orbitals available
- 2. it has high ionization energy 3. it has large size
- 25. The structure of ozone can best be represented by

1.:
$$0 = 0 - 0$$
:
 $0 = 0 - 0$:
 $0 = 0 \to 0$:

- 26. When Ozone reacts with which one of the following there is decrease in volume
 - 1.PbS 2. $K_4 [Fe(CN)_6]$ 3. Ag 4. HCl

27. The worng statement among the following is

- 1. A mixture of cyanogens and ozone is used as a rocket fuel
- 2. Ozone leaves tails with mercury due to the formation of Mercuric oxide on the surface.
- 3. Excess of sodium thiosulphate reacts with Auric chloride from $Na_3 \left[Au(S_2O_3)_2\right]$

4. Concentrated solution of sodium thiosulphate solution due to the formation of sodium Argento thiosulphate.

28. Oleum is

1.
$$H_2SO_4 + SO_3$$
 2. $H_2SO_4 + SO_2$ 3. $H_2SO_4 + H_2O_2$ 4. $H_2SO_4 + H_2S_2$

29.	Solution of SO_2 in v	water is known as		
	1. Sulphuric acid		2. Sulphurous acid	
	3. Hydrosulphuric act	id	4. Thiosulphurous act	id
30.	O_2^{2-} is the symbol of	ion		
	1. Oxide	2. Super oxide	3. Peroxide	4. Mono oxide
31.	The products of the	chemical reaction bet	ween $Na_2S_2O_3, Cl_2$ and	d H ₂ O are
	1. $S + HCl + Na_2S$	2. $S + HCl + Na_2SO_4$	3. $S + HCl + Na_2SO_3$	4. $S + NaClO_3 + H_2O$
32.	Which of the followi	ing ions does not have	S-S linkage?	
	1. $S_2 O_8^{2-}$	2. $S_2 O_6^{2-}$	3. $S_2 O_5^{2-}$	4. $S_2 O_3^{2-}$
33.	The reason why con	c. H_2SO_4 is used large	ely to prepare other a	cids, that conc. H_2SO_4
	1. Is highly ionized	C	2. Is dehydrating agen	nt
	2. Has a high specific	e gravity and density	4. Has a high boiling	point
34.	Pick out the ideal co	ondition for H_2SO_4 ma	nufactured by contac	ct process
	1. Low temperature, I	high pressure and high	concentration of reacti	ons
	2. Low temperature, 1	low concentration of re	actants and low pressu	ire
	3. High temperature,	high pressure and high	concentration of react	ants
4	4. Low temperature, 1	low pressure and high o	concentration of reacta	nts
35.	With a dilute solution	on of hypo, silver nitra	ate gives a white prec	ipitate which immediately
1. Sulphuric acid2. Sulphurous acid3. Hydrosulphuric acid4. Thiosulphurous acid30. $O_2^{2^-}$ is the symbol ofion3. Peroxide1. Oxide2. Super oxide3. Peroxide31. The products of the chemical reaction between $Na_2S_2O_3$, Cl_2 and1. $S + HCl + Na_2S$ 2. $S + HCl + Na_2SO_4$ 3. $S + HCl + Na_2SO_3$ 32. Which of the following ions does not have S-S linkage?1. $S_2O_8^{2^-}$ 2. $S_2O_6^{2^-}$ 3. The reason why conc. H_2SO_4 is used largely to prepare other action1. Is highly ionized2. Is dehydrating agen2. Has a high specific gravity and density4. Has a high boiling p34. Pick out the ideal condition for H_2SO_4 manufactured by contact1. Low temperature, high pressure and high concentration of reacting2. Low temperature, low concentration of reactants and low pressur3. High temperature, low pressure and high concentration of reactants4. Low temperature, low pressure and high concentration of reactants	espectively			
	1. $Ag_2S_2O_3$ and Ag		2. $Ag_2S_2O_3$ and Ag_2S_3	
	3. $Ag_2S_2O_3$ and Ag_2O_3)	4. $Ag_2S_2O_3$ and Na_3	$\left[Ag\left(S_2O_3\right)_2\right]$

