ELECTRO CHEMISTRY PART-1


1.	Which of the following conducts electricity?											
	,	lten Ur					sodiui	n chlori	de			
	3) Fus	ed sodi	um chl	loride	4) glas	SS						
2.				ctor in t	the follo							
	,	id NaCl			2) Dia			raphite		queous l		
3.	The de		in elec	etrical co	onductiv	ity of n	netals	with inc	rease ir	tempe	rature is du	e to
	1) the velocity of electrons 2) the resistance of the metal											
	3) the number of electrons 4) the number of metal atoms											
4.	Which of the following is a mixed conductor of electricity											
	1) Aqueous KCl 2) sodium in liquid NH ₃											
		ne sugai		on			IS &C		5			
5.					onductio	,			f			
	1) Cat		0 1	2) an		3) elect			th 1&2			
6			ne follo		ICl cond							
		uid stat		Θ,		2) in a						
		enzene		on.		4) Va						
7.					lectrical				lyte wi	th incre	ase in temp	perature is
		The reason for increase in electrical conduction of electrolyte with increase in temperature is A) increase in the number of ions										
	B) increase in the speed of ions											
	C) increase in the degree of dissociation of electrolyte											
		B only			C only							
	3) A, (•		4) A,	•	$\Psi\Psi$						
8.	Dissoc	ciation o	of an e	lectroly	te in wat	er into	negati	ve and p	ositive	ions is	called	
				drolysis		3) deco) ionization	ı
9.	Choos	e the w	rong s	tatemen	t		•					
	1) Ele	ctrical o	conduc	tance of	f an elec	trolytic	condu	ctor inc	reases	with inc	rease in ter	mperature
	2) Ele	2) Electrical conductance of a metallic conductor increases with increase in temperature										
	3) Electrical conductance of a metallic conductor decreases with increase in temperature											
	4) Deg	gree of	dissoci	ation of	an elect	trolyte i	ncreas	ses with	dilutio	n		
	_						_					
10.		LIST -						IST - 2				
	A) Electronic conductor				1) Aqueous urea solution							
4						O) G 1' 1 1'						
	B) Non-electrolyte				2) Solid sodium							
	C) Electrolytic dissociation					3) Electrolytic conductor						
	D) Ambanina				4) Padioactivity increases							
	D) Arrhenius				4) Radioactivity increases 5) Conductivity rises with temperature							
	5) Conductivity rises with temperature The correct match is											
	THE	A	B	, C	D			٨	В	C	D	
	1)	5	Б 1	2	D 3		2)	A 5	2	1	4	
	3)	2	1	2 5	3		2) 4)	5 2	2 5	1	4	
	3)	4	1	5	3		7)	4	J	1	4	
11.	Which	of the	follow	ing is 1	00% ion	ised at	anv di	lution?				
11.		3COOF		-	3) NaC		-	H ₄ OH				
	-,	,	-/		-,		-, - 1	-4				

12.	Which of the followi 1) sulphuric acid		ucts more electricity?	acenhorous acid					
13.	The degree of dissociation of an electrolyte in aqueous solution depends on A) Temperature B) Concentration of the electrolyte								
	C) Nature of the elec	•	.						
	1) Only A 3) Only B, C	2) Only A, I 4) A, B, C	3						
14.	What happens at infi		n a given solution?						
	1) The degree of dissociation is unity for weak electrolytes								
	2) The electrolyte is 100% ionised								
	3) All inter ionic attractions disappear								
	4) All of these								
15.	At infinite dilution th	ne degree of d	ssociation for Urea in a	queous solution is					
	1) 0 2) 0.5	3) 0.99	4) 1						
	Hint; urea is a non-el	ectrolyte.		44					
16.	Choose the correct st	atement regar	ding electrolytic cell						
10.			energy is converted into	o electrical energy					
	2) Anode is shown by			8,					
	3) Oxidation reaction	-							
	4) Electrons flow fro								
17.	•		about electrolytic cell	101					
		A) in this chemical energy is converted into electrical energy B) in this cell electrons flow from anode to cathode							
	C) in this cell reduction takes place at cathode								
	D) in this cathode is a +ve electrode								
		The correct combination is							
	1) Only B	2) only C							
10	3) Only C, D	4) only B, C							
18.	1) extent of its ioniza		n water depends on the 2) size of its molecules						
		LOS CONTRACTOR OF THE PARTY OF	4) size of solvent molec	ules					
19.	In the electrolytic cel								
	1) Cathode to anode in the solution								
	2) Cathode to anode through external circuit3) Anode to cathode through external circuit								
	4) All of these	through exter	nal circuit						
20.	The unit of specific of	conductivity is)						
20.	Aleit Celelele.	•	m^{-1} cm 4) ohm ⁻¹ cm	-1					
21.	The unit of equivaler	,	· · · · · · · · · · · · · · · · · · ·						
	1) ohm cm		2) ohm $^{-1}$ cm 2 (g equ	ivalent) ⁻¹					
4000	3) ohm cm ² (g equiv		4) S cm $^{-2}$						
22.	-		solution of an electroly	te is nearly					
	1) Same as its specific conductance								
	 2) 10⁻³ times its specific conductance 3) 10² times more than its specific conductance 								
		-							
	4) 10^3 times more th	an its specific	conductance						

