P-BLOCK ELEMENTS

VA GROUP ELEMENTS

SUBTOPIC-I (PRACTICE QUESTIONS)

1.	The correct order of	f second ionization po	tential of C, N, O and	l F is
	1. $C > N > O > F$	2. $O > N > F > C$	3. $O > F > N > C$	4. $F > O > N > C$
2.	Which of the following	ing has maximum con	nplex forming ability	with a given metal ion?
	1. PH ₃	2. BiH ₃	3. NH ₃	4. SbH ₃
3.	Which of the following	ing does not show allo	otropy?	
	1. Bismuth	2. Phosphorus	3. Arsenic	4. Antimony
4.	The electronic confi	guration of an atom is	$s 1s^2 2s^2 2p^6 3s^2 3p^6 3d$	$1^{10} 4s^2$ $4p^3$. The chemistry
	of this of		70	
	1. Silicon	2. Sulphur	3. Nitrogen	4. Chlorine
5.	Of the different allo	tropic forms of phosp	horus, most reactive	is
	1. Violet phosphorus		2. White phosphorus	
	3. Scarlet phosphorus		4. Red Phosphorus	
6.	The P-P-P bond ang	gle in white phosphoru	ıs is	
	1. 1200	2.90^{0}	3. 109 ⁰ 28'	4.60^{0}
7.	The total number of	flone pairs of electror	ns present in a P4 mol	ecule is
P	1. 2	2. 6	3. 4	4. 8
7				

8.	Nitrogen does not fo	rm complexes becaus	se	
	1. There are no d-orbi	itals in the valence she	11	
	2. The dissociation en	nergy of nitrogen is ve	ry high	
	3. Electro negativity of	of nitrogen is quite hig	h	
	4. It has a stable elect	ronic configuration		
9.		re covalent compound	ds but BF3 is non-pola	ar and NF_3 is polar. This is
	because			
	1. Boron is a metal an	nd nitrogen is a non me	etal	
	2. B-F bonds have no	dipole moment but N-	-F bonds have	
	3. Atomic size of boro	on is smaller than that	of nitrogen	
	4. BF ₃ is planar but N	F ₃ is pyramidal in nat	are.	
10.	Which of the followi	ng trihalides is not h	ydrolysed	
	1. NF ₃	2. PCl ₃	3. AsCl ₃	4. SbCl ₃
11.	Nitrogen forms nitri	de, (N ⁻³) ion more rea	adily. This is due to	
	1. Its small size		2. Its high electroneg	ativity
	3. Both (a) and (b)		4. None of these	
12.	Which of the followi	ng trihalides of nitro	gen is most stable?	
4	1. NCl ₃	2. NF ₃	3. NBr ₃	4. NI ₃
13.	In Nitrogen molecul	e, the two atoms of ni	trogen are joined by	
	1. One sigma bond an	nd one Pi bond	2. Two sigma bonds	and one Pi bond
	3. One sigma bond an	nd two Pi bonds	4. Three sigma bonds	:
14.	Paramagnetic oxide	is		
	1. N ₂ O	2. N ₂ O ₃	3. NO	4. N_2O_4

15. In the reaction

$$4P + 3KOH + 3H_2O \rightarrow 3KH_2PO_2 + PH_3$$

- 1. Phosphors is reduced only
- 2. Phosphorus is oxidized only
- 3. Phosphorus is neither oxidized nor reduced
- 4. Phosphorus is both oxidized and reduced.