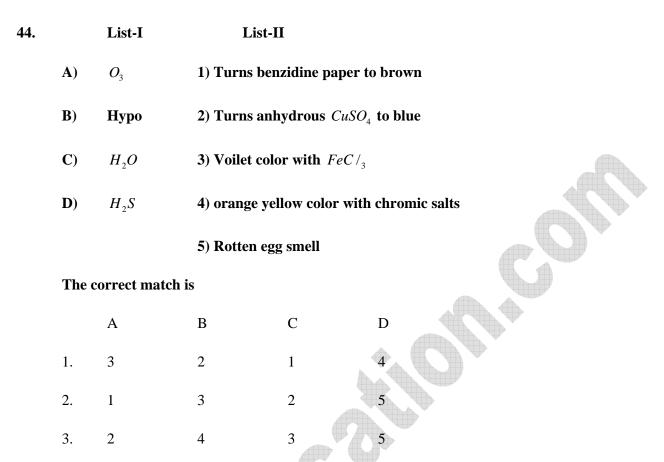
36.	Someti	imes a yellow	turbidity appears wh	ile passing H_2S gas e	even in the absence of of II				
	group	radicals. This	is because.						
	1. Sulp	har is present i	n the mixture as impur	ity					
	2. IV group radicals are precipitated as sulphides								
	3. Of the oxidation of H_2S gas by some acid radicals								
	4. III g	roup radicals a	re precipitated as hydr	oxides					
37.	The nu	umber of S-S I	oonds in sulphur trios	kide trimer (S_3O_8) is	G				
	1.3		2.2	3.1	4.0				
38.	Compo	ounds A and I	3 are treated with dil.	HCl separately. The	gases liberated are Y and				
	Z respectively. Y turns acidified dichromate paper green while Z turns lead acetate paper								
	black. The compounds A and B are are respectively								
	1. Na ₂ .	SO_3 and Na_2S		2. NaCl and Na_2CO_3					
	3. Na ₂	S and Na_2SO_3		4. Na_2SO_3 and Na_2SO_3	O_4				
39.	A chal	cogen combin	es directly with hydro	ogen with great diffic	culty to from a hydride.				
	This cl	halcogen also	burn in air to from a	solid polymeric diox	ide and has got the highest				
	electric	cal resistance	amongst metals. The	chalcogen is					
	1. O		2. S	3. Te	4. Se				
40.		List-I	7	List-II					
	A)	$O_3 + H_2O_2 \rightarrow$		1) Blue					
	B)	O_3 + starch K	$H \rightarrow H_3PO_3$	2) Tailing					
2	C)	$O_3 + Hg \rightarrow$		3) HIO ₃					
	D)	$O_3 + I_2 + H_2O$	\rightarrow H ₄ P ₂ O ₆	4) $O_2 + H_2 O$					
				5) HI					

The correct match is

	А	В	С	D
1.	5	2	3	4
2.	4	1	2	3
3.	1	4	3	2
4.	3	2	1	5

41. SO_3 is not directly absorbed in water because

1. It is insoluble in water	2. It is insoluble in water but soluble in H_2SO_4
3. It is reduced back to SO_2	4. It forms stable mist with water


42. A pale yellow substance (A) when heated with conc- HSO₃ liberates a brown colored gas (B). The substance (A) also dissolves in sodium sulphite solution on heating, a clear solution (C) is formed which on acidification gives a turbid solution and a pungent smelling gas in obtained. (A) when heated in air gives (D) Solution (C) decolorizes I₂. Then A,B,C,D are respectively