- 23. (A): The molar conductance of weak electrolytes is low as compared to that of strong electrolytes at moderate concentrations
 - Weak electrolytes at moderate concentrations dissociate to a much greater extent when compared to strong electrolytes
 - 1) Both A and R are true and R is correct explanation to A
 - 2) Both A and R are true but R is not correct explanation to A
 - 3)A is true and R is false
 - 4) Both A and R are false.
- 24. Which of the following has highest electrical conductivity in aqueous solutions?
 - 1) 0.1 M acetic acid
- 2) 0.1 M chloroacetic acid
- 3) 0.1 M chloroacetic acid
- 4) 0.1 M tri chloroacetic acid
- 25. If the specific conductance and conductance of a solution is same, then its cell constant is equal to
 - 1) 1 2) 0 3) 10 4) 100
- In electrolysis of dilute H₂SO₄, what is liberated at anode in presence of inert electrode? 26.
 - 1) H₂ 2) SO₂ Which process occurs in the electrolysis of aqueous solution of nickel chloride at nickel anode?
- 3) SO₃ 4) O₂
- 1) $Ni^{2+} + 2e \rightarrow Ni$

27.

- 2) $2H^+ + 2e \rightarrow H_2$
- 3) $2Cl^{-} \rightarrow Cl_{2} + 2e$
- 4) Ni \rightarrow Ni²⁺ + 2e
- Molten CuCl₂ is electrolysed using platinum electrode. The reaction occurring at anode is 28.
 - 1) $2Cl \rightarrow Cl_{2(g)} + 2e^{-}$
- 2) $Cl_{2(g)} + 2e^{-} \rightarrow 2Cl^{-}$
- 3) $Cu^{2+} + 2e^{-} Cu_{(s)}$
- 4) $Cu_{(s)} \rightarrow Cu^{2+} + 2e^{-}$
- 29 During the electrolytic reduction of alumina, the reaction at cathode is
 - 1) $2H_2O \rightarrow O_2 + 4H^+ + 4e^-$
- 2) $2F^- \rightarrow F_2 + 3e^-$
- 3) $A1^{3+} + 3e^{-} \rightarrow A1$
- 4) $2H^+ + 2e^- \rightarrow H_2$
- 30. Specific conductivity of a solution
 - 1) increases with dilution
- 2) decreases with dilution
- 3) remains unchanged with dilution
- 4) depends on mass of electrolyte.
- 31. A solution of concentration 'C' g equiv/litre has a specific resistance R. The equivalent conductance of the solution is"
 - 1) R/C 2) C/R 3) $\frac{1000}{\text{RXC}}$
- A graph is drawn between the $^{\Lambda}$ eq values and concentrations of an electrolyte. Which of the following electrolyte will correspond to the graph given?

