P-BLOCK ELEMENTS

VA GROUP ELEMENTS

SUBTOPIC-I (PRACTICE QUESTIONS)

1. The correct order of second ionization potential of $\mathbf{C}, \mathbf{N}, \mathbf{O}$ and \mathbf{F} is
2. $\mathrm{C}>\mathrm{N}>\mathrm{O}>\mathrm{F}$
3. $\mathrm{O}>\mathrm{N}>\mathrm{F}>\mathrm{C}$
4. $\mathrm{O}>\mathrm{F}>\mathrm{N}>\mathrm{C}$
5. $\mathrm{F}>\mathrm{O}>\mathrm{N}>\mathrm{C}$
6. Which of the following has maximum complex forming ability with a given metal ion?
7. PH_{3}
8. BiH_{3}
9. NH_{3}
10. SbH_{3}
11. Which of the following does not show allotropy?
12. Bismuth
13. Phosphorus
14. Arsenic
15. Antimony
16. The electronic configuration of an atom is $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} \mathbf{3 d} d^{10} 4 s^{2} \quad 4 p^{3}$. The chemistry of this of
17. Silicon
18. Sulphur
19. Nitrogen
20. Chlorine
21. Of the different allotropic forms of phosphorus, most reactive is
22. Violet phosphorus
23. White phosphorus
24. Scarlet phosphorus
25. Red Phosphorus
26. The P-P-P bond angle in white phosphorus is
27. 120°
28. 90^{0}
29. $109^{0} 28^{\prime}$
30. 60^{0}
31. The total number of lone pairs of electrons present in a \mathbf{P}_{4} molecule is
1.2
32. 6
3.4
33. 8

8. Nitrogen does not form complexes because

1. There are no d-orbitals in the valence shell
2. The dissociation energy of nitrogen is very high
3. Electro negativity of nitrogen is quite high
4. It has a stable electronic configuration
5. Both BF_{3} and NF_{3} are covalent compounds but BF_{3} is non-polar and NF_{3} is polar. This is because
6. Boron is a metal and nitrogen is a non metal
7. B-F bonds have no dipole moment but N-F bonds have
8. Atomic size of boron is smaller than that of nitrogen
9. BF_{3} is planar but NF_{3} is pyramidal in nature.
10. Which of the following trihalides is not hydrolysed
11. NF_{3}
12. PCl_{3}
13. AsCl_{3}
14. SbCl_{3}
15. Nitrogen forms nitride, $\left(\mathrm{N}^{-3}\right)$ ion more readily. This is due to
16. Its small size
17. Its high electronegativity
18. Both (a) and (b)
19. None of these
20. Which of the following trihalides of nitrogen is most stable?
21. NCl_{3}
22. NF_{3}
23. NBr_{3}
24. NI_{3}
25. In Nitrogen molecule, the two atoms of nitrogen are joined by
26. One sigma bond and one Pi bond
27. One sigma bond and two Pi bonds
28. Three sigma bonds
29. Paramagnetic oxide is
30. $\mathrm{N}_{2} \mathrm{O}$
31. $\mathrm{N}_{2} \mathrm{O}_{3}$
32. NO
33. $\mathrm{N}_{2} \mathrm{O}_{4}$
34. In the reaction
$4 \mathrm{P}+3 \mathrm{KOH}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{KH}_{2} \mathrm{PO}_{2}+\mathrm{PH}_{3}$
35. Phosphors is reduced only
36. Phosphorus is oxidized only
37. Phosphorus is neither oxidized nor reduced
38. Phosphorus is both oxidized and reduced.
39. Of the different allotropic forms of phosphorus, the one which has a metallic luster is
40. Black phosphorus
41. Red phosphorus
42. White phosphorus
43. Scarlet phosphorus
44. The reddish brown gas formed when nitric oxide is oxidized by air is
45. $\mathrm{N}_{2} \mathrm{O}_{5}$
46. $\mathrm{N}_{2} \mathrm{O}_{4}$
47. NO_{2}
48. $\mathrm{N}_{2} \mathrm{O}_{3}$
49. Mixture used for the tips of match stick is
50. $\mathrm{S}+\mathrm{K}$
51. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+S+$ White

