CHEMICAL KINETICS-1

1. Among the following slowest reaction under identical conditions is

1) $\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}$ (1)
2) $\mathrm{AgNO}_{3(\mathrm{aq})}+\mathrm{NaCl}_{(\mathrm{aq})} \rightarrow \mathrm{AgCl}_{(\mathrm{s})}+\mathrm{NaNO}_{3(\mathrm{aq})}$
3) $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$ (l)
4) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(1)}+\mathrm{CH}_{3} \mathrm{COOH}_{(1)} \xrightarrow{\mathrm{H}^{+}} \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5(1)}+\mathrm{H}_{2} \mathrm{O}_{(1)}$
2. In a chemical reaction, rate of a chemical reaction increases with temperature. The reason is due to
1) Number of collisions between molecules increases
2) Decreases in activation energy
3) Increase in the number of the molecules with activation energy
4) Kinetic energy of reactants increases
5) The rate of reaction for $\mathrm{N}_{2} \rightarrow 3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$ may be represented as
6) $\mathrm{r}=-\frac{\mathrm{d}\left[\mathrm{N}_{2}\right]}{\mathrm{dt}}=-\frac{1}{3} \frac{\mathrm{~d}\left[\mathrm{H}_{2}\right]}{\mathrm{dt}}=+\frac{1}{2} \frac{\mathrm{~d}\left[\mathrm{NH}_{3}\right]}{\mathrm{dt}}$
7) $\mathrm{r}=-\frac{\mathrm{d}\left[\mathrm{N}_{2}\right]}{\mathrm{dt}}=3 \frac{\mathrm{~d}\left[\mathrm{H}_{2}\right]}{\mathrm{dt}}=+\frac{1}{2} \frac{\mathrm{~d}\left[\mathrm{NH}_{3}\right]}{\mathrm{dt}}$
8) $\mathrm{r}=-\frac{\mathrm{d}\left[\mathrm{N}_{2}\right]}{\mathrm{dt}}=-\frac{1}{3} \frac{\mathrm{~d}\left[\mathrm{H}_{2}\right]}{\mathrm{dt}}=+2 \frac{\mathrm{~d}\left[\mathrm{NH}_{3}\right]}{\mathrm{dt}}$
9) $\mathrm{r}=-\frac{\mathrm{d}\left[\mathrm{N}_{2}\right]}{\mathrm{dt}}=\frac{1}{3} \frac{\mathrm{~d}\left[\mathrm{H}_{2}\right]}{\mathrm{dt}}=+\frac{1}{2} \frac{\mathrm{~d}\left[\mathrm{NH}_{3}\right]}{\mathrm{dt}}$
4. K represents the rate constant of a reaction when $\log \mathrm{K}$ is plotted against $1 / \mathrm{T}$ ($\mathrm{T}=$ =temperature) the graph obtained is a
1) Curve
2) a straight line with a positive slope
3) a straight line with negative slope
4) a straight line with zero slope
5) The rate of a chemical reaction
6) Increases as the reaction proceeds
7) Decreases as the reaction proceeds
8) May increase or decrease during the reaction
9) Remains constant as the reaction proceeds
6. The chemical reaction occurring between covalent molecules involve
1) Rearrangement of ions
2) Rearrangement of bonds
3) Rearrangement of ions \&bonds
4) none of these.
7. The rate of a reaction decreases with increase in
1) The concentration of the reactants
2) temperature of the reaction
3) Time of the reaction
4) with all the three
8. In a reaction $2 A+B \rightarrow A_{2} B$, the reactant ' A ' will disappear at
1) Half the rate at which B disappears
2) The same rate at which B disappears
3) The same rate at which $A_{2} B$ is formed
4) Twice the rate at which B disappears

Solution: Rate $=-1 / 2 \mathrm{~d}[\mathrm{~A}] / \mathrm{dt}=-\mathrm{d}[\mathrm{B}] / \mathrm{dt}$
9. The value of the rate constant of a reaction depends on

1) Time
2) activation energy
3) temperature
4) half-life value
10. For an irreversible chemical reaction, the concentration of the products with time
1) Increases
2) decreases
3) does not change
4) can't be predicted
11. A catalyst
1) Increases the heat of the reaction
2) Decreases the heat of the reaction
3) Does not alter the heat of the reaction
4) Increases the activation energy.

