UNIT VI --General Principles and process of Isolation of elements

METALLURGY

SUBTOPIC-I (PRACTICE QUESTIONS)

The most abundant metal on the surface of the earth is

1.

	I. Fe	2. Al		
	3. Ca	4. Na		
2.	The most abundant	element in the eart	h's crust (by weight) is	
	1. Si	2. Al		
	3. O	4. Fe	40	
3.	Which of the following	ing metal occurs in	native state?	
	1. Ca	2. Au		
	3. Zn	4. Al		
4.	The earthy impuriti	es present in the mi	ineral are called	
	1. Flux	2. Slag		
	3. Gangue	4. Refractor	ry material	
5.	During smelting, an	additional substan	ce is added which combines	with impurities to
	from a fusible produ	ict. It is known as		
	1. Slag	2. Mud		
	3. Gangue	4. Flux		
5.	In metallurgy, flux i	s a substance used	to convert	
	1. Insoluble impuritie	es to a fusible mass	2. Minerals into silicates	
	3. Soluble particles in	nto insoluble particle	s 4. Fusible impurities to ir	nfusible impurities

7.	When a metal is to be silica, then	e extracted from its	ore and the gangu	e associated with the ore is
	1. An acidic flux is ac	lded	2. A basic	flux is added
	3. Both acidic and ba	sic and basic fluxes are	e added 4. Neither	of them is needed
8.	Which of the following	ng is not a basic flux	?	
	1. <i>CaCO</i> ₃	2. Lime		
	3. <i>SiO</i> ₂	4. CaO		
9.	An example of halid	e ore is		
	1. Galena	2. Bauxite	46	
	3. Cinnabar	4. Cryolite		
10.	Horn silver is			
	1. Carbonate mineral	2. Chloride m	ineral	
	3. Sulphate mineral	4. Phosphate	mineral	
11.	Willemite is a			
	1. Sulphide mineral	2. Silicate mi	neral	
	3. Carbonate mineral	4. Oxide mine	eral	
12.	Which of the following	ng is a basic carbona	te mineral?	
4	i) Malachite	ii) Bauxite	iii) Azurite	iv) Celestite
	1. Both i & iii	2. Both ii & iv	3. Both i & iv	4. Both iii & iv
13.	Method used for the	concentration of ting	stone ore is	
	1. Hand picking		2. Froth flotation	
	3. Magnetic separation	n	4. Leaching	

14.	The sulphide ores a	re generally concentra	ated by
	1. Gravity separation		2. Froth flotation process
	3. Magnetic separation	on	4. Liquation
15.	Froth floatation pro	cess is based on:	
	1. Wetting properties	of ore particle	2. Specific gravity of ore particles
	3. Magnetic propertie	es of ore particles	4. Electrical properties of ore particles
16.	In the froth floatation	on process of concent	ration of ores, the ore particles float because
	they:		
	1. Are light		
	2. Are insoluble		
	3. Have the surface v	which is not wetted easi	ly
	4. Have a constant el	ectrical charge	
17.	The oil used in the f	roth floatation metho	d for the purification of ores is
	1. Coconut oil	2. Kerosene o	il
	3. Mustard oil	4. Pine oil	
18.	The olive oil in fortl	n floatation process is	called
	1. Frothing agent	2. Collecting	agent
4	3. Conditioning	4. Lubricating	gagent
19.	The collecting agent	in froth floatation pr	rocess is
	1. Sodium ethyl xant	hate	3. Pine oil
	3. Lime		4. Water
20.	The magnetic impur	rity present in cassite	rite ore is
	1. Silica	2. Wolframite	
	3. <i>SnO</i> ₂	4. Caly	
		www.sakshie	ducation.com

