## SOLUTION-1

1. Normality of $\mathbf{1 0 . 6 \%}$ ( $\mathbf{w} / \mathbf{v}) \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution is
1) 1 N
2) 2 N
3) 3 N
4) 4 N

Hint: $\mathrm{N}=(\mathrm{w} / \mathrm{v}) \% \mathrm{x} 10 / \mathrm{GEW}$
$=10.6 \mathrm{X} 10 / 53=2 \mathrm{~N}$
2. The weight of $\mathbf{N a O H}$ (in gm) present in 100 ml of 0.5 M NaOH solution is
2) 1
2) 3
3) 2
4) 4

Solution: Wt=MX GMW X V in lit. $=0.5 \mathrm{X} 40 \mathrm{X} 100 / 1000=2 \mathrm{gm}$

3; An aqueous solution of 6.3 g oxalic acid dihydrate is made up to 250 ml . Volume of 0.1 N
NaOH required to completely neutralize 10 ml of this solution is

1) 40 ml
2) 20 ml
3) 10 ml
4) 4 ml

Solution of oxalic acid $\mathrm{N}_{1}=(\mathrm{wtX1000}) /(\mathrm{GEWX}$ V in ml $)=6.3 \times 1000 / 63 \mathrm{X} 250=0.4 \mathrm{~N}$
$\mathrm{V}_{\mathrm{a}} \mathrm{N}_{\mathrm{a}}=\mathrm{V}_{\mathrm{b}} \mathrm{N}_{\mathrm{b}}$ i.e $10 \mathrm{Xo} .4=\mathrm{V}_{\mathrm{b}} \mathrm{X} 0.1 \rightarrow \mathrm{~V}_{\mathrm{b}}=40 \mathrm{ml}$
4. Equivalent weight of hypo in the reaction $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{HCl}+\mathrm{S}$, if $M$ is molecular weight of hypo is

1) M
2) $M / 2$
3) $M / 3$
4) 2 M

Solution; oxidation state of ' S ' in $\mathrm{Hypo}=+2.5$, in $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is +6 and in elementary form is zero. In reactant side total oxidation state per molecule $=+5$

In product side total ox, state of ' $s$ ' $=+6+0=+6$
$\therefore$ Change in ox. State per molecule $=6-5=1 \quad \therefore$ Equivalent weight of hypo $=\mathrm{M} / 1=\mathrm{M}$
5) Molarity of pure water (density $=\mathbf{1 g m} / \mathrm{ml}$ ) is

1) 40 M
2) 4 M
3) 55.6 M
4) 25 M

Solution: wt of 1 lit water $=1000 \mathrm{gm}=1000 / 18=55.55$ moles, $\mathrm{M}=\mathrm{n} / \mathrm{v}$ in $\mathrm{lt}=55.55 / 1=55.55 \mathrm{M}$
6) Which one of these solutions has highest normality?

1) 8 g KOH per 100 ml
2) $0.5 \mathrm{M} \mathrm{H} \mathrm{H}_{2} \mathrm{SO}_{4}$
3) 6 g NaOH per 100 ml
4) $1 \mathrm{NH}_{3} \mathrm{PO}_{4}$

Hint: $\mathrm{N}=\frac{\text { wt of solute }}{\text { Gram equivalent weight }} \times \frac{1000}{\text { Vol of solution in ml }}$
7) $10.6 \mathrm{~g} \mathrm{Na} 2 \mathrm{CO}_{3}$ is dissolved in water to get 2 M solution. The volume of the solution (in ml ) is

1) 50 ml
2) 40 ml
3) 100 ml
4) 10 ml

Solution: Molarity (M) $=\left(\frac{\mathrm{W}}{\text { G.M.W }}\right)_{\text {atace }} \times \frac{1000}{\text { vol.in ml }}$ i.e $e^{2=\frac{10.6}{106} \times \frac{1000}{\mathrm{~V}_{\mathrm{mt}}}}$
$\therefore \quad$ Vol. of solution $=50 \mathrm{ml}$
$\therefore$
8) The volume of $0.2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution containing $\mathbf{1 0}$ milli equivalents of solute is

1) 50 ml
2) 40 ml
3) 100 ml
4) 25 ml

Solution: $\mathrm{N}=\mathrm{MX}$ basicity $=0.2 \mathrm{X} 2=0.4 \mathrm{~N}$, milli equivalents $=\mathrm{NX}$ Vin ml

$$
\text { i.e } 10=0.4 \mathrm{XV} \quad \therefore \mathrm{~V}=25 \mathrm{ml}
$$

9) The number of moles of oxalic acid required to decolorize completely 0.4 mole of acidified $\mathrm{KMnO}_{4}$ solution is
10) 0.4
11) 0.5
12) 1
13) 2