12 For the reaction $\mathrm{A} \rightarrow \mathrm{B}$; following curves represent reaction

The correct curves are

1) 1,2 only
2) 2,3 only
3) 1,4 only
4) 3,4 only
13. In which of the following cases, rate of disappearance of any reactant at a given instant equals to rate of appearance of any product
1) $\mathrm{H}_{2}+\mathrm{F}_{2} \rightarrow 2 \mathrm{HF}$
2) $2 \mathrm{CO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}$
3) $\mathrm{PCl}_{3}+\mathrm{Cl}_{2} \rightarrow \mathrm{PCl}_{5}$
4) $\mathrm{N}_{2}+\mathrm{O}_{2} 2 \mathrm{NO}$

14 The rate of reaction that does not involve gases, is not dependent on

1) Temperature
2) concentration
3) pressure
4) catalyst
15. The specific rate constant of a reaction is independent of
1) Concentration of the reactant
2) time
3) Concentration of the product
4) all of these.
16. A catalyst increases the rate of reaction, because
1) It brings the reactants closer
2) It lowers the activation energy
3) It changes the heat of reaction
4) It increases the activation energy
17. The unit of rate constant depends on
1) Mass of reactants
2) Concentration of reactants
3) Order of reaction
4) Molecularity of reaction
18. The temperature coefficient of a reaction is
1) The rate constant at a fixed temperature
2) The ratio of rate constants at two temperatures
3) The ratio of rate constants at two different temperatures differing by $10^{\circ} \mathrm{C}$
4) The ratio of rate constants at two pressures
19. If concentration of reactants is made ' x ' times, the rate constant k becomes
1) kx
2) k / x
3) x / k
4) unchanged

Hint; K is independent of concentration of reactants
20. The temperature coefficient of most of the reactions lies between

1) $1 \& 3$
2) $2 \& 3$
3) $1 \& 4$
4) $2 \& 4$
21. For a reaction, $\frac{K_{t+10}}{K_{t}}=\mathrm{x}$. When temperature is increased from $60^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$, rate constant (K) increased by a factor of 81 . Then, value of x is
1) 1.5
2) 2.5
3) 3
4) 2

Solution: Final rate $=$ Initial rate $(\text { Temperature coefficient })^{n}$,

$$
\begin{aligned}
& \mathrm{n}=\left(\mathrm{T}_{2}-\mathbf{T}_{1}\right) \mathbf{1 0}=100-60 / 10=\mathbf{4}, 81=(3)^{4}=(\text { Temperature coefficient })^{4} \\
& \therefore \quad(\text { Temperature coefficient })=3
\end{aligned}
$$

22. Increase of temperature will increase the reaction rate due to
1) Increase of number of effective collisions
2) Increase of mean free path
3) Increase of number of molecules
4) Increase of number of collisions
23. Activation energy of a reaction primarily depends on
1) Pressure of reactants
2) concentration of reactants
3) Concentration of product
4) nature of reactants

24 A catalyst in a chemical reaction does not change

1) Average energy of reactants or products
2) Enthalpy of the reaction
3) Activation energy of the reaction
4) Both 1 and 2
25. The effect of temperature on a reaction rate for which Ea is zero is given by
1) With increase of temperature rate increases
2) With increase of temperature rate decreases
3) Rate is independent of temperature
4) Reaction never occurs
26. The rate const ants of a reaction at $280 \mathrm{~K} \& 300 \mathrm{~K}$ respectively are $\mathrm{K}_{1} \& \mathrm{~K}_{2}$. Then
1) $K_{1}=20 K_{2}$
2) $K_{2}=4 K_{1}$
3) $K_{1}=4 K_{2}$
4) $K_{1}=0.5 K_{2}$

Solution: $\mathrm{n}=300-280 / 10=2$, Final rate $=$ Initial rate $(\text { Temperature coefficient })^{\mathrm{n}}$
i.e. $K_{2}=K_{1}[2]^{2}=4 K_{1}$
27. Activation energies for different reactions are given below
a) $\mathrm{A} \rightarrow$ products, $\mathrm{Ea}=32 \mathrm{~K} . \mathrm{Cal}$
b) $\mathrm{B} \rightarrow$ products, $\mathrm{Ea}=45 \mathrm{~K} . \mathrm{cal}$
c) $\mathrm{C} \rightarrow$ products, $\mathrm{Ea}=28 \mathrm{~K} . \mathrm{Cal}$
d) $\mathrm{D} \rightarrow$ products, $\mathrm{Ea}=20 \mathrm{~K} . \mathrm{cal}$

If the temperature increases by $10^{0} \mathrm{C}$ for which reactions the temperature coefficients are maximum and minimum respectively.