-

$\mathrm{N}_{2} \mathrm{O}_{5}$ ar
19. The bonds present in $N_{2} O_{5}$ are

1. Only ionic
2. Only covalent
3. Covalent and coordinate
4. Covalent ionic
5. FeSO_{4} forms brown ring with
6. NO_{2}
7. $\mathrm{N}_{2} \mathrm{O}_{3}$
8. NO
9. $\mathrm{N}_{2} \mathrm{O}_{5}$
10. When concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ is added to dry KNO_{3}, brown fumes evolve. These fumes are due to
11. SO_{2}
12. SO_{3}
13. NO_{2}
14. NO
15. $\quad \mathrm{BiCl}_{3}$ on hydrolysis forms a white precipitate of
16. Bismuthio acid
17. Bismuth oxychloride
18. Bismuth pentachloride
19. Bismuth hydroxide
20. Which oxide does not act as a reducing agent
21. NO
22. NO_{2}
23. $\mathrm{N}_{2} \mathrm{O}$
24. $\mathrm{N}_{2} \mathrm{O}_{5}$
25. Which of the nitrates on strong heating leaves the metal as the residue?
26. AgNO_{3}
27. $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
28. $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$
29. $\mathrm{Cl}\left(\mathrm{NO}_{3}\right)_{3}$
30. Nitric acid on standing develops brownish colour which may be attributed to the presence of
31. NO_{2}^{+}Ions
32. NO_{3}^{-}Ions
33. NO_{2}^{-}
34. NO_{2}
35. The sequence of acidic character is
36. $\mathrm{SO}_{2}>\mathrm{CO}_{2}>\mathrm{CO}>\mathrm{N}_{2} \mathrm{O}_{5}$
37. $\mathrm{SO}_{2}>\mathrm{N}_{2} \mathrm{O}_{5}>\mathrm{CO}>\mathrm{CO}_{2}$
38. $\mathrm{N}_{2} \mathrm{O}_{5}>\mathrm{SO}_{2}>\mathrm{CO}>\mathrm{CO}_{2}$
39. $\mathrm{N}_{2} \mathrm{O}_{5}>\mathrm{SO}_{2}>\mathrm{CO}_{2}>\mathrm{CO}$
40. When a vapour, at atmospheric pressure was gradually heated form $\mathbf{2 5}^{\mathbf{}} \mathrm{C}$ its colour was found to deepen at first and then to fade as the temperature was raised above $160^{\circ} \mathrm{C}$. At $600^{\circ} \mathrm{C}$ the vapour was almost colourless, but its colour deepened when the pressure was raised at this temperature. The vapour was
41. The bromine
42. Pure nitrogen dioxide
43. mixture of nitrogen dioxide and dinitrogen tetroxide
44. Pure dinotrogen tetroxie
45. An element (\mathbf{X}) forms compounds of the formula $X C l_{3}, X_{2} O_{5}$ and $\mathrm{Ca}_{3} X_{2}$ but does not form $X C l_{5}$. Which of the following is the element X ?
46. B
47. Al
48. N
49. P
50. A deep brown gas is formed by mixing two colourless gases which are
51. NO_{2} and O_{2}
52. $\mathrm{N}_{2} \mathrm{O}$ and NO
53. NO and O_{2}
54. NH_{3} and HCl