ABCD1.S
$$NO_2$$
 $Na_2S_2O_3$ SO_2 2.S Br_2 Na_2SO_3 SO_2 3.SNO $Na_2S_2O_3$ SO_2 4.S NO_22 $Na_2S_2O_3$ SO_3

43. a) $SCl_4 + 4H_2O \rightarrow X + HCl$

b) $X \rightarrow Y + H_2 O$, here anhydride Y is

1. S_2O 2. SO_2 3. SO_3 4. H_2SO_3

VI A GROUP ELEMENTS

1

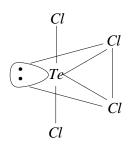
4

SUB TOPIC-I (KEY)

	1) 3	2) 3	3) 1	4) 2	5) 2	6) 4	7) 4	8) 2	9) 2	10) 2
	11) 1	12) 2	13) 3	14) 4	15) 3	16) 2	17) 3	18) 2	19) 1	20) 2
4	21) 1	22) 2	23) 4	24) 2	25) 3	26) 4	27) 2	28) 1	29) 2	30) 3
	31) 3	32) 1	33) 4	34) 1	35) 2	36) 3	37) 4	38) 1	39) 3	40) 2
5	41) 4	42) 1	43) 2	44) 2						

VI A GROUP ELEMENTS SUBTOPIC-I (SOLUTIONS)

2


4. Sulpher is octationic

5

4.

G

7.

12.

 $\begin{array}{c}
O\\
6 \leftarrow \parallel \rightarrow \pi_{p-p}\\
S\\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}$

Cl

S <

Cl

:

14.

 $Sp^{3}d$, Trigonal bipyramidal.

Cl

Cl

21. $N \equiv C - C \equiv N$ $3\sigma, 4\pi$

22. $BaO_2 + H_2SO_4 \rightarrow BaSO_4 + H_2O_2$

 H_2O_2 , Oxidation state of oxygen is – 1

In $BaSO_4$, Oxidation state of oxygen is -2

28.
$$H_2SO_4 + SO_3$$
 is oleum.

31.
$$Na_2S_2O_3 + Cl_2 + H_2O \rightarrow S + 2HCl + Na_2SO_4$$

38.
$$Na_2SO_3 + 2HCl \rightarrow 2NaCl + H_2SO_3(Y)$$

 $Na_2S + 2HCl \rightarrow 2NaH + H_2S(Z)$

 H_2SO_3 Turns acidified dictromate paper green

 H_2S Turns leadacetate to black

43.
$$SCl_4 + 4H_2O \rightarrow \frac{S(OH)_4}{X} + 4HCl$$

$$S(OH)_4 \rightarrow \frac{H_2SO_3}{Y} + H_2O$$

SUB TOPIC-II (PRACTICE QUESTIONS)

1. Cyclic trimer structure of *SO*₃ contains:

1. 6 S = O bonds and three S – O – S bonds 2. 3 S = O bonds and three S – O – S

3. 6S = O bonds and six S - O - S bonds 4. None of these

2. The boiling points of H_2O_2, H_2S, H_2Se and H_2Te are in the following order

1.
$$H_2O > H_2S > H_2Se > H_2Te$$
2. $H_2O > H_2Te > H_2Se > H_2S$ 3. $H_2Te > H_2Se > H_2S > H_2O$ 4. $H_2S > H_2O > H_2Te > H_2Se$