1) $a \& b$
2) $b \& c$
3) b \& d
4) $d \& b$

Hint: The temperature coefficient is maximum when E_{a} is highest and minimum when E_{a} is lowest. 28. For a reaction, $K=2 X 10^{13} e^{-30000 / R T}$. When $\log K$ (y-axis) is plotted against $1 / T(x-a x i s)$, slope of line will beCal

1) $\frac{30000}{4.6}$
2) $\frac{-30000}{4.6}$
3) $\frac{-30000}{2.303}$
4) $\frac{30000}{2.303}$

Solution; $K=A e^{-E / R T}, E_{a}=30000$, slope $=-E_{a} / 2.303 R, R=2 \mathrm{cal}$
29. The rate expression gives the relation between rate of reaction and

1) conc. of reactants
2) conc. of products
3) rate constant
4) rate law
30. For a reversible reaction, which one of the following statements is wrong from the given energy profile diagram?

Reaction coordinate \rightarrow

1) Activation energy of forward reaction is greater than that of backward reacton.
2) The threshold energy is less than that of activation energy
3) The forward reaction is endothermic
4) Activation energy of forward reaction is equal to the sum of heat of reaction and the activation energy of backward reaction.
31. Consider an endothermic reaction $\mathrm{X} \rightarrow \mathrm{Y}$ with the activation energies E_{b} and E_{f} for the backward and forward reactions, respectively. In general
1) $E_{b}<E_{f}$
2) $E_{b}>E_{f}$
3) $E_{b}=E_{f}$
4) no definite relation
32. An endothermic reaction $\mathrm{A} \rightarrow \mathrm{B}$ has activation energy as $\mathrm{xKJ} \cdot \mathrm{mol}^{-1}$ of A . If $\Delta \mathrm{H}$ of the reaction is $y K J$, the activation energy of the backward reaction is
1) $-x$
2) $x-y \quad 3) x+y$
3) $y-x$

Solution; $\Delta H=$ Activation energy of forward $\left(E_{F}\right)$ - Activation energy of backward $\left(E_{b}\right)$
33. The activation energy of a reaction can be determined by

1) increasing the concentration of reactants
2) evaluating rate constant at standard temperature
3) evaluating rate constants at two different temperatures
4) by decreasing conc. of reactants
34. Consider the following reaction $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$. The rate of the reaction in terms of N_{2} at $\mathrm{T}(\mathrm{k})$ is $-\frac{d\left\lfloor N_{2}\right\rfloor}{d t}=0.02$ mole. $\mathrm{lit}^{-1} \mathrm{sec}^{-1}$ What is the value of $-\frac{d\left\lfloor H_{2}\right\rfloor}{d t}$ (in mole. lit ${ }^{-1}$. sec^{-1}) at the same temperature?
1) 0.02

2) 0.06
3) 0.04

Solution:
Solution: rate=

35. What is the rate of the reaction for $2 \mathrm{~A} \rightarrow \mathrm{~B}$

1) $-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}$
2) $-\frac{d[B]}{d t}$
3) $-\frac{1}{2} \frac{\mathrm{~d}[\mathrm{~B}]}{\mathrm{dt}}$
4) $-\frac{1}{2} \frac{\mathrm{~d}[\mathrm{~A}]}{\mathrm{dt}}$
36. For the reaction $4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}$, the rate of reaction with respect to NO is $2 \times 10^{-3} \mathrm{Ms}^{-1}$. Then the rate of the reaction with respect to NH_{3} is _ Ms^{-1}
1) 2×10^{-3}
2) 1.5×10^{-3}
3) 2.5×10^{-3}
4) 3×10^{-3}

Solution: rate $=-\frac{1}{4} \frac{d\left[\mathrm{NH}_{3}\right]}{d t}=+\frac{1}{4} \frac{d \mathrm{NO}]}{d t}:$ rate is same
37. Concentration of a reactant ' A ' is changed from 0.044 M to 0.032 M in 25 minutes, the average rate of the reaction during this interval is