30. What is not true about P_{4} ?

1. It represents yellow phosphorus 2. It is a tetrahedral molecule
2. It is soluble in CS_{2} and water
3. It polymerises when heated in inert atom sphere at 570 K
4. Which is not true for phosphorus?
5. Phosphorus exists in different allotropic forms
6. Black phosphorus has layer type structure
7. Yellow phosphorus is less reactive than red phosphorus
8. Yellow phosphorus exists in tetrahedral molecular solid
9. What is not true about $N_{2} O_{5}$?
10. It is anhydride of HNO_{3}
11. In solid state it exists as $\mathrm{NO}_{2}^{+} \mathrm{N}_{3}^{-}$
12. It is structurally similar to $\mathrm{P}_{2} \mathrm{O}_{5}$
13. It can be prepared by heating HNO_{3} over $\mathrm{P}_{2} \mathrm{O}_{5}$
14. When some heat is supplied to the equilibrium system $\mathrm{N}_{2} \mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}_{2}$, the colour changes from
15. colourless to colour
16. colour to colourless
17. colourless to colourless
18. colour to colour
19. The ease of hydrolysis of trichlorides of group 15 elements decreases in the order
20. $\mathrm{NCl}_{3}>\mathrm{PCl}_{3}>\mathrm{AsCl}_{3}>\mathrm{SbCl}_{3}>\mathrm{BiCl}_{3}$
21. $\mathrm{PCl}_{3}>\mathrm{NCl}_{3}>\mathrm{AsCl}_{3}>\mathrm{SbCl}_{3}>\mathrm{BiCl}_{3}$
22. $\mathrm{AsCl}_{3}>\mathrm{NCl}_{3}>\mathrm{PCl}_{3}>\mathrm{SbCl}_{3}>\mathrm{BiCl}_{3}$
23. $\mathrm{SbCl}_{3}>\mathrm{BiCl}_{3}>\mathrm{NCl}_{3}>\mathrm{PCl}_{3}>\mathrm{AsCl}_{3}$
24. The correct order of decreasing Lewis acid strength of trichlorides of group 15 elements is
25. $\mathrm{AsCl}_{3}>\mathrm{PCl}_{3}>\mathrm{BiCl}_{3}>\mathrm{SbCl}_{3}$
26. $\mathrm{PCl}_{3}>\mathrm{AsCl}_{3}>\mathrm{SbCl}_{3}>\mathrm{BiCl}_{3}$
27. $\mathrm{NCl}_{3}>\mathrm{PCl}_{3}>\mathrm{AsCl}_{3}>\mathrm{SbCl}_{3}$
28. $\mathrm{SbCl}_{3}>\mathrm{BiCl}_{3}>\mathrm{PCl}_{3}>\mathrm{AsCl}_{3}$
29. Which of the following pentahalides of bismuth exists?
30. $B i C l_{5}$
31. $B i B r_{5}$
32. $B i l_{5}$
33. $B i F_{5}$
34. P-O-P bonds is present is
35. $H_{4} P_{2} O_{6}$
36. $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{5}$
37. Both (1) and (2)
38. None of these
39. In which of the following halide, the $M-X$ bond lengths are not equal?
40. PCl_{3}
41. $N F_{3}$
42. $P F_{5}$
43. NCl_{3}
44. Solid PCl_{5} exist as
45. Dimmer $P_{2} C l_{10}$
46. $\left[P C l_{4}\right]^{+}\left[P C l_{6}\right]^{-}$
47. $\left(P C l_{3}\right)\left(C l_{2}\right)$
48. $P C l_{5}$ as such
49. The correct order of increasing stability is
50. $\mathrm{NH}_{3} \mathrm{PH}_{3} \mathrm{AsH}_{3}$
51. $\mathrm{NH}_{3} \mathrm{SbH}_{3} \mathrm{AsH}_{3} \mathrm{PH}_{3}$
52. $\mathrm{SbH}_{3} \mathrm{AsH}_{3} \mathrm{PH}_{3} \mathrm{NH}_{3}$
53. $\mathrm{AsH}_{3} \mathrm{AsH}_{3} \mathrm{NH}_{3} \mathrm{PH}_{3}$
54. The basic strength of hydrides of group 15 elements decreases in the order
55. $\mathrm{NH}_{3}>\mathrm{PH}_{3}>\mathrm{AsH}_{3}>\mathrm{SbH}_{3}$
56. $\mathrm{PH}_{3}>\mathrm{AsH}_{3}>\mathrm{SbH}_{3}>\mathrm{NH}_{3}$
57. $\mathrm{SbH}_{3}>\mathrm{PH}_{3}>\mathrm{AsH}_{3}>\mathrm{NH}_{3}$
58. $\mathrm{NH}_{3}>\mathrm{AsH}_{3}>\mathrm{PH}_{3}>\mathrm{SbH}_{3}$
59. Glacial phosphoric acid is
60. $\mathrm{H}_{3} \mathrm{PO}_{4}$
61. HPO_{3}
62. $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{6}$
63. $\mathrm{H}_{3} \mathrm{PO}_{2}$
64. P-P linkage is present in
65. Pyrophosphoric acid
66. Hypophosphoric acid
67. Peroxy phosphoric acid
68. Metaphosphoric acid
69. Dipole moment of the hydrides of group 15 elements decreases in the order
70. $\mathrm{AsH}_{3}>\mathrm{BiH}_{3}>\mathrm{SbH}_{3}>\mathrm{NH}_{3}>\mathrm{PH}_{3}$
71. $\mathrm{BiH}_{3}>\mathrm{SbH}_{3}>\mathrm{AsH}_{3}>\mathrm{PH}_{3}>\mathrm{NH}_{3}$
72. $\mathrm{NH}_{3}>\mathrm{PH}_{3}>\mathrm{AsH}_{3}>\mathrm{SbH}_{3}>\mathrm{BiH}_{3}$
73. $\mathrm{PH}_{3}>\mathrm{NH}_{3}>\mathrm{AsH}_{3}>\mathrm{SbH}_{3}>\mathrm{BiH}_{3}$
74. The correct order of decreasing acid strength of oxy acids of group 15 element is
75. $\mathrm{HNO}_{3}, \mathrm{H}_{3} \mathrm{SbO}_{4}, \mathrm{H}_{3} \mathrm{AsO}_{4}, \mathrm{H}_{3} \mathrm{PO}_{4}$
76. $\mathrm{H}_{3} \mathrm{PO}_{3}, \mathrm{H}_{3} \mathrm{AsO}_{4}, \mathrm{H}_{3} \mathrm{SbO}_{4}, \mathrm{HNO}_{4}$
77. $\mathrm{HNO}_{3}, \mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{H}_{3} \mathrm{AsO}_{4}, \mathrm{H}_{3} \mathrm{SbO}_{4}$
78. $\mathrm{HNO}_{3}, \mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{H}_{3} \mathrm{AsO}_{4}, \mathrm{H}_{3} \mathrm{SbO}_{4}$
79. Liquid ammonia is used in refrigeration because of its
80. High dipole moment
81. High heat of vaporization
82. Base
83. Stability
84. AgCl dissolves in $\mathrm{NH}_{4} \mathrm{OH}$ due to the formation of
85. AgOH
86. Ag
87. $\mathrm{Ag}_{2} \mathrm{O}$
88. $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Cl}$
89. Which of the following salts is used in the bead test for basic radicals?
90. $\mathrm{Na}\left(\mathrm{NH}_{4}\right) \mathrm{HPO}_{4} 4 \mathrm{H}_{2} \mathrm{O}$
91. $\mathrm{Na}_{2} \mathrm{HPO}_{4}$
92. $\left(\mathrm{NH}_{4}\right)_{2} \cdot \mathrm{FeSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
93. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{2} 2 \mathrm{H}_{2} \mathrm{O}$
94. The bond angle in PH_{3} is less than the bond angle in PF_{3}. This is attributed to
95. Enhanced repulsion due to presence of double bond in PF_{3}
96. Increased bond pair-bond pair repulsion due to multiple bond
97. Both 1 and 2
98. Displacement of electron cloud P-F bond towards F in PF_{3}
99. When orthophosophoric acid is heated to $600^{\circ} \mathrm{C}$ the product formed is
100. PH_{3}
101. $\mathrm{P}_{2} \mathrm{O}_{5}$
102. $\mathrm{H}_{3} \mathrm{PO}_{3}$
103. HPO_{3}
104. In $P_{4} O_{6}$, the number of oxygen atoms bonded to each phosphorus atom is
105. 1.5
106. 2
107. 3
108. 4
109. With respect to protonic acids, which of the following statements is correct?
110. PH_{3} is more basic than NH_{3}
111. PH_{3} is less basic than NH_{3}
112. PH_{3} is equally basic as NH_{3}
113. PH_{3} is amphoteric while NH_{3} is basic
114. There is very little difference in acid strength in the series $\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{H}_{3} \mathrm{PO}_{3}$ and $\mathrm{H}_{3} \mathrm{PO}_{2}$ because
115. Phosphorus in these acids exists in different oxidation states
116. Number of unprotonated oxygen responsible for increase of acidity due to inductive

Effect remains the same
3. Phosphorus is not a highly electronegative element
4. Phosphorus oxides are less basic

VA GROUP ELEMENTS (SUBTOPIC-I)

KEY

1) 3	$2) 3$	$3) 1$	$4) 3$	$5) 2$	$6) 4$	$7) 3$	$8) 1$	$9) 2$	10) 1
11$) 3$	$12) 2$	13) 3	14) 3	$15) 4$	$16) 1$	$17) 3$	$18) 3$	$19) 2$	$20) 3$
21$) 3$	$22) 2$	$23) 4$	$24) 1$	$25) 4$	$26) 4$	$27) 2$	$28) 3$	$29) 3$	$30) 3$
31$) 3$	$32) 3$	$33) 1$	$34) 1$	$35) 2$	$36) 4$	$37) 2$	$38) 3$	$39) 2$	$40) 3$
41$) 1$	$42) 2$	$43) 2$	$44) 3$	$45) 3$	$46) 2$	$47) 4$	$48) 1$	$49) 3$	$50) 4$
51$) 3$	$52) 2$	$53) 2$							

SUB TOPIC-I (SOLUTIONS)

1. In O^{+}exactly half filled orbitals are present and hence.
2. Due to small atomic size nitrogen have great tendency to donate electrons
3. DIAGRAM
4. As shows above
5. For $B F_{3} \mu=0$, for $N F_{3} \mu \neq 0$.
6. Due to presence of odd no of electrons.
7.
8.