3. The statements regarding hydrides of VIA group elements are

3.	I ne s	statements regarding	nyariaes of via g	group eleme	nts are
	i) Th	e order of volatility	ii) The order of	B.P.	iii) The order of bond angles
	H_2O	$< H_2 T e < H_2 S e < H_2 S$	$H_2O > H_2Te > H_2$	$H_2Se > H_2S$	
		$H_2O > H_2S > H_2Se^{\frac{1}{2}}$	$>H_2Te$		
	The c	correct combination is	5		
	1. All	are correct 2. On	ly is correct 3	ii & iii are	correct 4. I & iii are correct
4.		List-I	List-II		
	A)	SO ₃	1) 119.5 [°] , Angu	ar	
	B)	SO ₂	2) 109 ⁰ .28', tetr	ahedron	
	C)	H_2O	3) 120°, Trigon	al planar	
	D)	<i>O</i> ₃	4) 104° .30^I ang	ılar	
	The c	correct match is	5) 116.5 [°] Angula C	ar D	
	1.	2 1	4	5	
	2.	5 2	1	3	
•	3.	3 1	4	5	
	4.	1 3	2	4	
5.	Whic	h of the following equ	ations represents	the oxidizi	ng action of sulphur dioxide?
2	i) The order of volatility ii) The order of B.P. iii) The order of bond angles $H_2O < H_2Te < H_2Se < H_2S \qquad H_2O > H_2Te > H_2Se > H_2S \qquad H_2O > H_2Te > H_2Se > H_2S \qquad H_2O > H_2Se > H_2Ce > H_2S \qquad H_2O > H_2Se > H_2Te > H_2Se > H_2S \qquad H_2O > H_2S > H_2Se > H_2Te > The correct combination is 1. All are correct 2. Only is correct 3. ii & iii are correct 4. I & iii are correct List-I List-II A) SO_3 1) 119.5°, AngularB) SO_2 2) 109°.28°, tetrahedronC) H_2O 3) 120°, Trigonal planarD) O_3 4) 104°.30° angular5) 116.5° AngularThe correct match isA B C D1. 2 1 4 52. 5 2 1 33. 3 1 4 5$				
	2. 3F	$H_{2}O < H_{2}Te < H_{2}Se < H_{2}S H_{2}O > H_{2}Te > H_{2}Se > H_{2}S H_{2}O > H_{2}S > H_{2}Se > H_{2}Te The correct combination is 1. All are correct 2. Only is correct 3. ii & iii are correct 4. 1 & iii are correct List-I List-II A) SO_{3} 1) 119.5°, AngularB) SO_{3} 2) 109°, 28', tetrahedronC) H_{2}O 3) 120°, Trigonal planarD) O_{3} 4) 104°, 30' angular5) 116.5° AngularThe correct match isA B C DL 2 1 4 52. 5 2 1 33. 1 4 54. 1 3 2 4Which of the following equations represents the oxidizing action of sulphur dioxide?L, 2Te^{2*} + SO_{2} + H_{2}O - 2Te^{2*} + SO_{2}^{2*} + 4H^{*}2. 3Te + SO_{2} - 2TeO + FeS 3. 2MnO_{4}^{-} + 2H_{2}O + 5SO_{2} - 2Mn^{2*} + 4H^{*} + 5SO_{4}^{2*}$			
	4. <i>Cr</i>	$_{2}O_{7}^{2-} + 2H^{+} + 3SO_{2} \rightarrow 2$	$2Cr^{3+}3SO_4^{2-}+H_2O$		

6. Which of the following statement is true?

1. Both rhombic and monoclinic sulphur are solube in water

2. Both rhombic and monoclinic sulphur are soluble in carbon disulphide

3. Both rhombic and monoclinic sulphur are insoluble in carbon disulphide

4. Rhombic sulphur can be converted in to monoclinic sulphur but the revers is not possible.

7. By passing SO_2 in solution of $K_2Cr_2O_7$, it turns green due to the formation of:?

1. $K_2 Cr_2 O_4$ 2. Chromic acid 3. Chromium sulphate 4. None

8. A substance on treatment with dilute H_2SO_4 liberates a colorless gas which produces (i) turbidity with baryta water and (ii) turns acidified dichromate solution green. These reactions indicated the presence of

- 1. CO_3^{2-} 2. S^{2-} 3. SO_3^{2-} 4. NO_2^{-}
- 9. The Spring's reaction for the preparation of sodium thiosulphate involve the following reactants

 1. $Na_2SO_3 + S$ 2. $Na_2S + Na_2SO_3 + I_2$

 3. $2Na_2S + Na_2CO_3 + 4SO_2$ 4. 4S + 6NaOH

10. A and B are two salts. A reacts both with dil H_2SO_4 and conc. H_2SO_4 to give reddish brown vapours However, B reacts only with conc. H_2SO_4 to give similar vapours. Hence A and B are respectively.