16. Of the different allotropic forms of phosphorus, the one which has a metallic luster is

1. Black phosphorus

2. Red phosphorus

3. White phosphorus

4. Scarlet phosphorus

17. The reddish brown gas formed when nitric oxide is oxidized by air is

- 1. N_2O_5
- 2. N_2O_4
- 3. NO₂
- 4. N_2O_3

18. Mixture used for the tips of match stick is

$$1. S + K$$

2. Sb₂ S₃

3. $K_2Cr_2O_7 + S +$ White

4. $K_2Cr_2O_7 + K + S$

19. The bonds present in N_2O_5 are

1. Only ionic

2. Covalent and coordinate

3. Only covalent

4. Covalent ionic

20. FeSO₄ forms brown ring with

- 1. NO₂
- 2. N_2O_3

- 3. NO
- $4. N_2O_5$

21. When concentrated H_2SO_4 is added to dry KNO_3 , brown fumes evolve. These fumes are due to

- 1. SO_2
- $2. SO_3$
- 3. *NO*₂
- 4. NO

22.	BiCl ₃ on hydrolysis	forms a white precip	itate of				
	1. Bismuthio acid		2. Bismuth oxychloride				
	3. Bismuth pentachlo	oride	4. Bismuth hydroxide				
23.	Which oxide does no	ot act as a reducing a	ngent				
	1. NO	2. NO ₂	3. N ₂ O	4. N ₂ O ₅			
24.	Which of the nitrate	es on strong heating l	leaves the metal as the	e residue?			
	1. <i>AgNO</i> ₃	$2. Pb(NO_3)_2$	3. $Cu(NO_3)_2$	$4. \ Cl(NO_3)_3$			
25.	Nitric acid on stand	ing develops brownis	sh colour which may l	be attributed to the			
	presence of	•					
	1. NO_2^+ Ions	2 NO - Ions	3. NO ₂	4. <i>NO</i> ₂			
	1. 1702 10115	2. 1003 10113	5. 1102	1. 1102			
26.	The sequence of acid	dic character is					
	1. $SO_2 > CO_2 > CO > 1$	N_2O_5	2. $SO_2 > N_2O_5 > CO >$	> CO ₂			
	3. $N_2O_5 > SO_2 > CO >$	CO ₂	4. $N_2O_5 > SO_2 > CO_2$	> <i>CO</i>			
27.	When a vapour, at a	atmospheric pressure	e was gradually heate	d form 25 ⁰ C its colour was			
	found to deepen at f	irst and then to fade	as the temperature w	vas raised above 160°C. At			
				ed when the pressure was			
	raised at this tempe	rature. The vapour v	vas				
	1. The bromine	2. mixture	e of nitrogen dioxide and dinitrogen tetroxide				
	3. Pure nitrogen diox	ide 4. Pure dir	notrogen tetroxie				
28.	An element (X) form	ns compounds of the	formula XCl_3, X_2O_5 a	nd Ca_3X_2 but does not form			
	XCl_5 . Which of the	following is the elem	ent X?				
	1. B	2. Al	3. N	4. P			
29.	A deep brown gas is	s formed by mixing t	wo colourless gases w	hich are			
	1. NO_2 and O_2	2. N_2O and NO	3. NO and O ₂	4. NH_3 and HCl			

What is not true about P_4 ? **30.**

- 1. It represents yellow phosphorus
- 2. It is a tetrahedral molecule
- 3. It is soluble in CS_2 and water
- 4. It polymerises when heated in inert atom sphere at 570 K

31. Which is not true for phosphorus?

- 1. Phosphorus exists in different allotropic forms
- 2. Black phosphorus has layer type structure
- 3. Yellow phosphorus is less reactive than red phosphorus
- 4. Yellow phosphorus exists in tetrahedral molecular solid

32. What is not true about N_2O_5 ?

- 1. It is anhydride of HNO₃
- 2. In solid state it exists as $NO_2^+N_3^-$
- 3. It is structurally similar to P_2O_5 4. It can be prepared by heating HNO_3 over P_2O_5
- When some heat is supplied to the equilibrium system $N_2O_2 \rightleftharpoons 2NO_2$, the colour changes 33. from
 - 1. colourless to colour

2. colour to colourless

3. colourless to colourless

- 4. colour to colour
- **34.** The ease of hydrolysis of trichlorides of group 15 elements decreases in the order

1.
$$NCl_3 > PCl_3 > AsCl_3 > SbCl_3 > BiCl_3$$

2.
$$PCl_3 > NCl_3 > AsCl_3 > SbCl_3 > BiCl_3$$

3.
$$AsCl_3 > NCl_3 > PCl_3 > SbCl_3 > BiCl_3$$

3.
$$AsCl_3 > NCl_3 > PCl_3 > SbCl_3 > BiCl_3$$
 4. $SbCl_3 > BiCl_3 > NCl_3 > PCl_3 > AsCl_3$

35. The correct order of decreasing Lewis acid strength of trichlorides of group 15 elements is

1.
$$AsCl_3 > PCl_3 > BiCl_3 > SbCl_3$$

2.
$$PCl_3 > AsCl_3 > SbCl_3 > BiCl_3$$

3.
$$NCl_3 > PCl_3 > AsCl_3 > SbCl_3$$

4.
$$SbCl_3 > BiCl_3 > PCl_3 > AsCl_3$$

Which of the following pentahalides of bismuth exists? **36.**

1. BiCl₅

2. *BiBr*₅

3. *Bil*₅

4. BiF₅

37. P-O-P bonds is present is

1. $H_4P_2O_6$

2. $H_{4}P_{2}O_{5}$

3. Both (1) and (2)

4. None of these

38. In which of the following halide, the M-X bond lengths are not equal?

1. *PCl*₃

 $2. NF_3$

3. *PF*₅

4. NCl₃

39. Solid PCl₅ exist as

1. Dimmer P_2Cl_{10} 2. $[PCl_4]^+[PCl_6]^-$ 3. $(PCl_3)(Cl_2)$

4. PCl₅ as such

40. The correct order of increasing stability is

1. $NH_3PH_3AsH_3$

2. NH₃SbH₃AsH₃PH₃

3. SbH_3 AsH_3 PH_3 NH_3

4. AsH₃ AsH₃ NH₃ PH₃

The basic strength of hydrides of group 15 elements decreases in the order 41.