- 1) KCl
- 2) CaCl₂ 3) NiSO₄ 4) CH₃COOH

	www.sakshieducation.com								
33.	For which case 'Λ' values v/s √c shows a straight line 1) HCl 2) HCOOH 3) H ₃ BO ₃ 4) CH ₃ COOH								
	Hint; strong electrolytes	give straight line.							
34.	When an aqueous solution reaction at the anode is re		electrolysed using copper electrodes	the					
	1) $H^+ + e^- \rightarrow H$	2) Cu^{2+} +	2e ⁻ →Cu						
	3) $SO_4^{2-}(aq) \rightarrow SO_4 + 2$	e ⁻ 4) Cu _(S)	$^{2}\text{Cu}^{2+}$ (aq) + 2e ⁻						
35			inart alactrodes till the blue coloure	d c					

Aqueous solution of CuSO₄ is electrolysed using inert electrodes till the blue coloured solution becomes colourless. The colourless solution formed is

1) Cu (OH) 2 2) H₂SO₄ 3) CuSO₄ 4) H₂O

- 36. After the electrolysis of aqueous solution of NaCl using Pt electrodes, the pH of the solution 2) decreases 3) remains constant 4) becomes zero Hint; During electrolysis NaOH is formed.
- 37. Aqueous solution of AgNO₃ is electrolysed using inert electrodes. At the end of electrolysis 1) pH of the solution increases 2) pH of the solution decreases 3) pH of the solution remains unchanged 4) pH of the solution becomes 14 Hint; during electrolysis HNO₃ is formed.
- 38) 1M aqueous CuSO₄ solution is electrolysed by using copper electrodes for 30 minutes. The concentration of CuSO₄ after electrolysis is

1)1M 2)0.75M 3)0.5M 4)0.25M

Hint; during electrolysis using active electrodes the composition of electrolyte remains same.

39. According to Kohlrausch law, the limiting value of molar conductivity of an electrolyte A₂B is

1) $\lambda_{A^{+}}^{\infty} + \lambda_{B^{-2}}^{\infty}$ 2) $\frac{1}{2}\lambda_{A^{+}}^{\infty} + \lambda_{B^{-2}}^{\infty}$ 3) $2\lambda_{A^{+}}^{\infty} + \frac{1}{2}\lambda_{B^{-2}}^{\infty}$ 4) $2\lambda_{A^{+}}^{\infty} + \lambda_{B^{-2}}^{\infty}$

The expression showing the relationship between equivalent conductivity and molar 40. conductivity of aq. H₂ SO₄ is

1) $\lambda_{\rm m} = 2 \times \lambda_{\rm eq}$ 2) $\lambda_{\rm eq} = 2 \times \lambda_{\rm m}$ 3) $\lambda_{\rm m} = 2 / \lambda_{\rm eq}$ 4) $\lambda_m = 4X \quad \lambda_{eq}$

The molar conductivities Λ_{NaOAc}^{0} and Λ_{HCI}^{0} at infinite dilution in water at 25⁰C and 91.0 and 426.2 S cm² / mol respectively. To calculate Λ_{HOAc}^{0} the additional value required is

1) $\Lambda_{\text{NaC1}}^{0}$ 2) $\Lambda_{\text{H}_{2}\text{O}}^{0}$ 3) $\Lambda_{\text{NaOH}}^{0}$ 4) Λ_{KC1}^{0}

The conductivity of 0.001 M acetic acid is 5 \times 10⁻⁵ S cm⁻¹ and Λ 0 is 500 S cm² mol⁻¹ then 42. the calculated value of dissociation constant of acetic acid would be

 $2)\ 10^{-5}$ $3)\ 10^{-6}$ $4)\ 10^{-3}$

Solution: Λ_c =K X1000/M =1000X5 × 10 ⁻⁵ /0.001=50

Degree of dissociation $\alpha = \Lambda_c / \Lambda_o = 50/500 = 0.1$, $K_a = c\alpha^2 = 0.001 \times (0.1)^2 = 10^{-5}$