1. NaBr,NaNO₃ 2. NaNO₃, NaBr 3. NaNO₂, NaBr 4. NaBr, NaNO₂

11.

Bromine water reacts with SO₂ to form?

1. H_2O and Hbr 2. $H_2SO_4 + HBr$ 3. HBr and S 4. S and H_2O

12. Colloidal sulphur is obtained when

- 1. Sulphur is treated with H_2SO_4 2. Sulphur is strongly heated
- 3. Sulphur is strongly heated 4. H_2S gas is passed through dil. HNO_3

13. Conc. H_2SO_4 displaces hydrogen chloride from chlorides because

1. It is strong than hydrochloric acid 2. HCl is a swhile H_2SO_4 is a liquid

3. Sulphates are more soluble than chlorides 4. Sulphates are less soluble than chlorides

14. The oxyacid of phosphorus in which phosphorus has the lowest oxidation state is

1) hypophosphorus acid	2) orthophosphoric acid
3) pyrophosphoric acid	4) metaphosphoric acid

15. White phosphorus on reaction with line water gives calcium salt of a acid (A) along with a gas (A) along with a gas (X). Which of the following statement is correct with respect to above?

1) (A) on heating gives (X) and O₂

2) The bond angle in (X) is less than that in case of ammonia

3) (A) is a dibasic acid

4) (X) is more basic than ammonia

16. The number of lone pairs and the number of S - S bonds in S_8 molecules are respectively

1) 8,8 2) 16,8 3) 8,16 4) 8,4

17. An oxide of a non-metal has the following properties:

- (i) It acts both a proton donor as well as proton acceptor
- (ii) It reacts readily with basic and acidic oxides
- (iii) It oxidizes Fe at its boiling point.

1) P_2O_5 2) SiO_2 3) H_2O 4) CO_2

18.	Which of the follow	ing solutions does n	ot change its color on p	assing ozone through it?		
	a) Starch iodide solut	ion	b) Alcoholic solution of benzidine			
	c) Acidic solution of	$K_2Cr_2O_7$	d) Acidified s	olution of $FeSO_4$		
19.	Yellow oils of sulph	ur is/are				
	1. <i>H</i> ₂ <i>S</i>	2. H_2S_1, H_2S_3	3. $H_2 SO_4$	4. CS_2 , NH_2CSNH_2		
20.	$SO_2 + H_2S \rightarrow \mathbf{Produ}$	ct the final produc	t is			
	1. $H_2 SO_3$	2. $H_2 SO_4$	3. $H_2 S_2 O_3$	4. $H_2O + S$		
21.	The number of S – S	5 bonds in sulphur	trioxide	*		
	1. Three	2. Two	3. One	4. Zero		
22.	Oleum is					
	1. Fuming H_2SO_4	2. Oil of vitriol	3. Castor oil	4. Caro's acid		
23.	Ozone depleted due	to formation of	6			
	1. Acrolein	2. Chlorine nitrate	3. PAN	4. $SO_2 \& SO_3$		
24.	S – S bond is presen	t in				
	1. (a) $\alpha - (SO_3)_n$	2. $\gamma - (S_3 O_9)$	3. $H_2 S_2 O_3$	4. $H_2 S_2 O_8$		
25.	Holme's signals can	be given by using				
4	1. $CaC_2 + CaCO_3$	2. $CaC_2 + CaCN_2$	3. $CaC_2 + Ca_3P_2$	4. $Ca_3P_2 + CaCN_2$		
26.	$(NH_4)_2 Cr_2 O_7$ on hea	ting liberates a gas.	. The same will be obtai	ned by		
9	1. Heating NH_4NO_3	2. H	leating NH ₄ NO ₂			
	3. Treating N_2O_2 with	n <i>NaNO</i> ₂ 4. T	Treating Mg_3N_2 with H_2C)		