23. Due to highest oxidation number.
29. $2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$
NO_{2} is reddish brown poisonous gas.
32. The structures $P_{5} O_{5} \& N_{2} O_{5}$ are difference.
37.

39. $2 \mathrm{PCl}_{5} \rightleftharpoons\left[\mathrm{PCl}_{4}\right]^{+}\left[\mathrm{PCl}_{6}\right]^{-}$
40. Down the group the stability of Hydrides decreases.
45. Down the group the acidic nature decreases
50. $\mathrm{H}_{3} \mathrm{PO}_{4} \xrightarrow[-\mathrm{H}_{2} \mathrm{O}]{35 \mathrm{C}^{\circ}} \mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7} \xrightarrow[-\mathrm{H}_{2} \mathrm{O}]{60{ }^{\circ} \mathrm{C}} \mathrm{HPO}_{3}$
51.

52. Due to more atomic radius.

SUB TOPIC-II (PRACTICE QUESTIONS)

1. $H_{3} \mathrm{PO}_{2}$ is the molecular formula of an acid of phosphorus, its name and basicity respectively is
2. Phosphorus acid and two
3. Hypophosphorous acid and two
4. Hypophosphorous acid and one
5. Hypophosphoric acid and two
6. NH_{3} has much higher b.p. than PH_{3} because
7. NH_{3} has larger molecular weight
8. NH_{3} undergoes umbrella inversion
9. NH_{3} forms hydrogen bond
10. NH_{3} contains ionic bonds whereas PH_{3} contains covalent bonds
11. Which of the following has least covalent $\mathbf{P}-\mathbf{H}$ bond?
12. PH_{3}
13. $\mathrm{P}_{2} \mathrm{H}_{6}^{2+}$
14. $P_{2} H_{5}^{+}$
15. PH_{4}^{+}
16. In nitrogen family, the H-M-H bond angle in the hydrides gradually becomes closer to $90^{\mathbf{0}}$ on going form \mathbf{N} to $\mathbf{S b}$. This shows that gradually
17. The basic strength of the hydrides increases
18. Almost pure s-orbitals are used for $\mathrm{M}-\mathrm{H}$ bonding
19. The bond energies $\mathrm{M}-\mathrm{H}$ bonds increase
20. The bond pairs of electrons become nearer to the central atom
21. The equivalent weight of phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ in the reaction

$$
\mathrm{NaOH}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{NaH}_{2} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \text { is }
$$

1. 25
2. 49
3. 59
4. 98
5. The number of P-O-P bonds in cyclic metaphosphoric acid is
6. Zero
7. Two
8. Three
9. Four
10. A metal X on heating in nitrogen gas gives Y, Y on treatment with $\mathbf{H}_{2} \mathrm{O}$ gives a colourless gas which when passed through CuSO_{4}, solution gives a blue colour, Y is
11. $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$
12. $M g_{3} N_{2}$
13. NH_{3}
14. Mgo
15. Bones glow in dark because
16. They contain shining material
17. They contain red phosphorus
18. They contain white phosphorus which under goes slow combustion in contact with air
19. White phosphorus changes to red phosphorus
20. In the compounds of the $\mathrm{POX}_{3}, \mathrm{P}$ atoms show multiple bonding of the type
21. $p \pi-p \pi$
22. $d \pi-d \pi$
23. $p \pi-d \pi$
24. None of these
25. Oxyacid of phosphorous (x) on heating to red hot temperature gives (y) a monobasic acid ofphosphorous. (y) when reacts with AgNO_{3} gives a white precipitate (\mathbf{z}). Then $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are respectively

X	Y	Z	
1.	$\mathrm{H}_{3} \mathrm{PO}_{3}$	HPO_{3}	AgPO_{3}
2.	$\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$	HPO_{3}	AgPO_{3}
3.	$\mathrm{H}_{3} \mathrm{PO}_{4}$	HPO_{3}	AgPO_{4}
4.	$\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$	$\mathrm{H}_{3} \mathrm{PO}_{4}$	AgPO_{4}

11. How many $\mathbf{P}-\mathbf{H}$ and $\mathrm{O}-\mathbf{H}$ bonds respectively, are present in $H_{4} P_{2} O_{7}$ molecule?
12. 1 and 3
13. 0 and 4
14. 4 and 0
15. 2 and 3
16. $X \stackrel{\mathrm{H}_{2} \mathrm{O}}{\stackrel{(}{2}} \mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7} \xrightarrow{825 \mathrm{~K}} Y$.