21.	Heating of ore in th	ne absence of air belov	w its melting point is c	ealled		
	1. Leaching	2. Roasting	3. Smelting	4. Calcination		
22.	The role of calcinat	tions in metallurgical	operations is			
	1. To remove moistu	ire	2. To decompose car	bonate		
	3. To drive off organ	nic matter	4. All the above			
23.	Which of the follow	ving reactions is an ex	ample for calcination	s process?		
	$1. \ 2Ag + 2HCl + (O$	$) \rightarrow 2AgCl + H_2O$	$2. \ 2Zn + O_2 \rightarrow 2ZnO$			
	$3. \ 2ZnS + 3O_2 \rightarrow 2Z$	$ZnO + 2SO_2$	4. $MgCO_3 \rightarrow MgO +$	CO_2		
24.	Heating of metal py	yrites to convert them	into oxides of metal i	n the presence of air is		
	called			,		
	1. Smelting	2. Calcination	3. Liquation	4. Roasting		
25.	Leaching process is one stage in the metallurgy of					
	1. Zinc	2. Iron	3. Aluminium	4. Copper		
26.	The common method	od of extraction of me	tals from oxide ores is	s		
	1. Reduction with ca	arbon	2. Reduction with hy	drogen		
	3. Reduction with al	uminium	4. Electrolytic method			
27.	In electro-refining	of metal the impure n	netal is made the anod	le a strip pure metal, the		
4	cathode, during the	e electrolysis an aqueo	ous solution of a comp	lex metal salt. This method		
	can not be used for	refining of				
	1. Silver	2. Copper	3. Aluminium	4. Sodium		
28.	An ore after levigar	tion is found to contai	n basic impurities. Th	ne flux which can be used		
	during smelting is					
	1. <i>SiO</i> ₂	2. <i>CaCO</i> ₃	3. Dil HCl	4. CaO and SiO_2		

29.		_	re metals which is b	pased upon the phenomenon
	of electrolysis is cal	lled		
	1. Electrorefining	2. Hydrometallurgy	3. Poling	4. Liquation
30.	The phenomenon of	of removing layrers of	basic oxides form r	netals before electroplating
	called.			
	1. Galvanising	2. Anodising	3. Picking	4. Poling
31.	Glauber salt is			
	1. hepta hydrate	2. Deca hydrate	3. Penta hydrate	4. Dehydrate
32.	Gelena on heating	in limited supply of ai	r gives lead metal.	This is known as
	1. Smelting	2. Calcination 3. S	Self reduction 4. S	Sulphatizing roasing
33.	Column-I	Column-II		
	(Metals)	(Ores)	2	
	A) Tin	1) Calamine		
	B) Zinc	2) Cassiterit	e	
	C) Titanium	3) Cerrusite	,	
	D) Lead	4) Rutile		
	A	ВС	D	
	1) 1	2 3	4	
	2) 2	1 4	3	
.4	3) 4	3 2	1	
	4) 2	1 3	4	

34. Match the following

List-II List-II

Metallurgical process Main change

- A) Smelting 1) in the absence of air ore decomposes
- B) Roasting 2) the ore generally is converted into a soluble compound
- C) Calcination 3) electrolysis takes place
- D) Leaching 4) Oxidation and the product i solid state
 - 5) Reduction and the product (metal or its sulphate) as liquid

	A	В	C	D
1)	5	4	1	2
2)	2	3	4	Y
3)	3	1	5	2
4)	5	2	1	3

- 35. Froth flotation process used for the concentration of sulphide ore
 - a) Is based on the difference in wettability of different minerals
 - b) Uses sodium ethyl xanthate, $C_2H_5OCS_2$ Na as collector
 - c) Uses NaCN as depressant in the mixture of ZnS and PbS when ZnS forms soluble complex and PbS forms froth
 - 1. (a), (b) only correct

2. (b), (c) only correct

3. (a), (c) only correct

- 4. (a), (b), (c) are correct
- 36. Choose the correct code regarding Roasting process
 - I) It is the process of heating ore in air to obtain the oxide
 - II) It is an exothermic process
 - III) It is used for hydrated oxide and oxy salt ore
 - IV) It is used after the concentration of ore