43.	The distance between two electrodes of a cell is 2.5 cm and area of each electrode is 5 cm 2 the cell constant (in cm $^{-1}$) is 1) 2 2) 12.5 3) 7.5 4) 0.5 Hint; cell constant= $1/a$
44.	The limiting molar conductivities Λ_o for NaCl, KBr an KCl are 126, 152 and 150 S. cm ² mol ⁻¹ respectively. Then Λ_o for NaBr is 1) 128 S cm ² mol ⁻¹ 2) 302 S cm ² mol ⁻¹
45.	3) $278 \text{ S cm}^2 \text{ mol}^{-1}$ 4) $176 \text{ S cm}^2 \text{ mol}^{-1}$ Hint; $\Lambda_o \text{ of NaBr} = \Lambda_o \text{ NaCl} + \Lambda_o \text{ KBr} - \Lambda_o \text{ KCl}$ Which of the following solutions of NaCl has the higher specific conductance? 1) 0.001N 2) 0.01N 3) 0.1 N 4) 1 N Hint; The value of K increases with increase in concentration.
46.	Molar conductivity of a solution is $1.26 \times 10^2 \mathrm{S} \mathrm{cm}^2 \mathrm{mol}^{-1}$. Its molarity is 0.01M. Its specific conductivity will be
47.	1) 1.26×10^{-5} 2) 1.26×10^{-3} 3) 1.26×10^{-4} 4) 0.0063 Hint; λ_c =KX1000/M The values of equivalent conductivity at infinte dilutions for NH ₄ Cl , NaOH and NaCl are
	respectively 149.74, 248.1 and 126.4 ohm ⁻¹ cm ² equi ⁻¹ . The value of Λ_{eq} of NH ₄ OH is 1) 371.44 2) 271.44 3) 71.44 4) 224.76 Hint; Λ_{eq} of NH ₄ OH= Λ_{eq} of NH ₄ Cl + Λ_{eq} of NaOH+ Λ_{eq} of NaCl
48.	Molar ionic conductivities of a bivalent electrolyte are 57 and 73. The molar conductivity of the solution will be 1) 130 S cm ² mol ⁻¹ 2) 65 S cm ² mol ⁻¹ 3) 260 S cm ² mol ⁻¹ 4) 187 S cm ² mol ⁻¹ Hint ; molar conductivity of the solution =Sum of Molar ionic conductivities=57+73=130
49.	At a certain temperature and at infinite dilution, the equivalent conductances of sodium benzoate, hydrochloric acid and sodium chloride are 240, 349 and 229 ohm ⁻¹ cm ² equiv ⁻¹ respectively. The equivalent conductance of benzoic acid in ohm ⁻¹ cm ² equiv ⁻¹ at the same conditions is 1) 80 2) 328 3) 360 4) 408
50)	Hint; Λ_o of C ₆ H ₅ COOH= Λ_o of C ₆ H ₅ COONa+ Λ_o of HCl - Λ_o of NaCl The resistance of 1N solution of acetic acid is 250 Ohm. If the cell constant is 1.15 cm ⁻¹ , then the equivalent conductance will be 1)4.6 Ohm ⁻¹ cm ² eq-1 2) 9.2 Ohm ⁻¹ cm ² eq-1 3) 18.4 Ohm ⁻¹ cm ² eq-1 4) 0.023 Ohm ⁻¹ cm ² eq-1 Hint; K=(1/R)X 1/A=1.15/250=4.6X10 ⁻³ , Λ =K X1000/N=4.6
51.	The equivalent conductance of 1 M H ₂ SO ₄ solution having conductivity
	$26 \times 10^{-2} \text{ ohm}^{-1} \text{ cm}^{-1} \text{ is (in ohm}^{-1} \text{cm}^{2} \text{ eq}^{-1)}$ 1) 260 2) 130 3) 5 4) 10 Hint; For H ₂ SO ₄ Normality N=MX2=2N Λ_{eq} =K X1000/N=26 × 10 ⁻² X1000/2= 130
52.	Equivalent conductance of $A_X B_Y$ at infinite dilution will be 1) $\lambda^{\infty} = v\lambda^{\infty} + \lambda^{\infty}$ 2) $\lambda^{\infty} = v\lambda^{\infty} + v\lambda^{\infty}$ 3) $\lambda^{\infty} = v\lambda^{\infty} + v\lambda^{\infty}$ 4) All are correct