1) $4.8 \times 10^{-3} \mathrm{~mole} / \mathrm{lit} / \mathrm{min}$
2) $4.8 \times 10^{-4} \mathrm{~mole} / \mathrm{lit} / \mathrm{sec}$
3) $4.8 \times 10^{-4} \mathrm{~mole} / \mathrm{lit} / \mathrm{min}$
4) $4.8 \times 10^{-3} \mathrm{~mole} / \mathrm{lit} / \mathrm{sec}$

Solution: rate $=\mathrm{d}[\mathrm{C}] / \mathrm{dt}=0.044-0.032 / 25=4.8 \times 10^{-4} \mathrm{~mole} / \mathrm{lit} / \mathrm{min}$
38. In the reaction $A \rightarrow 2 B$, the concentration of A falls from 1.0 M to 0.94 M in one minute what is the rate in moles liter ${ }^{-1} \mathrm{sec}^{-1}$

1) 1.8×10^{-3}
2) 6×10^{-2}
3) 6×10^{-3}
4) 1.0×10^{-3}

Solution: rate $=\mathrm{d}[\mathrm{C}] / \mathrm{dt}=1.0-0.94 / 60=10^{-3} \mathrm{~mole} / \mathrm{lit} / \mathrm{sec}$
39. The rate of formation of SO_{3} in the reaction
$2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3}$ is $80 \mathrm{~g} \mathrm{~min}^{-1}$. Hence, rate of disappearance of SO_{2} is

1) $32 \mathrm{~g} \mathrm{~min}^{-1}$
2) $40 \mathrm{~g} \mathrm{~min}^{-1}$
3) $64 \mathrm{~g} \mathrm{~min}^{-1}$
4) $80 \mathrm{~g} \mathrm{~min}^{-1}$

Hint: The rate of formation of $\mathrm{SO}_{3}=80 \mathrm{~g} \mathrm{~min}-1=80 / 80=1 \mathrm{~mol} \cdot \mathrm{~min}^{-1}$

$$
-\frac{1}{2} \frac{d\left\lfloor\mathrm{SO}_{2}\right\rfloor}{d t}=+\frac{1}{2} \frac{d\left[\mathrm{SO}_{3}\right]}{d t}, \frac{d\left\lfloor\mathrm{SO}_{2}\right\rfloor}{d t}=1 \mathrm{~mol} \cdot \mathrm{~min}-i e 64 \mathrm{gm} \cdot \mathrm{~min}^{-1}
$$

40.1lit of $1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ is mixed with 1 lit of $1 \mathrm{M} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ to form an ester. The decrease in the initial rate if each solution is diluted with an equal volume of water would be

1) 2 times
2) 4 times
3) 0.25 times
4) 0.5 times

Hint; rate $=\mathrm{K}\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]$, as equal volume is added the concentration of each becomes half. : Rate decreased by 4 times.
41. The rate of reaction becomes 2 times for every $10^{\circ} \mathrm{C}$ rise in temperature. How many times the rate of reaction will increase when temperature is increased from 300 K to 330 K

1) 6
2) 9
3) 8
4) 27

Solution: Final rate $=$ Initial rate $(\text { Temperature coefficient })^{\mathrm{n}}$,
$\mathrm{n}=\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right) / 10=330-300 / 10=3$, Final rate $=\operatorname{Initial} \operatorname{rate}(2)^{3}=8$ times to initial rate.
42. An endothermic reaction $\mathrm{A} \rightarrow \mathrm{B}$ has an activation energy $25 \mathrm{kcal} / \mathrm{mole}$ and the heat of reaction is $5 \mathrm{kcal} / \mathrm{mole}$. The activation energy of the reaction $\mathrm{B} \rightarrow \mathrm{A}$ is

1) $30 \mathrm{kcal} / \mathrm{mole}$
2) $20 \mathrm{kcal} / \mathrm{mole}$
3) $25 \mathrm{kcal} / \mathrm{mole}$
4) $5 \mathrm{kcal} / \mathrm{mole}$

Solution; $\Delta H=$ Activation energy of forward $\left(E_{F}\right)$ - Activation energy of backward $\left(E_{b}\right)$
43. The activation energy of a reaction is $58.3 \mathrm{~kJ} / \mathrm{mole}$ the ratio of the rate constants at 305 K and 300 K is about $\left(\mathrm{R}=8.3 \mathrm{Jk}^{-1} \mathrm{~mol}^{-1}\right)($ Antilog $\mathbf{0 . 1 6 6 7}=\mathbf{1 . 4 6 8})$