In the above sequence of reactions X and Y are respectively

1. $\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{H}_{3} \mathrm{PO}_{4}$
2. $\mathrm{HPO}_{3}, \mathrm{H}_{3} \mathrm{PO}_{4}$
3. $\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{HPO}_{3}$
4. $\mathrm{HPO}_{3}, \mathrm{HPO}_{3}$
5. $\mathrm{P}_{4} \mathrm{O}_{10} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} A \xrightarrow{\mathrm{H}_{2} \mathrm{O}} B \xrightarrow{\mathrm{H}_{2} \mathrm{O}} C$. (C) when heated with Ammonium molybdate in presence of HNO_{3}, a canary yellow precipitate is formed. Then $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are respectively
6. $\mathrm{HPO}_{3}, \mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}, \mathrm{H}_{3} \mathrm{PO}_{4}$
7. $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{6}, \mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}, \mathrm{H}_{3} \mathrm{PO}_{3}$
8. $\mathrm{H}_{3} \mathrm{PO}_{3}, \mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{HPO}_{3}$
9. $\mathrm{H}_{3} \mathrm{PO}_{2}, \mathrm{H}_{3} \mathrm{PO}_{3}, \mathrm{HPO}_{3}$
10. A and B are two gases ' A ' is identified with a glass rod dipped in $N H_{3}$ and the ' B ' is identified with a glass rod dipped in HCl. ' A ' and ' B ' are respectively
11. $\mathrm{HCl}, \mathrm{NO}_{2}$
12. $\mathrm{HCl}, \mathrm{NH}_{3}$
13. $\mathrm{NH}_{3}, \mathrm{HCl}$
14. $\mathrm{NH}_{3}, \mathrm{SO}_{2}$
15. $\mathrm{CaCO}_{3} \xrightarrow{\Delta} A+\mathrm{CO}_{2} ; A+$ coke $\rightarrow B$
$\mathrm{B}+\mathrm{N}_{2} \xrightarrow{\Delta} C+$ Graphite; $\mathrm{C} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} D$. Hence A,B,C and D are
16. $\mathrm{CaO}, \mathrm{CaC}_{2}, \mathrm{CaCN}_{2}, \mathrm{NH}_{3}$
17. $\mathrm{CaO}_{2}, \mathrm{CaO}, \mathrm{CaCN}_{2}, \mathrm{NH}_{3}$
18. $\mathrm{CO}_{2}, \mathrm{CO}, \mathrm{C}, \mathrm{CH}_{2} \mathrm{CH}$
19. $\mathrm{CaCN}_{2}, \mathrm{CaO}, \mathrm{NH}_{3}, \mathrm{CaC}_{2}$
20. $\quad A_{(s)} \xrightarrow{\Delta} B_{(s)}+X_{(g)} ; B_{(s)}+\operatorname{coke} \xrightarrow{\Delta} C_{(s)}+Y_{(g)} ; C_{(s)}+Z_{(g)} \rightarrow D_{(s)}+$ grahite :
$D_{(s)}+\mathrm{H}_{2} \mathrm{O} \rightarrow A_{(s)}+\mathrm{NH}_{3(g)}$ The gaseous products \mathbf{X}, \mathbf{Y} and \mathbf{Z} are
21. $\mathrm{N}_{2}, \mathrm{CO}, \mathrm{CO}_{2}$
22. $\mathrm{CO}_{2}, \mathrm{CO}, \mathrm{N}_{2}$
23. $\mathrm{CO}, \mathrm{CO}_{2}, \mathrm{NO}_{2}$
24. $\mathrm{CO}, \mathrm{CO}_{2}, \mathrm{NO}$
25.

List-I

$\begin{array}{lll}\text { A) } & \mathrm{HNO}_{3} & \text { 1) }-3,+5 \text { oxidation state } \\ \text { B) } & \mathrm{NH}_{4} \mathrm{NO}_{3} & \text { 2) }-1 / 3 \text { oxidation state } \\ \text { C) } & \mathrm{N}_{3} \mathrm{H} & \text { 3) }+5 \text { oxidation state } \\ \text { D) } & \mathrm{H}_{3} \mathrm{PO}_{3} & \text { 4) }+3 \text { oxidation state } \\ & & \text { 5) }+1 / 3 \text { oxidation state }\end{array}$
The correct match is

	A	B	C	D
1.	3	1	2	4
2.	5	2	3	4
3.	1	2	3	4
4.	4	3	2	5

18.

A) $\quad \mathbf{H}_{3} \mathrm{NO}_{2}$
B) $\quad \mathbf{H}_{3} \mathrm{PO}_{3}$
C) $\quad \mathbf{H}_{3} \mathrm{PO}_{4}$
D) $\quad \mathbf{H}_{4} \mathbf{P}_{2} \mathrm{O}_{\mathbf{6}}$

1. 3
2. 2
3. 2
4. 1

2
19.

List-I
A) $\quad \mathbf{N H}_{3}$
B) $\quad \mathbf{N}_{2} \mathrm{O}_{5}$
C) $\quad \mathrm{PC} / 5$
D) NH_{4}^{+}

Co
2

4

5
.
B
A
C
D

The correct match is
A
B
4
2
3. 4
5
4. 2 5
C
D

1. 1
2. 1

List-II

1) $\mathrm{sp}^{3} \mathrm{~d}$, Trigonal bipyramidal
2) sp^{3}, Terahedral
3) sp , linear
4) $\mathrm{sp}^{\mathbf{3}}$, pyramidal
5) Two coordinate and six covalent
6) tribasic
7) Mono basic
8) Tetrabasic
9) Di basic
10) Zero basicity The correct match is

List-II

5

1
3

4

3
4

20. The correct statement is

1. Most reactive and most poisonous V group element is white phosphorus molecule
2. High reactivity of white phosphorus is due to large internal strain in P_{4} molecule
3. Bismuth is mono atomic 4. All the above