1. $NH_3 > PH_3 > AsH_3 > SbH_3$

2. $PH_3 > AsH_3 > SbH_3 > NH_3$

3. $SbH_3 > PH_3 > AsH_3 > NH_3$

4. $NH_3 > AsH_3 > PH_3 > SbH_3$

42. Glacial phosphoric acid is

1. H_3PO_4

2. *HPO*₂

3. $H_4 P_2 O_6$

4. H_3PO_2

43. P-P linkage is present in

1. Pyrophosphoric acid

2. Hypophosphoric acid

3. Peroxy phosphoric acid

4. Metaphosphoric acid

44. Dipole moment of the hydrides of group 15 elements decreases in the order

1. $AsH_3 > BiH_3 > SbH_3 > NH_3 > PH_3$ 2. $BiH_3 > SbH_3 > AsH_3 > PH_3 > NH_3$

3. $NH_3 > PH_3 > AsH_3 > SbH_3 > BiH_3$ 4. $PH_3 > NH_3 > AsH_3 > SbH_3 > BiH_3$

45.	The correct or	der of decre	easing acid	strength of	oxy acids o	of group 15	element is
------------	----------------	--------------	-------------	-------------	-------------	-------------	------------

1. HNO_3 , H_3SbO_4 , H_3AsO_4 , H_3PO_4

2. H_3PO_3 , H_3AsO_4 , H_3SbO_4 , HNO_4

3. HNO_3 , H_3PO_4 , H_3AsO_4 , H_3SbO_4

4. HNO_3 , H_3PO_4 , H_3AsO_4 , H_3SbO_4

46. Liquid ammonia is used in refrigeration because of its

1. High dipole moment

2. High heat of vaporization

3. Base

4. Stability

47. AgCl dissolves in NH_4OH due to the formation of

1. AgOH

2. Ag

3. Ag₂O

 $4. \lceil Ag(NH_3), \rceil Cl$

48. Which of the following salts is used in the bead test for basic radicals?

1. $Na(NH_4)HPO_44H_2O$

2. Na_2HPO_4

3. $(NH_4)_2$. FeSO₄.6 H_2O

4. $(NH_4)_2 HPO_2 2H_2 O$

49. The bond angle in PH_3 is less than the bond angle in PF_3 . This is attributed to

1. Enhanced repulsion due to presence of double bond in PF₃

2. Increased bond pair-bond pair repulsion due to multiple bond

3. Both 1 and 2

4. Displacement of electron cloud P-F bond towards F in PF3

50. When orthophosophoric acid is heated to 600^{0} C the product formed is

1. *PH*₃

2. P_2O_5

3. H_3PO_3

4. HPO_3

51. In P_4O_6 , the number of oxygen atoms bonded to each phosphorus atom is

1. 1.5

2.2

3.3

4. 4

- 52. With respect to protonic acids, which of the following statements is correct?
 - 1. PH_3 is more basic than NH_3
- 2. PH₃ is less basic than NH₃
- 3. PH_3 is equally basic as NH_3
- 4. PH₃ is amphoteric while NH₃ is basic
- 53. There is very little difference in acid strength in the series H_3PO_4, H_3PO_3 and H_3PO_2 because
 - 1. Phosphorus in these acids exists in different oxidation states
 - 2. Number of unprotonated oxygen responsible for increase of acidity due to inductive

Effect remains the same

- 3. Phosphorus is not a highly electronegative element
- 4. Phosphorus oxides are less basic

VA GROUP ELEMENTS (SUBTOPIC-I)

KEY

1) 3	2) 3	3) 1	4) 3	5) 2	6) 4	7) 3	8) 1	9) 2	10) 1
11) 3	12) 2	13) 3	14) 3	15) 4	16) 1	17) 3	18) 3	19) 2	20) 3
21) 3	22) 2	23) 4	24) 1	25) 4	26) 4	27) 2	28) 3	29) 3	30) 3
31) 3	32) 3	33) 1	34) 1	35) 2	36) 4	37) 2	38) 3	39) 2	40) 3
41) 1	42) 2	43) 2	44) 3	45) 3	46) 2	47) 4	48) 1	49) 3	50) 4
51) 3	52) 2	53) 2							

SUB TOPIC-I (SOLUTIONS)

- 1. In O^+ exactly half filled orbitals are present and hence.
- 2. Due to small atomic size nitrogen have great tendency to donate electrons
- 6. DIAGRAM
- 7. As shows above
- 9. For $BF_3 \mu = 0$, for $NF_3 \mu \neq 0$.
- 14. Due to presence of odd no of electrons.
- 15.