- 27. A Student accidently splashes few drops of conc H_2SO_4 on his cotton shirt, after a while, the splashed parts blacken and holes appear. This is happened because sulphuric acid
 - 1. Dehydrates the cotton with burning 2. Causes the cotton react with burning

3. Heats up the cotton reacts with air 4. Removes the elements of water from cotton

28. When molten sulpher is suddenly cooled by pouring into water, it takes the form of

1. Milk of sulphur 2. Colloidal sulphur 3. Flower of sulphur 4. Plastic sulphur

29. Assertion: Ozone is a powerful oxidizing agent in comparison to O_2 .

Reason: Ozone is diamagnetic but O_2 is paramagnetic.

1. If both assertion and reason are correct, and reason is the correct explanation of the assertion

2. If both assertion and reason are correct, but reason is not the correct explanation of the assertion

3. If assertion is correct but reason is incorrect

4. If assertion is incorrect but reason is correct

30. Assertion: Oxygen is more electronegative than sulpher, yet H_2S is acidic, while H_2O is neutural.

Reason: H – S bond is weaker than O – H bond.

1. If both assertion and reason are correct, and reason is the correct explanation of the assertion

2. If both assertion and reason are correct, but reason is not the correct explanation of the assertion

3. If assertion is correct but reason is incorrect

4. If assertion is incorrect but reason is correct

31. BaO_2 and ozone reacts to produce

1. Ba 2. Ba_2O_3 3. BaO 4. $Ba(OH)_3$

32. The incorrect statement among the following is

- 1. C_{60} is an allotropic form of carbon 2. O_3 is an allotropic form of oxygen
- 3. S_8 is only allotropic from of sulphur

4. red phosphorus is more stable in air than white phosphorus.

33. Assertion Molecular nitrogen is less reactive than molecular oxygen

Reason The bond length of N_2 is shorter than that of oxygen

- 1. Both Assertion and Reason are true and Reason is the correct explanation of Assertion.
- 2. Both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
- 3. Assertion is true but Reason is false.
- 4. Both Assertion and Reason are false.
- 34. The acidity of hydrides os O, S, Se, Te varies in the order
 - 1. $H_2O > H_2S > H_2Se > H_2Te$ 2. $H_2O < H_2S < H_2Se < H_2Te$ 3. $H_2S > H_2O > H_2Se > H_2Te$ 4. $H_2Se > H_2S > H_2O > H_2Te$
- **35.** Catalyst used in making H_2SO_4 in contact process in
 - 1. V_2O_5 2. Fe_2O_3 3. Cr_2O_3 4. CrO_3
- 36. The molecular formula of dithionic acid is

$$H_2S_2O_4$$
 2. $H_2S_2O_6$ 3. $H_2S_2O_5$ 4. $H_2S_2O_5$

37. Assertion Reaction of SO_2 and H_2S in the presence of Fe_2O_3 catalyst gives elemental sulphur.

Reason SO_2 is reducing agent

- 1. Both Assertion and Reason are true and Reason is the correct explanation of Assertion.
- 2. Both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
- 3. Assertion is true but Reason is false.
- 4. Both Assertion and Reason are false.

38. Fuming sulphuric acid is

- 1. NH_4NO_3 2. NH_4Cl
- **39.** $H_2 S_2 O_8$ is
 - 1. pyrosulphuric acid
 - 3. oleum

2. Marshall's acid

4. All of these

3. $(NH_4)_2 SO_4$

4. NH_4OH

40. Which of the following pairs are correctly matched?

1	Haber process	Manufacture of ammonia
2	Leblanc process	Manufacture of sulphuric acid
3	Birkeland-Eyde process	Manufacture of nitric acid
4	Solvay process	Manufacture of sodium carbonate

Select the correct answer using the codes given below.