21. The correct statement is

1. High reactivity of white phosphorus is due small bond angle $\left(60^{\circ}\right)$ in P_{4} molecule which causes large strain
2. Low reactivity of red phosphorus is due to polymeric structure
3. Black phosphorus conducts electricity due to presence of delocalized π electrons
4. All the above
5. The wrong statement about VA group Hydrides is
6. VA group elements form both tri and penta Hydrides
7. The decreasing order of stability of VA group hydrides in $\mathrm{NH}_{3}>\mathrm{PH}_{3}>\mathrm{AsH}_{3}>\mathrm{SbH}_{3}>\mathrm{BiH}_{3}$
8. The increasing order of reducing power among VA group Hydrides is

$$
\mathrm{NH}_{3}<\mathrm{PH}_{3}<\mathrm{AsH}_{3}<\mathrm{SbH}_{3}<\mathrm{BiH}_{3}
$$

4. The increasing order of poisonous nature of VA group Hydrides is

$$
\mathrm{NH}_{3}<\mathrm{PH}_{3}<\mathrm{AsH}_{3}<\mathrm{SbH}_{3}<\mathrm{BiH}_{3}
$$

23. Bottle of PCl 3 is kept stoppered because it

1. Explodes
2. Gets oxidized
3. is volatilized
4. Reacts with moisture
5. Structural formula of pyrophosphoric acid is
1) $\mathrm{O}=\underset{\mathrm{OH}}{\stackrel{\mathrm{OH}}{\mathrm{P}}} \underset{\mathrm{O}}{\mathrm{P}}-\underset{\mathrm{OH}}{\mathrm{O}}-\stackrel{\mathrm{OH}}{\mathrm{P}}=\mathrm{O}$

2) $\mathrm{O}=\underset{\mathrm{OH}}{\substack{\mathrm{OH} \\ \mathrm{OH}}} \stackrel{\substack{\mathrm{OH} \\ \mathrm{O}}}{\mathrm{O}} \mathrm{O}-\mathrm{O}-\mathrm{O}$

25.

List-I
A) Haber's process

1) Nitric acid
B) Ostwald's process
2) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$
C) Contact process
3) $\mathrm{Ammonia}+\mathrm{CaCO}_{3}$
D) Cyanamide process
4) Sulphuric acid
5) Perdisulpuric acid

The correct match is
A
B
C
D

1. 1
4
5
4
3
1
A
2. 2
1
4
3
3. 5
2
4. 1

3
2
4

List-II

26.

List-I
List-II
A) Phosphorite

1) KNO_{3}
B) Bengal salt petre
2) $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}+2\left(\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{o}\right)$
C) flourapatite
3) NaNO_{3}
D) Superphosphate of lime
4) $3 \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} \mathrm{CaF}_{2}$
5) $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$