1) 1.25
2) 1.75
3) 1.5
4) 2.0

Hint; $\log \frac{k_{2}}{k_{1}}=\frac{E_{0}}{2.303 R}\left[\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right]$
$44.2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3}$, if the volume of the reaction vessel is doubled, the rate of forward reaction will be

1) $1 / 4$ th of initial value
2) $1 / 8$ th of initial value
3) 4 times of its initial value
4) 8 times of its initial value

Hint; Rate law is rate $=\mathrm{k}\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]$, If volume is doubled, the concentration of each becomes half.: Rate decreased by 8 times.

45. The rate of reaction for $\mathrm{A} \rightarrow$ products is 10 mol . lit ${ }^{-1} \cdot \min ^{-1}$ at time $\mathbf{t}_{\mathbf{1}}=\mathbf{5}$ minutes. What will

 be the rate (in mol. $\mathrm{lit}^{-1}, \mathrm{~min}^{-1}$) at time $\mathrm{t}_{\mathbf{2}}=\mathbf{1 0}$ minutes?1) >10
2) <10
3) 10
4) 20

Hint; rate decreases with increase of time.
46. For the reaction $2 \mathrm{NH}_{3} \rightarrow \mathbf{N}_{\mathbf{2}}+\mathbf{3} \mathrm{H}_{2},-\frac{\mathrm{d}\left[\mathrm{NH}_{3}\right]}{\mathrm{dt}}=\mathrm{K}_{\mathbf{1}}\left[\mathrm{NH}_{3}\right] ; \frac{\mathrm{d}\left[\mathbf{N}_{2}\right]}{\mathrm{dt}}=K_{\mathbf{2}}\left[\mathrm{NH}_{3}\right]$; $\frac{d\left[H_{2}\right]}{d t}=K_{3}\left[\mathbf{N H}_{3}\right]$.The correct relation between K_{1}, K_{2} and K_{3} is

1) $K_{1}=K_{2}=K_{3}$
2) $1.5 \mathrm{~K}_{1}=3 \mathrm{~K}_{2}=\mathrm{K}_{3}$
3) $2 \mathrm{~K}_{1}=\mathrm{K}_{2}=3 \mathrm{~K}_{3}$
4) $K_{1}=3 K_{2}=2 K_{3}$

Hint; $\mathrm{r}=-\frac{1}{2} \frac{\mathrm{~d}\left[\mathrm{NH}_{3}\right]}{\mathrm{dt}}=\frac{\mathrm{d}\left[\mathrm{N}_{2}\right]}{\mathrm{dt}}=\frac{1}{3} \frac{\mathrm{~d}\left[\mathrm{H}_{2}\right]}{\mathrm{dt}}$, i.e $1 / 2 \mathbf{K}_{\mathbf{1}}\left[\mathbf{N H}_{\mathbf{3}}\right]=\mathbf{K}_{\mathbf{2}}\left[\mathbf{N H}_{\mathbf{3}}\right]=\mathbf{1} / \mathbf{3} \mathbf{K}_{\mathbf{3}}\left[\mathbf{N H}_{\mathbf{3}}\right]$

$$
\mathbf{K}_{1} / \mathbf{2}=\mathbf{K}_{2}=\mathbf{K}_{3} / 3 \quad \therefore 1.5 \mathrm{~K}_{1}=3 \mathrm{~K}_{2}=\mathrm{K}_{3}
$$

47 The rate constant of a reaction $A \rightarrow B$ is $1.8 \times 10^{-2} \mathrm{~s}^{\mathbf{- 1}}$. The concentration of reactant is $\mathbf{0 . 3}$ $\mathrm{mol} \mathrm{L}^{-1}$. The rate of reaction is (in $\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}$)

1) 1×10^{-2}
2) 1.8×10^{-2}
3) 5.4×10^{-3}
4) 6×10^{-2}

Hint; rate=K [A]
48. The rate law of a reaction is rate $=K[A]^{2}[B]^{3}$. On tripling the concentration of $A \&$ doubling the concentration of B, the rate of reaction increases by