1. 2 and 3 and 4 2. 1, 2, 3 and 4 3. 1 and 2 4. 1, 3 and 4

41. Consider the following compounds

1) Sulphur dioxide 2) Hydrogen peroxide 3) Ozone

Among these compounds indentify those that can act as bleaching agent

	1. 1 and 3	2. 2 and 3	3. 1 and 2	4. 1,2 and 3
--	------------	------------	------------	--------------

42. The most efficient agent for the absorption of SO_3 is

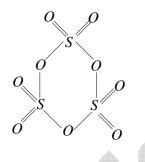
1. $80\% H_2 SO_4$ 2. $98\% H_2 SO_4$ 3. $50\% H_2 SO_4$ 4. $20\% H_2 S_2 O_7$

43. Sulphur reacts with chlorine in 1:2 ratio and forms X. Hydrolysis of X gives a sulphur compound Y. What is the hydridistation state of central atom in the anion of Y?

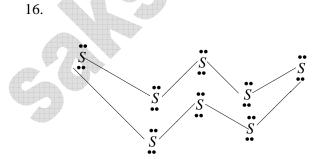
1. sp^3 2. sp 3. sp^2 4. sp^3d

44. The color of liquid O_2 is

- 1. Red2. Dark blue3. Pale yellow4. Pale blue
- 45. In the preparation of sulphuric acid, V_2O_5 is used in the reaction which is
 - 1. $S + O_2 \rightarrow SO_2$ 2. $SO_2 + H_2O \rightarrow H_2SO_4$
 - 3. $2SO_2 + O_2 \rightarrow 2SO_3$ 4. None of the above
- 46. Which of the following is not correct?
 - 1) $3O_2 \xrightarrow{\text{Silent electric}} 2O_3; \Delta H = -284.5 kJ$
 - 2) Ozone undergoes addition reaction with aturated carbon compounds
 - 3) Sodium thiosulphate reacts with I_2 to form sodium tetrathionate and sodium iodide.
 - 4) Ozone oxidises lead sulphide to lead sulphate.


VI A GROUP ELEMENTS

SUB TOPIC-II (KEY)


1) 1	2) 2	3) 1	4) 3	5) 2	6) 2	7) 3	8) 3	9) 2	10) 3
11) 2	12) 4	13) 2	14) 1	15) 2	16) 2	17) 3	18) 3	19) 2	20) 4
21) 4	22) 1	23) 2	24) 3	25) 4	26) 2	27) 4	28) 4	29) 2	30) 1
31) 3	32) 3	33) 2	34) 2	35) 1	36) 2	37) 3	38) 1	39) 2	40) 4
41) 4	42) 2	43) 1	44) 4	45) 3	46) 1				

VI A GROUP ELEMENTS SUBTOPIC-II (SOLUTIONS)

- 5. $2Fe + \overset{+4}{SO_2} \rightarrow 2FeO + Fe\overset{-2}{S}$
- 9. $Na_2S + Na_2SO_3 + I_2 \rightarrow Na_2S_2O_3 + 2NaI$

- 18. Ozone does not react with acidified solution of $K_2Cr_2O_7$ Thus, does not change it colour.
- $20. \qquad SO_2 + 2H_2S \rightarrow 2H_2O + 3S$

24.

$$HO - S - S - OH$$

26.
$$(NH_4)_2 Cr_2 O_7 \xrightarrow{\Delta} N_2 + Cr_2 O_3 + 4H_2 O_3$$

$$(NH_4)_2 NO_2 \xrightarrow{\Delta} N_2 + 4H_2O$$

27. Conc H_2SO_4 has dehydration properties, when celles lose comes in contact with conc H_2SO_4 , it removes water from CoHon leaving only black carbon.