	1. I, II ar	nd III 2. I	II and IV	3. I, III and IV	4. I, II, III and IV	
37.	In van Aı	rkel method, If	, is introduced	at 1700K over imp	ure metal, the product will be	
	1. Iodide	of the metal		2. No reaction take	es place	
	3. Impurit	ies react with iod	ine	4. Metal doesn't re	eact	
38.	Match th	e following				
	List-I		List-II			
	Dressing	methods	Principle in	volved		
	A) Wash	ing with water	1) Fusibility	difference		
	B) Forth	floatation	2) density d	2) density difference3) Wetting difference4) Colour, size etc. of ore particulars difference		
	C) Hand	picking	3) Wetting			
	D) Liqua	tion	4) Colour, s			
			5) Magnetic property difference			
	A	В	С	D		
	1) 3	1	4	2		
	2) 5	2	1	3		
	3) 2	3	4	1		
	4) 3	2	5	4		
39.	The chem	nical formula of	feldspar is			
	1. KAlSi ₃ 0	Ο ₈ 2. Λ	Ja_3AlF_6			
	3. NaAlO	4. K	$S_2SO_4.Al_2(SO_4)$	$_{3}.4Al(OH)_{3}$		

40. Match the following

List-I

List-II

- A) Flespar
- I) $[Ag_3SbS_3]$
- B) Absestos
- II) $Al_2O_3.H_2O$
- C) Pyrargyrite
- III) $MgSO_4.H_2O$
- D) Diaspore
- **IV**) $KAlSi_3O_8$
- \mathbf{V}) $CaMg_3(SiO_3)_4$

The correct answer is

A

В

 \mathbf{C}

D

1) IV

V

II

Ì

2) IV

V

I

III

II

II

Ι

3) IV

I

4) II

V

IV

41. Which of the following factors is of no significance for roasting sulphide ores to the oxides and not directly?

- 1. Metal sulphides are thermodynamically more stable than CS_2
- 2. CO_2 is thermodynamically more stable than CS_2
- 3. Metal sulphides are less stable than the corresponding oxides
- 4. CO_2 is more volatile than CS_2

42. Assertion: Ores are generally converted into oxides, prior to reduction.

Reason: Metal oxides can be easily reduced.

- 1. If both assertion and reason are correct, and reason is the correct explanation of the assertion
- 2. If both assertion and reason are correct, but reason is not the correct explanation of the assertion
- 3. If assertion is correct but reason is incorrect
- 4. If assertion is incorrect but reason is correct

43. Assertion: In froth floatation process sodium ethyl xanthate is used as collector

Reason: Sulphide ores are water soluble.

- 1. If both assertion and reason are correct, and reason is the correct explanation of the assertion
- 2. If both assertion and reason are correct, but reason is not the correct explanation of the assertion
- 3. If assertion is correct but reason is incorrect
- 4. If assertion is incorrect but reason is correct

44. Assertion: Lead, tin and bismuth are purified by liquation method.

Reason: Lead, tin and bismuth have low m.p. as compared to impurities.

- 1. If both assertion and reason are correct, and reason is the correct explanation of the assertion
- 2. If both assertion and reason are correct, but reason is not the correct explanation of theassertion3. If assertion is correct but reason is incorrect
- 4. If assertion is incorrect but reason is correct

45. Assertion: All the ores are mineral Reason: Ores contains metals combined state.

- 1. If both assertion and reason are correct, and reason is the correct explanation of the assertion
- 2. If both assertion and reason are correct, but reason is not the correct explanation of theassertion3. If assertion is correct but reason is incorrect
- 4. If assertion is incorrect but reason is correct

METALLURGY

SUBTOPIC-I (KEY)

1) 2	2) 3	3) 2	4) 3	5) 4	6) 1	7) 2	8) 3	9) 4	10) 2
									477
11) 2	12) 1	13) 3	14) 2	15) 1	16) 3	17) 4	18) 1	19) 1	20) 2
21) 4	22) 4	23) 4	24) 4	25) 3	26) 1	27) 2	28) 1	29) 1	30) 3
31) 2	32) 3	33) 2	34) 1	35) 4	36) 2	37) 2	38) 3	39) 1	40) 2
								4	
41) 3	42) 3	43) 3	44) 1	45) 3					
						. 4			