The correct match is

	A	B	C	D
1.	1	2	3	5
2.	2	4	3	2
3.	4	3	5	2
4.	5	1	4	2

27. $\quad \mathrm{PCl}_{3}$ on hydrdysis gives (\mathbf{X}) and (Y). When PCl_{3} reacts with oxialic acid gives (Z) and libertes CO_{2} and CO. (Y) gives dense fumes with NH_{3}. Then (X) and (Z) are
28. $\mathrm{H}_{3} \mathrm{PO}_{3} ; \mathrm{H}_{3} \mathrm{PO}_{4}$
29. $\mathrm{H}_{3} \mathrm{PO}_{4} ; \mathrm{H}_{3} \mathrm{PO}_{3}$
30. $\mathrm{H}_{3} \mathrm{PO}_{3} ; \mathrm{H}_{3} \mathrm{PO}_{2}$
31. $\mathrm{H}_{3} \mathrm{PO}_{3} ; \mathrm{H}_{3} \mathrm{PO}_{3}$
32. Phosphine is not obtained by the reaction when
33. White P is heated with NaOH
34. Red P is heated with NaOH
35. $\mathrm{Ca}_{3} \mathrm{P}_{2}$ reacts with water
36. $\mathrm{P}_{4} \mathrm{O}_{6}$ is boiled with water
37. Brown color in HNO_{3} can be removed by
38. Adding Mg Powder
39. Boiling the acid
40. Passing NH_{3} through acid
41. Passing air through warm acid
42. "Thomas slag" which is used as a fertilizer is composed of
1) CaCO_{3} and CaSO_{4}
2. CaO and SiO_{2}
3. $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ and CaSiO_{3}
4. MgCO_{3} and $\mathrm{Al}_{2}\left(\mathrm{SiO}_{3}\right)_{3}$
5. $\quad P_{4} \xrightarrow{{\text { Limited } O_{2}}} X \xrightarrow{C_{2}} Y+Z$ In this sequence, Y and Z are respectively
6. PCl_{3} and PCl_{5}
7. POCl_{3} and $\mathrm{PO}_{2} \mathrm{Cl}$
8. PCl_{2} and POCl_{3}
9. POCl_{3} and PCl_{3}
10. When nitric acid is treated with $P_{2} O_{5}$ gives nitrogen compound (X). When P_{4} is oxidized with conc. HNO_{3} gives nitrogen compound (\mathbf{Y}). (X) and (Y) are respectively
11. NO and $\mathrm{N}_{2} \mathrm{O}_{5}$
12. $\mathrm{N}_{2} \mathrm{O}_{5}$ and $\mathrm{N}_{2} \mathrm{O}$
13. $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2}
14. $\mathrm{N}_{2} \mathrm{O}_{5}$ and NO_{2}
15. White phosphorus is converted into red phosphorus by heating it
16. To $250^{\circ} \mathrm{C}$ in a current of air
17. In an inert atmosphere to $250^{\circ} \mathrm{C}$ in presence of a trace of iron
18. In an inert atmosphere to $250^{\circ} \mathrm{C}$ in presence of a trace of iodine
19. In oxygen to $250^{\circ} \mathrm{C}$ in presence of a trace of iodine.
20. The $\mathbf{C N}$ ion and \mathbf{N}_{2} are isoelectronic. But in constrast to $\mathrm{CN}^{-}, \mathbf{N}_{2}$ is chemically inert because of
21. Low bond energy
22. Absence of bond polarity
23. Unsymmetrical electron distribution
24. Presence of more number of electrons in bonding orbitals
25. The BCl_{3} is planar molecule wherease, NCl_{3} is pyramidal because
26. $\mathrm{N}-\mathrm{Cl}$ bond is more covalent than $\mathrm{B}-\mathrm{Cl}$ bond
27. $\mathrm{B}-\mathrm{Cl}$ bond is more polar than $\mathrm{N}-\mathrm{Cl}$ bond
28. Nitrogen atom is smaller than boron
29. BCl_{3} has no lone pair but NCl_{3} has a lone pair electron
30. Nitrogen form N_{2} but phosphorous is converted into P_{4} form P_{2}. The reason for this is:
31. Triple bond is present between phosphorous atoms
32. $p \pi-p \pi$ bonding is weak
33. $p \pi-p \pi$ bonding is strong
34. Multiple bond is formed easily
35. Copper metal in treatment with dilute $\mathbf{H N O}_{3}$ produces $\mathbf{1}$ gas (X). (X) when passed though acidic solution of stannous chloride, a nitrogen containing compound (Y) is obtained. (Y) on reaction with nitrous acid produces a gas (Z). Gas (Z) is
1) NO
2) N_{2}
3) NO_{2}
4) $\mathrm{N}_{2} \mathrm{O}$
38. Pure nitrogen can be prepared from
39. $\mathrm{NH}_{4} \mathrm{OH}$
40. $\mathrm{NH}_{4} \mathrm{NO}_{2}$
41. $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$
42. $\mathrm{Ca}_{3} \mathrm{~N}_{2}$
43. Which statement is not correct for nitrogen?
44. It has a small size
45. It is a typical non-metal
46. It does not readily react with O_{2}
47. d-orbitals are available for bonding
48. The element which catches fire in air at $30^{\circ} \mathrm{C}$ and is stored under water is
49. Sodium
50. Phosphorus
51. Magnesium
52. Zinc
53. Which of the following phosphorus is most stable?
54. White
55. Red
56. Black
57. All stable
58. By the action of hot conc $\mathrm{H}_{2} \mathrm{SO}_{4}$, Phosphorus changes to
59. phosphorous acid
60. pyrophosphoric acid
61. metaphosphoric acid
62. orthophosphoric acid
63. Each of the following is true for white and red phosphorus except that they
64. Can be oxidised heating in air
65. Consists of same kind of atoms
66. White phosphorus $\left(P_{4}\right)$ does not contain
67. Six P - P single bond
68. Four lone pairs of electrons
69. Are both soluble in CS_{2}
70. Can be converted into one another
71. Four $\mathrm{P}-\mathrm{P}$ single bond
72. $\mathrm{P}-\mathrm{P}-\mathrm{P}$ angle of 60°
73. In NH_{3} and PH_{3} the common is
74. Basic nature
75. odour
76. Combustibility
77. None of these
78. The number of $\mathbf{P}-\mathbf{O}-\mathbf{P}$ bonds in cyclic metaphosporic acid is
79. Zero
80. Three
81. Two
82. Four
83. In Birkeland Eyde process, the raw material used is
84. Air
85. NO_{2}
86. HNO_{3}
87. NH_{3}
88. Which oxide of nitrogen is colored gas?
89. $\mathrm{N}_{2} \mathrm{O}$
90. NO_{2}
91. $\mathrm{N}_{2} \mathrm{O}_{5}$
92. NO
93. Which of the following compounds do not exist?
94. $\mathrm{N}_{4}, \mathrm{NCl}_{5}, \mathrm{PO}_{2}$
95. $\mathrm{N}_{2}, \mathrm{NCl}_{3}, \mathrm{NO}_{2}$
96. $\mathrm{PCl}_{5}, \mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{NCl}_{3}$
97. $\mathrm{PO}_{2}, \mathrm{P}_{4}, \mathrm{NCl}_{3}$
98. Phosphine is produced by adding water to
99. CaC_{2}
100. HPO_{3}
101. $C a_{3} P_{2}$
102. $P_{4} O_{10}$
103. What would happen when a solution of potassium chromate is treated with an excess of dilute nitric acid?
104. CrO_{4}^{2-} is reduced to +3 state of Cr
105. CrO_{4}^{2-} is oxidized to +7 state of Cr
106. $\mathrm{Cr}_{5} \mathrm{O}_{7}^{2-}$ and $\mathrm{H}_{2} \mathrm{O}$ are formed
107. Cr^{3-} and $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ are formed
108. In the reaction, $\mathrm{HNO}_{3}+\mathrm{P}_{4} \mathrm{O}_{10} \rightarrow 4 \mathrm{HPO}_{3}+x$, the product x is
109. NO_{2}
110. $\mathrm{N}_{2} \mathrm{O}_{5}$
111. $\mathrm{N}_{2} \mathrm{O}_{3}$
112. $\mathrm{H}_{2} \mathrm{O}$
113. Assertion: Red phosphorus is less volatile than white phosphorus.

Reason: PCl_{5} is solid state consisting of tetrahedral PCl_{5}^{+}cation and octahedral PCl_{6}^{-}anion.

1. Statement I is true; Statement II is true; Statement II is a correct explanation for Statement I.
2. Statement I is true; Statement II is true; Statement II is not a correct explanation for Statement I.
3. Statement I is true; Statement II is false. 4. Statement I is false; Statement II is true.
4. Assertion: The is a very little difference in acidic strengths of $H_{3} \mathrm{PO}_{4}, \mathrm{H}_{3} \mathrm{PO}_{3}$ and $\mathrm{H}_{3} \mathrm{PO}_{2}$.

Reason: Number of unprotonated oxygen responsible for increase of acidic strength due to inductive effect remains the same.