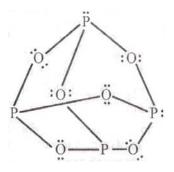
$$0 \\ 4P + 3KOH + 3H_2O \rightarrow 3KH_2 \stackrel{+1}{P}O_2 + P^{-3}H_3$$

16.

$$O$$
 $N-O-N$
 O

- 23. Due to highest oxidation number.
- $29. 2NO + O_2 \rightarrow 2NO_2$

 NO_2 is reddish brown poisonous gas.


- 32. The structures $P_5O_5 \& N_2O_5$ are difference.
- 37.

$$H - P - O - P - H$$
 $| | | |$
 $OH OH$

39. $2PCl_5 \Longrightarrow [PCl_4]^{\dagger} [PCl_6]^{\dagger}$

- 40. Down the group the stability of Hydrides decreases.
- 45. Down the group the acidic nature decreases
- $H_3PO_4 \xrightarrow{350^0C} H_4P_2O_7 \xrightarrow{600^0C} HPO_3$ 50.

51.

52. Due to more atomic radius.

SUB TOPIC-II (PRACTICE QUESTIONS)

- H_3PO_2 is the molecular formula of an acid of phosphorus, its name and basicity 1. respectively is
 - 1. Phosphorus acid and two
- 2. Hypophosphorous acid and two
- 3. Hypophosphorous acid and one
- 4. Hypophosphoric acid and two
- NH_3 has much higher b.p. than PH_3 because 2.

 - 1. NH_3 has larger molecular weight 2. NH_3 undergoes umbrella inversion
 - 3. NH_3 forms hydrogen bond
 - 4. NH₃ contains ionic bonds whereas PH₃ contains covalent bonds
- Which of the following has least covalent P-H bond?
 - 1. PH₃
- 2. $P_2H_6^{2+}$ 3. $P_2H_5^{+}$ 4. PH_4^{+}

4.	In nitrogen family, the H-M-H bond angle in the hydrides gradually becomes closer to
	90^{0} on going form N to Sb. This shows that gradually

- 1. The basic strength of the hydrides increases
- 2. Almost pure s-orbitals are used for M-H bonding
- 3. The bond energies M-H bonds increase
- 4. The bond pairs of electrons become nearer to the central atom
- 5. The equivalent weight of phosphoric acid (H_3PO_4) in the reaction

 $NaOH + H_3PO_4 \rightarrow NaH_2PO_4 + H_2O$ is

- 1.25
- 2.49
- 3.59

6. The number of P-O-P bonds in cyclic metaphosphoric acid is

- 1. Zero
- 2. Two
- 3. Three
- 4. Four

A metal X on heating in nitrogen gas gives Y,Y on treatment with H₂O gives a colourless 7. gas which when passed through CuSO₄, solution gives a blue colour, Y is

- 1. $Mg(NO_3)_2$
- $2. Mg_3N_2$
- 3. NH_3
- 4. Mgo

8. Bones glow in dark because

- 1. They contain shining material
- 2. They contain red phosphorus
- 3. They contain white phosphorus which under goes slow combustion in contact with air
- 4. White phosphorus changes to red phosphorus

In the compounds of the POX_3 , P atoms show multiple bonding of the type

- 1. $p\pi p\pi$ 2. $d\pi d\pi$ 3. $p\pi d\pi$
- 4. None of these

10. Oxyacid of phosphorous (x) on heating to red hot temperature gives (y) a monobasic acid ofphosphorous. (y) when reacts with AgNO₃ gives a white precipitate (z). Then x,y,z are respectively

X

Y

Z

1. H_3PO_3 HPO_3

 $AgPO_3$

 $2. H_4 P_2 O_7$

 HPO_3

 H_3PO_4

 HPO_3

 $H_{4}P_{2}O_{7}$ 4.

 H_3PO_4

 $AgPO_{A}$

11. How many P-H and O-H bonds respectively, are present in $H_1P_2O_2$ molecule?

1. 1 and 3

2. 0 and 4

3. 4 and 0

4. 2 and 3

 $X \leftarrow \stackrel{H_2O}{\longrightarrow} H_4 P_2 O_7 \stackrel{825K}{\longrightarrow} Y$. 12.