SUBTOPIC-I SOLUTIONS

- 1. Al-7.28% by weight.
- $2. \qquad O > Si > Al > Fe$
- 3. Au, Pt, Pd are occur is native state.
- 6. Flux is added to convert insoluble impurities to a fusible mass.
- 9. Cryolyte is $Na_3AlF_6(or)3NaF:AlF_3$
- 13. Tinstone is SnO_2
- 18. Olive oil in the froth floatation process act as Frothing agent.
- 23. $MgCO_3 \xrightarrow{\Delta} MgO + CO_2$
- 26. Reduction with carbon.

$$MgO + C \rightarrow Mg + CO$$

31. Glanber salt - $Na_2SO_410H_2O$

33.	Calamine	- ZnCO ₃

Cayreterite

Cerruyite - *PbCO*₃

- SnO_2

Rutile -

39. Feld SpO_4 - $KAlSi_3Og$

SUBTOPIC-III (PRACTICE QUESTIONS)

- 1. Bauxite is boiled with aqueous NaOH solution. Sodium metal aluminate solution is formed. This part in the metallurgy aluminium is called
 - 1. Liquation
- 2. Amalgamation
- 3. Leaching
- 4. Calcination
- 2. When Baxuite is heated with NaOH solution, the water soluble compound formed is
 - 1. NaAlO₂
- 2. Na_3AlO_3
- 3. $Al(OH)_3$
- 4. Al_2O_3
- 3. A mixture of White Bauxite powder and coke is heated in nitrogen gas very strongly. The products are
 - 1. Al_2O_3, C_2N_2

2. $Al(NO_3)_3$, CO

3. AlN, CO, Si vapour

- 4. $Al_2(CO_3)_3, N_2O$
- 4. Aluminium is obtained by the electrolysis of pure Al_2O_3 dissolved in
 - 1. Alummina
- 2. Bauxite
- 3. Cryolite
- 4. Feldspar
- 5. In the electrolysis of alumina cryolite is added to
 - 1. Lower the melting point of alumina
- 2. Increase the electrical conductivity
- 3. Minimise the anode effect
- 4. Remove impurities from alumina

6.	In the extraction of	aluminium the electro	olyte is	
	1. Fused cryolite with	n felspar	2. Fused cryolite with	n fluorspar
	3. Pure alumina in m	olten cryolite with fluo	prospar	
	4. Pure alumina with	bauxite and moleten co	ryolite	
7.	Metal extracted from	m sea water is		
	1. Be	2. Mg	2. Ba	4. Ca
8.	The formula of Dolo	omite is		
	1. $MgCO_3.CaCl_2$	2. $MgCO_3.CaCO_3$	3. $MgCO_3.CaSO_4$	4. $MgCl_2.CaCO_4$
9.	Composition of carr	nallite is		
	1. $CaCO_3.MgCO_3$	2. $MgCl_2$. $KCl.6H_2O$	3. $Al_2O_3.2H_2O$	$4. MgSO_4.7H_2O$
10.	Hydrated magnesiu	m chloride becomes a	nhydrous salt when i	s is heated
	1. With P_4O_{10}		2. With anhydrous <i>C</i>	$laCl_2$
	3. In dry HCl gas		4. With conc. H_2SO_4	
11.	Anhydrous Magnes	ium chloride can be p	prepared by heating A	$MgCl_2.2H_2O$
	1. in a current of dry	HCI	2. With carbon	
	3. unit it fuses		4. With lime	
12.	The formula of the	most abundant salt of	sodium in nature is	
	1. Potassium	2. Sodium	3. Calcium	4. Lithium
13.	Tincal contains mai	nly		
7	1. NaNO ₃	2. $Na_2B_4O_7.10H_2O$	3. Na_2CO_3	4. <i>Na</i> ₂ <i>SO</i> ₄
14.	In Down's process a	small amount of KC	l is added to NaCl	
	1. To decrease meltin	ng point of NaCl 2. To	o increase electrical Co	onductivity
	3. To maintain electri	ical contact 4. To	prevent oxidation of s	sodium metal formed