1. Both Assertion and Reason are true and Reason is the correct explanation of Assertion.
2. Both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
3. Assertion is true but Reason is false.
4. Both Assertion and Reason are false
5. Assertion: $P C l_{5}$ and $P b C l_{5}$ are thermally unstable.

Reason: They produce same gas on thermal decomposition.

1. Both Assertion and Reason are true and Reason is the correct explanation of Assertion.
2. Both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
3. Assertion is true but Reason is false.
4. Both Assertion and Reason are false
5. Assertion: Red phosphorus is less volatile then white phosphorus.

Reason: Red phosphorus has a discrete tetrahedral structure.

1. Both Assertion and Reason are true and Reason is the correct explanation of Assertion.
2. Both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
3. Assertion is true but Reason is false. 4. Both Assertion and Reason are false

VA GROUP ELEMENTS (SUBTOPIC-II)

KEY

1) 3	$2) 3$	$3) 2$	$4) 4$	$5) 4$	$6) 3$	$7) 2$	$8) 3$	$9) 3$	10) 2
11$) 2$	$12) 3$	13) 1	$14) 2$	$15) 1$	$16) 2$	$17) 1$	18) 2	$19) 3$	$20) 4$
21$) 4$	$22) 1$	23)*	$24) 4$	$25) 2$	$26) 4$	$27) 4$	$28) 2$	$29) 4$	$30) 3$
31$) 2$	$32) 1$	$33) 3$	$34) 2$	$35) 2$	$36) 2$	$37) 4$	$38) 2$	$39) 4$	$40) 2$
41$) 2$	$42) 4$	$43) 2$	$44) 2$	$45) 1$	$46) 2$	$47) 1$	$48) 2$	$49) 1$	$50) 3$
51$) 3$	$52) 2$	$53) 2$	$54) 1$	$55) 2$	$56) 3$				

VA GROUP ELEMENTS SUB TOPIC-II (SOLUTIONS)

1.

2. NH_{3} have ability to form intermoleculere hydrogen bonds.
5. $\mathrm{NaOH}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{NaH}_{2} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O}$

$$
\mathrm{Eq} \cdot \mathrm{wt}=\frac{98}{1}=98
$$

6.

7. $\frac{3 M g}{x}+N_{2} \rightarrow \frac{M g_{3} N_{2}}{y}$
$\mathrm{Mg}_{3} \mathrm{~N}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{Mg}(\mathrm{OH})_{2}+\mathrm{NH}_{3} \uparrow$
$\mathrm{CuSO}_{4}+\mathrm{NH}_{3} \rightarrow\left[\mathrm{CuSO}_{4} 6 \mathrm{NH}_{3}\right]$

Blue colour
10. $\frac{\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O7}}{X} \xrightarrow[-\mathrm{H}_{2} \mathrm{O}]{870 \mathrm{~K}} \frac{\mathrm{HPO}_{3}}{Y}$
$\mathrm{HPO}_{3}+\mathrm{AgNO}_{3} \rightarrow \frac{\mathrm{AgPO}_{3}}{2}+\mathrm{HNO}_{3}$

14. $\mathrm{HCl}+\mathrm{NH}_{3} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}$
$\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
15. $\mathrm{CaO}+\mathrm{COCa} \rightarrow \mathrm{CaC}_{2} \mathrm{O}$
$\mathrm{CaC}_{2}+\mathrm{N}_{2} \rightarrow \mathrm{CaCN}_{2}+\mathrm{C}$
17. A) $\mathrm{H}_{\stackrel{+5}{N O}}^{3}$
B) $\quad \mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow \stackrel{-3}{N} \mathrm{H}_{4}^{+}+\stackrel{+5}{\mathrm{~N}} \mathrm{O}_{3}^{-}$
C) $\quad N_{3} H-+1 / 3$
D) $\quad \mathrm{H}_{3} \stackrel{+5}{P} O_{3}-$
19. A) $\mathrm{NH}_{3} \rightarrow S p^{3}$, Pyramidal
B)

C) $\quad \mathrm{PCl}_{5} \rightarrow S p^{3} d$, Trigonal bipyramidal
D) $\quad \mathrm{NH}_{4}^{+} \rightarrow S p^{3}$, Telianedal
27. $\mathrm{PCl}_{3}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \frac{\mathrm{H}_{3} \mathrm{PO}_{3}}{X}+\frac{3 \mathrm{HCl}}{Y}$

$$
\mathrm{PCl}_{3}+2 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \rightarrow \frac{\mathrm{H}_{3} \mathrm{PO}_{3}}{Z}+\mathrm{CO}_{2}+3 \mathrm{CO}+3 \mathrm{HCl}
$$

36. $\mathrm{PCl}_{3}+3 \mathrm{~N}_{2} \mathrm{O} \rightarrow(x) \mathrm{H}_{3} \mathrm{PO}_{3}+3 \mathrm{HCl} .(y)$

$$
\mathrm{PCl}_{3}+3 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \rightarrow \frac{\mathrm{H}_{3} \mathrm{PO}_{3}}{(2)}+3 \mathrm{CO}_{2}+3 \mathrm{CO}+3 \mathrm{HCl}
$$

$$
\mathrm{HCl}+\mathrm{NH}_{3} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}
$$

37. $\mathrm{Cu}+\mathrm{dil} \mathrm{HNO}_{3} \rightarrow \frac{\mathrm{No}}{x} \xrightarrow{\mathrm{SnCl}_{2} / \mathrm{HCl}} \xrightarrow[y]{\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HC},} \xrightarrow{\mathrm{HNO}_{2}} \frac{\mathrm{~N}_{2} \mathrm{O}}{z}$
38. Red phosphorous is most stable.
39. $\mathrm{Ca}_{3} \mathrm{P}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{CalOH}_{2}+2 \mathrm{PH}_{3}$