In the above sequence of reactions X and Y are respectively

1. H_3PO_4, H_3PO_4 2. HPO_3, H_3PO_4 3. H_3PO_4, HPO_3 4. HPO_3, HPO_3

 $P_4O_{10} \xrightarrow{H_2O} A \xrightarrow{H_2O} B \xrightarrow{H_2O} C$. (C) when heated with Ammonium molybdate in **13.** presence of HNO₃, a canary yellow precipitate is formed. Then A,B,C are respectively

1. $HPO_3, H_4P_2O_7, H_3PO_4$

2. $H_4P_2O_6, H_4P_2O_7, H_3PO_3$

3. H_3PO_3 , H_3PO_4 , HPO_3

4. H_3PO_2, H_3PO_3, HPO_3

14. A and B are two gases 'A' is identified with a glass rod dipped in NH3 and the 'B' is identified with a glass rod dipped in HCl. 'A' and 'B' are respectively

1. HCl, NO₂

2. HCl, NH₃

3. NH₃, HCl

4. NH₃, SO₂

15.
$$CaCO_3 \xrightarrow{\Delta} A + CO_2; A + coke \rightarrow B$$

$$B+N_2 \xrightarrow{\Delta} C+Graphite; C \xrightarrow{H_2O} D$$
. Hence A,B,C and D are

- 1. CaO, CaC₂, CaCN₂, NH₃
- 2. CaO₂, CaO, CaCN₂, NH₃

3. CO₂, CO, C, CH₂CH

4. CaCN₂, CaO, NH₃, CaC₂

16.
$$A_{(s)} \xrightarrow{-\Delta} B_{(s)} + X_{(g)}; B_{(s)} + coke \xrightarrow{-\Delta} C_{(s)} + Y_{(g)}; C_{(s)} + Z_{(g)} \to D_{(s)} + grabite:$$

$$D_{(s)} + H_2O \rightarrow A_{(s)} + NH_{3(g)}$$
 The gaseous products X,Y and Z are

- 1. N₂, CO, CO₂ 2. CO₂, CO, N₂ 3. CO, CO₂, NO₂
- 4. CO, CO₂, NO

17. List-I **List-II**

A) HNO_3 1) -3, +5 oxidation state

B) NH₄NO₃ 2) -1/3 oxidation state

C) N_3H 3) + 5 oxidation state

D) H_3PO_3

- 4) + 3 oxidation state
- 5) + 1/3 oxidation state

4

The correct match is

- В \mathbf{C} D
- 1. 2 4
- 3
 - 3
- 3 2 5

18.		List-I		List-II	
	A)	H_3NO_2		1) tribasic	
	B)	H_3PO_3		2) Mono basic	
	C)	H_3PO_4		3) Tetrabasic	
	D)	$H_4P_2O_6$		4) Di basic	
				5) Zero basicity	The correct match is
		A	В	C	D
	1.	3	2	1	5
	2.	2	4	1	3
	3.	2	5	3	4
	4.	1	2	3	4
19.		List-I		List-II	
	A)	NH_3	,	1) sp ³ d, Trigonal b	pipyramidal
	B)	N_2O_5		2) sp ³ , Terahedral	
	C)	PC/ ₅		3) sp, linear	
	D)	NH_4^+		4) sp ³ , pyramidal	
				5) Two coordinate	and six covalent
4	The	correct mate	ch is		
		A	В	С	D
	1.	1	4	3	2
	2.	1	2	3	4
	3.	4	5	1	2
	4.	2	5	3	1

20. The correct statement is

- 1. Most reactive and most poisonous V group element is white phosphorus molecule
- 2. High reactivity of white phosphorus is due to large internal strain in P₄ molecule
- 3. Bismuth is mono atomic
- 4. All the above

21. The correct statement is

- 1. High reactivity of white phosphorus is due small bond angle (60^{0}) in P_{4} molecule which causes large strain
- 2. Low reactivity of red phosphorus is due to polymeric structure
- 3. Black phosphorus conducts electricity due to presence of delocalized π electrons
- 4. All the above

22. The wrong statement about VA group Hydrides is

- 1. VA group elements form both tri and penta Hydrides
- 2. The decreasing order of stability of VA group hydrides in $NH_3 > PH_3 > AsH_3 > SbH_3 > BiH_3$
- 3. The increasing order of reducing power among VA group Hydrides is

$$NH_3 < PH_3 < AsH_3 < SbH_3 < BiH_3$$

4. The increasing order of poisonous nature of VA group Hydrides is

$$NH_3 < PH_3 < AsH_3 < SbH_3 < BiH_3$$

23. Bottle of PCl3 is kept stoppered because it

- 1. Explodes 2. Gets oxidized 3. is volatilized 4. Reacts with moisture
- 24. Structural formula of pyrophosphoric acid is