15. Goldsmith thermitt process involves in the following reaction

1.
$$Cr_2O_3 + 2Al \rightarrow 2Cr + Al_2O_3$$

2.
$$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_3$$

3.
$$MoO_3 + 3H_2 \xrightarrow{IR} Mo + 3H_2O$$

4.
$$2NiO + [H_2 + CO] \xrightarrow{300^{0}C} 2Ni + [H_2O + CO_2]$$

16. In the purification of "Al" by Hoop's process the correct statement is

- 1. Electrolytic cell is iron cell and it it contains three layer mass
- 2. under layer is pure Al and Carbon rods in it are cathode and the bottom layer contains impure Al and carbon lining of the cell is anode
- 3. Electrolyte is the middle layer with fused mixture of flouri of Na, Al Ba
- 4. All the above

17. Observer the following statements regarding purification of bauxite:

- I) During Hall's process, silica, is removed as Si (vapour)
- II) Bauxite ore contaminated with Fe_2O_3 is purified in Baeyer's process
- III) During Serpeck's proess, AlN is formed the correct answer is
- 1. I, II and III are correct

- 2. Only I and II are correct
- 3. Only I and III are correct
- 4. Only II and III are correct

18. Assertion (A): Anhydrous $MgCl_2$ is prepared by heating $MgCl_2.6H_2O$ is a current of HCl gas.

Reason (R): Presence of HCl gas checks up the hydrolysis of $MgCl_2$ by its water or crystallization.

- 1. Both A and R are true and R is correct explanation of A
- 2. Both A and R are true and R is not correct explanation of A
- 3. A is true but R is false

4. A is false but R is true

19.	In Down's process for the extraction of so	odium, the melting point of NaCl is lowered from
	$803^{\circ}C$ to $600^{\circ}C$	
	a) In order to avoid vaporization of metal	llic sodium
	b) In order to avoid corrosive action of so	odium and chlorine on the vessel at the high
	temperature	
	c) By mixing sufficient amounts of KCl as	nd KF
	1. Only 'a' is correct	2. 'a' & 'b' are only correct
	3. a & c are correct	4. a, b, c are correct
20.	During the electrolysis of fused NaCl, the	reaction at anode is
	1. Cl ⁻ Ions are oxidised	2. Cl ⁻ Ions are reduced
	3. <i>Na</i> ⁻ Ions are oxidised	4. Na ⁺ Ions are reduced
21.	Ellingham diagram represents	
	1. Change of ΔG with temperature	2. Change of ΔH with temperature
	3. Change of ΔG with pressure	4. Change of $(\Delta G - T\Delta S)$ with temperature
22.	Select correct statement	
	a) The decomposition of an oxide into oxyg	en and metal vapour enthropy increases
	b) Decomposition of an oxide is an endothe	rmic change
•	c) To mak ΔG^0 negative, temperature should	d be high enough so that $T\Delta S^0 T\Delta S^0 > \Delta H^0$
	1. (a), (b) only correct	2. (b), (c) only correct
	3. (a), (c) only correct	4. (a), (b), (c) only correct

23. Match the following

List-II List-II

- A) The Electrolysis of Al_2O_3 is in the presence of 1) Sodium chloride + potassium chloride
- B) Refining of Al by Hoopes process with cathode 2) Molten sodium chloride of $CaCl_2$, CaF_2 or KCl
- C) Electrolysis of molten $MgCl_2$ in the presence of
- 3) Cast iron