53.	Specific conductivity of 0.1 M solution of KCl at $18^0\mathrm{C}$ is 1.12 S. m ⁻¹ and resistance is 50 ohm. Then cell constant is							
	1) 56 m ⁻¹ Hint; cell constant [1/s	2) 5.6 m ⁻¹ al= KxR	3) 11.2 m ⁻¹	4) 1.12 m ⁻¹				
54.	-	=	lyte is 40 ohm. If area o	f the electrode of the cell is				
		-	•	conductivity of the solution				
	is	de between the electrody	os is 1.5 cm, the motor (conductivity of the solution				
	1) 52 ohm ⁻¹ cm ² mol	-1	2) 24 ohm ⁻¹ cm ² mol ⁻	1				
	3) $12.5 \text{ ohm}^{-1} \text{ cm}^2 \text{ me}^2$		4) 5.2 ohm ⁻¹ cm ² mol ⁻¹					
55.	<i>'</i>		<i>'</i>	$l_{(aq)}$ solutions are $x_1, x_2 &$				
55.			of Ba_2SO_4 at infinite dil	. 1				
	-		= :					
			3) $x_1 - x_2 + x_3$					
56.	Equivalent conductane	ce of 1 M CH ₃ COOH is	s 10 ohm ⁻¹ cm ² equival	⁻¹ and at infinite dilution is				
	200 ohm ⁻¹ cm ² equiv	⁻¹ . The percentage ioniz	zation of CH ₃ COOH in	the 1 M solution is				
	1) 5 %	2) 2%	3) 4%	4) 1%				
	Hint; $\%\alpha = (\Lambda_c/\Lambda_o) X$	100= (10/200)100=5%						
57.	The specific conducta	nce of 0.1 M HNO ₃ is	6.3×10^{-2} ohm ⁻¹ cm ⁻¹	The molar conductance of				
the solution is								
		2) 315 ohm $^{-1}$ cm 2	3) $100 \text{ ohm}^{-1} \text{ cm}^2$	4) 6300 ohm ⁻¹ cm ²				
	Hint; $\lambda = KX1000/M$							
58.	The register of 0.0	1N solution of an alo	atualysta AD at 200 V	is 100 ohm. The specific				
36.	8. The resistance of 0.01N solution of an electrolyte AB at 328 K is 100 ohm. The specific conductance of solution is (cell constant = 1cm ⁻¹)							
		THE WAR AND THE PERSON OF THE		2 1 . 1				
	1) 100 ohm	2) 10 ⁻² ohm ⁻¹	$3) 10^2$ ohm-cm	4) 10 ⁻² ohm ⁻¹ cm ⁻¹				
	Hint: $K = \overline{R} \times \overline{A} = (1/1)$	00) X1=10 ⁻² ohm ⁻¹ cm ⁻	1					
59.		VIIII/III/ ./III		en found to be 0.011 S Cm				
٥,٠	For an electrolytic solution of 0.05 mol L ⁻¹ , the conductivity has been found to be 0.011 S Cm ⁻¹ . The molar conductivity is							
	1) 0.055 S cm ² mol ⁻¹		2) 550 S cm ² mol ⁻¹					
	3) $0.22 \text{ S cm}^2 \text{ mol}^{-1}$	V	4) 220 S cm ² mol ⁻¹					
	Hint; $\lambda = KX1000/M$., 220 5 cm moi					
60.	WHITE THE PERSON WAS A STREET OF THE PERSON WAS	following electrolyte the	he value of molar co	nductivity and equivalent				
	conductivity are same	•		J				
	1) Na ₂ SO ₄	2) KCl	3) $Al_2 (SO_4)_3$	4) BaCl ₂				

KEY

1) 3	2) 3	3) 2	4) 2	5) 3	6) 2	7) 4	8)4	9) 2	10) 3
11) 3	12) 1	13) 4	14) 4	15) 1	16) 3	17) 4	18)1	19) 3	20) 4
21)2	22)4	23)3	24)4	25) 1	26) 4	27)4	28) 1	29) 3	30) 2
31) 4	32) 4	33) 1	34) 4	35) 2	36) 1	37) 2	38) 1	39)4	40)1
41) 1	42)3	43) 4	44) 1	45)4	46)2	47) 2	48) 1	49) 3	50) 1
51)2	52)3	53)1	54)3	55)1	56)1	57)1	58)4	59)4	60)2