1)
$$O = P - O - P = O$$
 2) $O - P - O - P = O$ 3) $O = P - O - P - O$ 4) $O = P - O - P = O$ 6 OH OH OH OH

25. List-I

List-II

- A) Haber's process
- 1) Nitric acid
- B) Ostwald's process
- **2)** $N_2 + 3H_2 \rightarrow 2NH_3$
- C) Contact process
- 3) Ammonia + CaCO₃
- D) Cyanamide process
- 4) Sulphuric acid
- 5) Perdisulpuric acid

The correct match is

- A
- В
- C

4

D

- 1. 1
- 4
- 5
- 2

- 2. 2
- 1

- 3. 1
- 4

- 4. 5
- 3

26. List-I

List-II

- A) Phosphorite
- 1) KNO₃
- B) Bengal salt petre
- **2)** $Ca(H_2PO_4)_2 + 2(CaSO_4.2H_2o)$
- C) flourapatite
- **3**) *NaNO*₃
- D) Superphosphate of lime
- **4)** $3Ca_3(PO_4)_5 CaF_2$
- **5**) $Ca_3(PO_4)_2$

The correct match is

		A	В	C	D	
	1.	1	2	3	5	
	2.	2	4	3	2	
	3.	4	3	5	2	
	4.	5	1	4	2	
27.	PCl ₃	on hydrdysis	gives (X)	and (Y). Who	en PCl ₃ reacts with	oxialic acid gives (Z) and
	liber	rtes CO ₂ and C	O. (Y) g	ives dense fur	nes with NH ₃ . Then	(X) and (Z) are
	1. <i>H</i>	$H_3PO_3; H_3PO_4$	2. <i>H</i> ₃ <i>F</i>	$PO_4; H_3PO_3$	3. $H_3PO_3; H_3PO_2$	4. $H_3PO_3; H_3PO_3$
28.	Phos	sphine is not o	btained b	y the reaction	when	
	1. W	Thite P is heated	with NaC	ОН	2. Red P is heated v	with NaOH
	3. Ca	a ₃ P ₂ reacts with	water		4. P ₄ O ₆ is boiled w	ith water
29.	Brov	wn color in HN	O ₃ can b	e removed by		
	1. A	dding Mg Powo	ler		2. Boiling the acid	
	3. Pa	assing NH ₃ thro	ugh acid		4. Passing air throu	gh warm acid
30.	"Th	omas slag" wh	ich is use	d as a fertiliz	er is composed of	
	1) C	aCO ₃ and CaSO	04		2. CaO and SiO ₂	
	3. Ca	a_3 (PO ₄) ₂ and C	aSiO ₃		4. MgCO ₃ and Al ₂	$(SiO_3)_3$
31.	P ₄ -	$\xrightarrow{Limited O_2} X \longrightarrow$	$Cl_2 \longrightarrow Y + Z$	Z In this sequ	nence, Y and Z are i	respectively
	1 P	Cl and PCl			2 POCL and POC	\sim 1

32. When nitric acid is treated with P_2O_5 gives nitrogen compound (X). When P_4 is oxidized with conc. HNO₃ gives nitrogen compound (Y). (X) and (Y) are respectively

1. NO and N₂O₅

3. PCl_2 and $POCl_3$

2. N_2O_5 and N_2O

3. N₂O₄ and NO₂

4. $POCl_3$ and PCl_3

4. N_2O_5 and NO_2

33. White phosphorus is converted into red phosphorus by heating it

- 1. To 250°C in a current of air
- 2. In an inert atmosphere to 250°C in presence of a trace of iron
- 3. In an inert atmosphere to 250°C in presence of a trace of iodine
- 4. In oxygen to 250°C in presence of a trace of iodine.