D) In Down's process, the electrolyte

- 4) Carbon
- 5) Cryolite + fluorspar

	A	В	C	Г
1)	2	3	4	1
2)	5	4	1	2
3)	3	2	1	4
4)	5	2	3	2

24. Calomel (Hg_2Cl_2) on reaction with ammonium hydroxide gives

1.
$$Hg - NH_2 - Cl$$

$$2. \ NH_2-Hg-Hg-Cl$$

3.
$$Hg_2O$$

25. Assertion: Thermite mixture $Fe_2O_3 + Al$ (powder) is used in the welding

Reason: Al is a good reductant

- 1. If both assertion and reason are correct, and reason is the correct explanation of the assertion
- 2. If both assertion and reason are correct, but reason is not the correct explanation of the assertion
- 3. If assertion is correct but reason is incorrect
- 4. If assertion is is incorrect but reason is correct

26. Assertion: Cryolite is used in electrolytic extraction of Al from alumina

Reason: It dissolves alumina

- 1. If both assertion and reason are correct, and reason is the correct explanation of the assertion
- 2. If both assertion and reason are correct, but reason is not the correct explanation of the assertion
- 3. If assertion is correct but reason is incorrect
- 4. If assertion is is incorrect but reason is correct

27. Assertion: In the electrolytic reduction of Al_2O_3 cyolite is used

Reason: Cryolite is an ore of aluminium

- 1. If both assertion and reason are correct, and reason is the correct explanation of the assertion
- 2. If both assertion and reason are correct, but reason is not the correct explanation of the assertion
- 3. If assertion is correct but reason is incorrect
- 4. If assertion is incorrect but reason is correct

28. Assertion: Al_2O_3 is converted into Al by reduction with carbon at high temp.

Reason: Carbon has greater affinity for oxygen than aluminium

- 1. If both assertion and reason are correct, and reason is the correct explanation of the assertion
- 2. If both assertion and reason are correct, but reason is not the correct explanation of the assertion
- 3. If assertion is correct but reason is incorrect
- 4. If assertion is is incorrect but reason is correct

Assertion: Reduction of ZnO with carbon is done at 1100°C.

29.

	Reason: ΔG^0 is negative at this temperature thus, process is spontaneous.											
	1. If both assertion and reason are correct, and reason is the correct explanation of the assertion											
	2. If both assertion and reason are correct, but reason is not the correct explanation of the assertion											
	3. If assertion is corre	ect but reason is incorr	ect									
	4. If assertion is incorrect but reason is correct											
30.	Which of the following metal can be obtained by the electrolysis of the aqueous solutions											
	of their salts?											
	1. Cu	2. Na	3. Mg	4. K								
31.	The mass of carbon	anode consumed (giv	zing only carbon di	oxide) in the production of								
J1.	The mass of carbon anode consumed (giving only carbon dioxide) in the production of											
	270 kg of aluminium metal from bauxite by the Hall process is											
	1. 180 kg	2. 270 kg	3. 540 kg	4. 90 kg								
32.	Railway wagon axle	s are made by heatin	g iron rods embedo	ded in charcoal power. This								
	Railway wagon axles are made by heating iron rods embedded in charcoal power. This process is known as											
	1. Tempering	2. Annealing	3. Sheraradsing	4. Case hardening								
33.	By annealing, steel											
	1. Becomes soft		2. Becomes liquid									
4	3. Becomes hard and	brittle	4. Is covered with a thin film of Fe_3O_4									
34.	Stainless steel does not rust because 1. Chromium and nickel combine with iron 2. Chromium forms an oxide layer and protects iron form rusting											
	3. Nickel present in it, does not rust											
	4. Iron forms a hard of	chemical compound w	ith chromium preser	nt in it.								