$$C_6H_{12}O_6 \xrightarrow{ConH_2SO_4} 6C + 6H_2O$$

- 31. $BaO_2 + O_3 \rightarrow BaO + 2O_2$
- 32. There are five allotropic from of sulphur.
 1) Rhombic, octacheral or α-sulphur.
 2) Monoclinic, prismatic or β-sulphur
 3) Plastic or γ-sulphur
 4) Milk of sulphur
 5) Colloidal or δ-sulphur.
- 33. Molecular nitrogen is less reactive than that of oxygen because nitrogen has high dissociation energy in comparison to oxygen so, its reactivity is less. Also bond length of nitrogen is shorter oxygen because of presence of triple bond between nitrogen atoms. So, both are true but not correct explanation.
- 34. The acidic nature increases from H_2O to H_2Te . The increase in acidic character of hydrides on moving down the group may be explained in terms of bond length of H – M bond, larger is bond-length, lesser is is bond energy and thus easier is ionization of H – M bond or easier is proton donor nature. Hence,

$$H_2O < H_2S < H_2Se < H_2Te$$

- 35. Even at 400-500⁰C, the rate of reaction is very low. Therefore, to increase the reaction velocity a suitable catalyst is used. Now a days most of the sulphuric acid plants use V_2O_5 as a catalyst.
- 36.
- $H_2S_2O_4$ Dithionous acid
- $H_2S_2O_6$ Dithionic acid
- $H_2S_2O_5$ Disulphurous acid
- $H_2S_2O_7$ Disulphuric acid

38. Furning sulphuric acid is oleum $(H_2S_2O_7)$.

$$H_2SO_4 + SO_3 \rightarrow H_2S_2O_7$$
pyrosulphuric acid

 SO_3 is absorbed in concentrated H_2SO_4 to give oleum

- 39. $H_2S_2O_8$ is peroxodisulphuric acid. It is also called Marshall's acid.
- 40. Leblanc process is used in the manufacture of sodium carbonate.

41.
$$SO_2 + 2H_2O \rightarrow H_2SO_4 + 2[H]$$

 $H_2O_2 \rightarrow H_2O + [O]$
 $O_3 \rightarrow O_2 + [O]$

The nascent [H] and [O] thus product, bleaches the coloured articles.

- 42. 98% H_2SO_4 is used for absorbing dense for of acid which is formed by dissolving SO_3 in water. Hence, 98% H_2SO_4 is the most efficient reagent for absorption of SO_3 .
- 43. When sulphur reacts with chlorine in 1: 2 ratio the SCl_4 (sulphur tetra chloride) is obtained which on hydrolysis gives sulphurous acid (H_2SO_3) . So, the compound X is SCl_4 and Y is

$$H_2SO_3$$

$$S + 2Cl_{2} \rightarrow SCl_{4}$$

$$SCl_{4} + 4H_{2}O \rightarrow S(OH)_{4} + 4HCl$$

$$(unstable)$$

$$S(OH)_{4} \rightarrow H_{2}SO_{3} + H_{2}O$$
subharaus acid

The hybridistation of sulphur in SO_3^{2-} is sp^3 .

- 44. Oxygen changes into pale blue liquid when cooled up to $-183^{\circ}C$. Liquid oxygen is used as oxidizer in rockets and the launching of statellites.
- 45. In contact process of manufacture of H_2SO_4 first of all SO_2 is oxidised to SO_3 by atmospheric oxygen in presence of V_2O_5 as a catalyst.

$$2SO_2 + O_2 \xrightarrow{V_2O_5} 2SO_3$$

46. The formation of ozone form oxygen is an endothermic reaction, not exothermic reaction.

$$3O_2 \frac{Silentelectirc}{discharg e} 2O_3; \Delta H = +284.5 kJ$$