34. The CN ion and N_2 are isoelectronic. But in constrast to CN^*, N_2 is chemically inert because of

- 1. Low bond energy
- 2. Absence of bond polarity
- 3. Unsymmetrical electron distribution
- 4. Presence of more number of electrons in bonding orbitals

35. The BCl₃ is planar molecule wherease, NCl₃ is pyramidal because

- 1. N-Cl bond is more covalent than B-Cl bond
- 2. B-Cl bond is more polar than N-Cl bond
- 3. Nitrogen atom is smaller than boron
- 4. BCl₃ has no lone pair but NCl₃ has a lone pair electron

36. Nitrogen form N_2 but phosphorous is converted into P_4 form P_2 . The reason for this is:

- 1. Triple bond is present between phosphorous atoms
- 2. $p\pi p\pi$ bonding is weak
- 3. $p\pi p\pi$ bonding is strong
- 4. Multiple bond is formed easily

37.	Copper metal in treatment with dilute HNO_3 produces 1 gas (X) . (X) when passed though acidic solution of stannous chloride, a nitrogen containing compound (Y) is obtained. (Y) on reaction with nitrous acid produces a gas (Z) . Gas (Z) is							
	1) NO	2) N ₂	3) NO ₂	4) N ₂ O				
38.	Pure nitrogen can b	e prepared from						
	1. <i>NH</i> ₄ <i>OH</i>	2. <i>NH</i> ₄ <i>NO</i> ₂	3. $Ba(NO_3)_2$	4. Ca_3N_2				
39.	Which statement is	not correct for nitrog	gen?					
	1. It has a small size		2. It does not readily react with O ₂					
	3. It is a typical non-	metal	4. d-orbitals are available for bonding					
40.	The element which	catches fire in air at 3	$80^0\mathrm{C}$ and is stored unc	ler water is				
	1. Sodium	2. Phosphorus	3. Magnesium	4. Zinc				
41.	Which of the follow	ing phosphorus is mo	st stable?					
	1. White	2. Red	3. Black	4. All stable				
42.	By the action of hot	conc H_2SO_4 , Phospho	orus changes to					
	1. phosphorous acid		2. metaphosphoric ac	id				
	3. pyrophosphoric ac	id	4. orthophosphoric acid					
43.	Each of the following	ng is true for white an	d red phosphorus exc	ept that they				
4	1. Can be oxidised he	eating in air	2. Are both soluble in	n CS ₂				
	3. Consists of same k	tind of atoms	4. Can be converted i	nto one another				
44.	White phosphorus	(P_4) does not contain						
	1. Six P – P single bo	ond	2. Four P – P single b	oond				
	3. Four lone pairs of	electrons	4. $P - P - P$ angle of 60°					

45.	In NH_3 and PH_3 the common is							
	1. Basic nature	2. odour	3. Combustibility	4. None of these				
46.	The number of P –	O – P bonds in cyclic	e metaphosporic acid	is				
	1. Zero	2. Three	3. Two	4. Four				
47.	In Birkeland Eyde	process, the raw mat	erial used is					
	1. Air	2. NO ₂	3. HNO ₃	4. NH ₃				
48.	Which oxide of nit	rogen is colored gas?						
	1. N_2O	2. <i>NO</i> ₂	3. N_2O_5	4. NO				
49.	Which of the follow	ving compounds do n	ot exist?					
	$1. N_4, NCl_5, PO_2$	$2. N_2, NCl_3, NO_2$	3. PCl5, P2O5, NCl3	4. PO_2, P_4, NCl_3				
50.	Phosphine is produ	iced by adding water	to					
	1. <i>CaC</i> ₂	2. <i>HPO</i> ₃	$3. Ca_3P_2$	4. P_4O_{10}				
51.	What would happe	en when a solution of	potassium chromate i	s treated with an excess of				
	dilute nitric acid?							
	1. CrO_4^{2-} is reduced	to + 3 state of Cr	2. CrO_4^{2-} is oxidized	to + 7 state of Cr				
	3. $Cr_5O_7^{2-}$ and H_2O	are formed	4. Cr^{3-} and $Cr_2O_7^{2-}$	are formed				
52.	In the reaction, H	$NO_3 + P_4O_{10} \rightarrow 4HPO_3 -$	+x, the product x is					
	1. NO ₂	2. N_2O_5	3. N_2O_3	4. <i>H</i> ₂ <i>O</i>				

53. Assertion: Red phosphorus is less volatile than white phosphorus.

Reason: PCl_5 is solid state consisting of tetrahedral PCl_5^+ cation and octahedral PCl_6^- anion.

- 1. Statement I is true; Statement II is true; Statement II is a correct explanation for Statement I.
- 2. Statement I is true; Statement II is true; Statement II is not a correct explanation for Statement I.
- 3. Statement I is true; Statement II is false. 4. Statement I is false; Statement II is true.
- 54. Assertion: The is a very little difference in acidic strengths of H_3PO_4 , H_3PO_3 and H_3PO_2 .

Reason: Number of unprotonated oxygen responsible for increase of acidic strength due to inductive effect remains the same.