1) 8 times
2) 24 times
3) 48 times
4) 72 times

Hint: $\quad \operatorname{rate}_{1}=K[A]^{2}[B]^{3}$

$$
\begin{aligned}
\operatorname{Rate}_{2} & =k[3 A]^{2}[2 B]^{3}=72 \mathrm{~K}[A]^{2}[B]^{3} \\
\operatorname{Rate}_{2} & =72 \text { rate }_{1}
\end{aligned}
$$

49. For the reaction $x A+y B \rightarrow z C$, If $-\frac{d[A]}{d t}=-\frac{d[B]}{d t}=1.5 \frac{d[C]}{d t}$ then $x, y \& z$ are respectively.
1) $1,1,1$
2) $3,2,3$
3) $3,3,2$
4) $2,2,3$

Hint; rate $=-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=-\frac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}=1.5 \frac{\mathrm{~d}[\mathrm{C}]}{\mathrm{dt}}$ i.e. $-1 / 3 \frac{\mathrm{~d}[\mathrm{~A}]}{\mathrm{dt}}=-1 / 3 \frac{\mathrm{~d}[\mathrm{~B}]}{\mathrm{dt}}=1 / 2 \frac{\mathrm{~d}[\mathrm{C}]}{\mathrm{dt}}$
$\therefore \mathrm{X}=3, \mathrm{y}=3$ and $\mathrm{Z}=2$
50. What is the activation energy for the decomposition of as, $\mathrm{N}_{2} \mathrm{O}_{5} \rightarrow 2 \mathrm{NO}_{2}+\frac{1}{2} \mathrm{O}_{2}$
if the values of the rate constants are 3.45×10^{-5} and 6.9×10^{-3} at $27^{\circ} \mathrm{C}$ and 67 ${ }^{0} \mathrm{C}$ respectively?

1) 112.5 kJ
2) 200 kJ
3) 149.5 kJ
4) 11.25 kJ

Solution: $\log \frac{k_{2}}{k_{1}}=\frac{E_{0}}{2.303 R}\left[\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right], \log \frac{6.9 \times 10^{-3}}{3.45 \times 10^{-5}}=\frac{E_{0}}{2.303 \times 8.31}\left[\frac{340-300}{300 \times 340}\right]: E_{a}=112.5 \mathrm{~kJ}$
Assertion - Reason type

1) Both (A) and (R) are true and (R) is the correct explanation of (A)
2) Both (A) and (R) are true and (R) is not the correct explanation of A
3) (A) is true but (R) is false
4) Both (A) and (R) are false
51. (A): A catalyst increases the rate of a reaction.
(R) : In presence of a catalyst, the activation energy of the reaction increases.
52. (A): Rate of reaction increases with increase in concentration of reactants.
(R): Number of effective collisions increases with increase in concentration of reactants.
53. (A): All collisions lead to chemical reaction
(R): All collisions are effective collisions
54. (A): Hydrolysis of an ester is a slow reaction
(R): Reactions between covalent species involve breaking and making of bonds.
55. (A): As time passes the rate of non zero order reaction w.r.t reactants (or) products decreases
$(\mathrm{R}): \quad$ Rate of a reaction is directly proportional to (Concentration) order

ANSWERS

$\begin{array}{llllllllll}\text { 1) } 3 & \text { 2) } 3 & \text { 3) } 1 & \text { 4) } 3 & \text { 5) } 2 & 6) 2 & \text { 7)3 } & 8) 4 & 9) 3 & 10) 1\end{array}$
$\begin{array}{llllllllll}\text { 11) } 3 & \text { 12) } 2 & \text { 13) } 3 & \text { 14) } 3 & \text { 15) } 4 & \text { 16) } 2 & \text { 17) } 3 & \text { 18) } 3 & \text { 19) } 4 & \text { 20) } 2\end{array}$
21) 3
22) $1 \quad$ 23) 4
24) 2
25) 3 26) 2 27) $3 \quad$ 28) 2
29) $1 \quad 30) 2$
31) 1
32) 2
33) 3
34) 3 35) 4
36) 1
37) 3
38) 4
39)3 40)2
41) 3
42) 1 43) 3
44) $2 \quad 45) 2$
46) $2 \quad 47) 3 \quad 48) 4 \quad 49) 3 \quad 50) 1$
$\begin{array}{lllll}\text { 51) } 3 & \text { 52) } 1 & \text { 53) } 4 & \text { 54) } 1 & \text { 55) } 1\end{array}$