35.	In the electrolysis of alumina, cryolite and CaF_2 are added to												
	1. Increase the emf of cell			2. Г	2. Decrease the emf of cell								
	3. decrease the melting point			4. E	4. Both (b) and (c)								
36.	The method used to prepare steel is												
	1. Bessemer's convertor method				2. S	2. Siemen's Martin process							
	3. Siemens' electric are furnace			4. <i>A</i>	4. All of the above								
37.	queous												
	solution of their salts are												
	1. Ag 2. Cr		2. Cr		3. Cu		4.	Mg					
38.	On the ex	traction (of iron, th	e slag pr	oduced is								
	1. CO 2. <i>FeSiO</i> ₃			O_3	3. 1	3. $MgSiO_3$ 4. $CaSiO_3$							
39.	In electro refining of copper some gold is deposited at												
	1. Cathode 2. Electrode				3. 0	3. Cathode mud 4. Anode mud							
40.	Tin stone (SnO_2) is concentrated by												
	1. Electromagnetic separation			2. 0	2. Gravity separation								
3. Roasting 4. All of t							the above						
41.	1. Which form of iron is least ductile?												
	1. Hard ste	eel	2. Cast	iron	3. N	/lild steel	4.	Wrought	steel				
		MET	CALLURO	GY SUBT	OPIC-II	I KEY							
1) 3	2) 1	3) 3	4) 2	5) 2	6) 3	7) 2	8) 2	9) 2	10) 3				
11) 1	12) 2	13) 2	14) 1	15) 1	16) 4	17) 4	18) 1	19) 4	20) 1				
21) 1	22) 4	23) 2	24) 1	25) 2	26) 1	27) 2	28) 3	29) 1	30) 1				
31) 4	32) 4	33) 1	34) 2	35) 3	36) 4	37) 4	38) 2	39) 4	40) 4	41) 2			

METALLURGY (SUBTOPIC-III (SOLUTIONS)

- 2. $Al_2O_32H_2O + NaOH \rightarrow 2NaAlO_2 + 3H_2O$
- 3. $Al_2O_3 + SiO_2$ is white bauxite.

$$SiO_2 + 2C \rightarrow Si + 2CO$$

$$Al_2O_3 + 3C + N_2 \xrightarrow{2075K} 2AlN + 3CO$$

- 6. In the extraction of alumimium electrolyte is pure alumina with bauxite and cryolyte.
- 8. Dolomite is MgCO₃CaCO₃
- 9. Carnallite is $KClMgCl_26H_2O$
- 13. Tincol is Na₂B₄O₇10H₂O
- 15. In Allumino thermitt process the reaction involved is $Cr_2O_3 + 2Al \rightarrow 2Cr + Al_2O_3 + heat$
- 24. $HgCl_2 + 2NH_2OH \rightarrow Hg + Hg(NH_2)Cl + NH_4Cl + 2H_2O$
- 31. Copper metal (Cu) is obtained by the electrolysis of the aqueous solution of their salts.
- 32. In case hardening technique, iron rods embedded in charcoal power are heated repeatedly and thus, this technique is used in making axles of railway wagon.
- 33. Annealing is the process of heating steel to redness followed by slow cooling. It makes steel soft.
- 34. Chromium is more electropositive metal than iron. In stainless, chromium forms an oxide layer and thus, it protects steel from corrosion.
- Cryolite and CaF_2 (fluorospar) are added to alumina in its electrolysis to decrease its melting point and to increase the electrical conductivity.
- 36. All the given methods are used to manufacture steel.
- 37. Magnesium (Mg) cannot be obtained by the electrolysis of their aqueous salt solution because when it is liberated at cathode, at once reacts with H_2O give metal hydroxide and hydrogen.

38. In the iron silica is present as impurity so far the removal of silica impurity limestone is used.

$$CaCO_3 \xrightarrow{\Delta} CaO + CO_2$$

$$CaO + SiO_2 \rightarrow CaSiO_3$$

40. Tin stone (SnO_2) has impurities of wolframite $(FeWO_4.MnWO_4)$, which are removed by electromagnetic separation. Being heavy it is also concentrated by gravity separation it is also concentrated by roasting to remove volatile impurities of S and arsenic sulphide etc.

$$S + O_2 \rightarrow SO_2$$

41. Cast iron or pig contains 2 to 4.5% of carbon. It is the least ductile and least pure form of iron; it is brittle and cannot be welded.