- 1. Both Assertion and Reason are true and Reason is the correct explanation of Assertion.
- 2. Both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
- 3. Assertion is true but Reason is false.
- 4. Both Assertion and Reason are false
- 55. Assertion: PCl_5 and $PbCl_5$ are thermally unstable.

Reason: They produce same gas on thermal decomposition.

- 1. Both Assertion and Reason are true and Reason is the correct explanation of Assertion.
- 2. Both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
- 3. Assertion is true but Reason is false.
- 4. Both Assertion and Reason are false

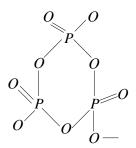
56. Assertion: Red phosphorus is less volatile then white phosphorus.

Reason: Red phosphorus has a discrete tetrahedral structure.

- 1. Both Assertion and Reason are true and Reason is the correct explanation of Assertion.
- 2. Both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
- 3. Assertion is true but Reason is false.
- 4. Both Assertion and Reason are false

VA GROUP ELEMENTS (SUBTOPIC-II)

KEY


1) 3	2) 3	3) 2	4) 4	5) 4	6) 3	7) 2	8) 3	9) 3	10) 2
11) 2	12) 3	13) 1	14) 2	15) 1	16) 2	17) 1	18) 2	19) 3	20) 4
					AA 4				
21) 4	22) 1	23)*	24) 4	25) 2	26) 4	27) 4	28) 2	29) 4	30) 3
				4					
31) 2	32) 1	33) 3	34) 2	35) 2	36) 2	37) 4	38) 2	39) 4	40) 2
41) 2	42) 4	43) 2	44) 2	45) 1	46) 2	47) 1	48) 2	49) 1	50) 3
					,				
51) 3	52) 2	53) 2	54) 1	55) 2	56) 3				

VA GROUP ELEMENTS SUB TOPIC-II (SOLUTIONS)

1.

- 2. NH_3 have ability to form intermoleculere hydrogen bonds.
- 5. $NaOH + H_3PO_4 \rightarrow NaH_2PO_4 + H_2O$

Eq.wt =
$$\frac{98}{1}$$
 = 98

6.

$$7. \qquad \frac{3Mg}{x} + N_2 \to \frac{Mg_3N_2}{y}$$

$$Mg_3N_2 + 6H_2O \rightarrow 3Mg(OH)_2 + NH_3 \uparrow$$

$$CuSO_4 + NH_3 \rightarrow [CuSO_46NH_3]$$

Blue colour

10.
$$\frac{H_4 P_2 O7}{X} \xrightarrow{870K - H_2 O} \frac{HPO_3}{Y}$$

$$HPO_3 + AgNO_3 \rightarrow \frac{AgPO_3}{2} + HNO_3$$

$$OH$$
 $O=P$
 OH
 OH
 OH
 OH

13.

14.
$$HCl + NH_3 \rightarrow NH_4Cl$$

$$CaCO_3 \rightarrow CaO + CO_2$$

15.
$$CaO + COCa \rightarrow CaC_2O$$

$$CaC_2 + N_2 \rightarrow CaCN_2 + C$$

17. A)
$$H \stackrel{+5}{NO_3}$$

B)
$$NH_4NO_3 \rightarrow \stackrel{-3}{N}H_4^+ + \stackrel{+5}{N}O_3^-$$

C)
$$N_3H - + \frac{1}{3}$$

D)
$$H_3 \stackrel{+5}{P} O_3 -$$

19. A)
$$NH_3 \rightarrow Sp^3$$
, Pyramidal

B)

- C) $PCl_5 \rightarrow Sp^3d$, Trigonal bipyramidal
- D) $NH_4^+ \rightarrow Sp^3$, Telianedal

27.
$$PCl_3 + 3H_2O \rightarrow \frac{H_3PO_3}{X} + \frac{3HCl}{Y}$$

$$PCl_3 + 2H_2C_2O_4 \rightarrow \frac{H_3PO_3}{7} + CO_2 + 3CO + 3HCl$$

36.
$$PCl_3 + 3N_2O \rightarrow (x)H_3PO_3 + 3HCl.(y)$$

$$PCl_3 + 3H_2C_2O_4 \rightarrow \frac{H_3PO_3}{(2)} + 3CO_2 + 3CO + 3HCl$$

$$HCl + NH_3 \rightarrow NH_4Cl$$

37.
$$Cu + dil\ HNO_3 \rightarrow \frac{No}{x} \xrightarrow{SnCl_2/HCl} \xrightarrow{NH_2OH.HC}, \xrightarrow{HNO_2} \xrightarrow{N_2O} \overline{z}$$

41. Red phosphorous is most stable.

50.
$$Ca_3P_2 + 6H_2O \rightarrow 3Ca10H_2 + 2PH_3$$