Solution: $2 \mathrm{KMnO}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4}+5 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{MnSO}_{4}+8 \mathrm{H}_{2} \mathrm{O}+10 \mathrm{CO}_{2}$
10. Assertion (A): Molarity of $\mathbf{0 . 0 5 N}$ solution of $\mathrm{HNO}_{3}$ is $\mathbf{0 . 0 5 M}$

Reason (R): Molarity \& normality of a solution are always equal

The correct answer is
2) Both $A$ and $R$ are true and $R$ is correct explanation of $A$
3) Both $A$ and $R$ are true and $R$ is not correct explanation of $A$
4) $A$ is true but $R$ is false
4) Both A and R are false
11) Solid solution in the following is

1) NaCl in water
2) Amalgam
3) Soda water
4) Camphor in air
5) The volume of $0.1 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution required to exactly neutralize 5.6 g of KOH is
6) 250 ml
7) 500 ml
8) 25 ml
9) 1000 ml

Solution: $5.6 \mathrm{gm}=5.6 / 56=0.1 \mathrm{gm}$ equivalents of KOH
For complete neutralization, equivalents of $\mathrm{KOH}=$ equivalents of $\mathrm{H}_{2} \mathrm{SO}_{4}$ i.e $0.1=0.1 \mathrm{X}$ Vin lt. $\quad \therefore \mathrm{V}=1$ lit
13) Molarity of $0.2 \%(w / v) \mathrm{NaOH}$ solution is

1) 0.2
2) 2
3) 0.05
4) 0.5

Solution: $0.2 \%(\mathrm{w} / \mathrm{v}) \mathrm{NaOH}$ solution means 0.2 g of NaOH is dissolved in 100 ml of solution. Molarity $=\left(\frac{W}{G . M . W}\right)_{\text {solute }} \times \frac{1000}{\text { vol.inml }}=\frac{0.2}{40} \times \frac{1000}{100}=0.05 \mathrm{M}$.
14) $\mathbf{2 0} \mathbf{~ m l}$ of 0.2 N HCl and $\mathbf{4 0} \mathrm{ml}$ of $0.4 \mathrm{~N} \mathrm{HNO}_{3}$ are mixed and the solution is diluted up to 100 ml . The normality of the resultant solution is

1) 0.1 N
2) 0.15 N
3) 0.2 N
4) 0.4 N

## Solution:

$$
\therefore \mathrm{N}_{\text {Toul }}=\frac{\mathrm{N}_{1} \mathrm{~V}_{1}+\mathrm{N}_{2} \mathrm{~V}_{2}}{\mathrm{~V}_{\text {Toul }}}=\frac{0.2 \times 20+0.4 \times 40}{100}=\frac{20}{100}=0.2 \mathrm{~N}
$$

15) Which of the following is more concentrated?
16) $1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$
17) $1 \mathrm{~m} \mathrm{H} \mathrm{H}_{2} \mathrm{SO}_{4}$
18) $1 \% \mathrm{H}_{2} \mathrm{SO}_{4}$
19) $1 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$

Hint: For poly basic acids the concentration in $1 \mathrm{M}>1 \mathrm{~m}>1 \mathrm{~N}>1 \%$
16) 20 ml of 10 NHCl and 10 ml of 5 N HCl are mixed and made upto 1 litre with distilled water. The normality of the resulting solution is

1) 0.25 N
2) 0.3 N
3) 0.20 N
4) 0.1 N

Solution: $\therefore \mathrm{N}_{\text {Tood }}=\frac{\mathrm{N}_{1} \mathrm{~V}_{1}+\mathrm{N}_{2} \mathrm{~V}_{2}}{\mathrm{~V}_{\text {Tooal }}}=\frac{10 \times 20+10 \times 5}{1000}=0.25 \mathrm{~N}$
17) What is the normality of $0.3 \mathrm{M}_{3} \mathrm{PO}_{4}$ in the following reaction?
$\mathrm{H}_{3} \mathrm{PO}_{4}+2 \mathrm{OH}^{-} \longrightarrow \mathrm{HPO}_{4}^{2-}+2 \mathrm{H}_{2} \mathrm{O}$

1) 0.15 N
2) 0.30 N
3) 0.10 N
4) 0.60 N

Solution: as the acid looses two $\mathrm{H}^{+}$ions, its basicity is 2 .
$\therefore \quad \mathrm{N}=\mathrm{MX}$ basicity $=0.3 \mathrm{X} 2=0.6 \mathrm{~N}$
18) Volume of water to be added to 1 litre of a solution of 1.123 N acid solution to make it 1 N solution

1) 900 ml
2) 246 ml
3) 123 ml
4) 100 ml

Solution: volume of water added $=\mathrm{V}_{1}\left(\mathrm{M}_{1-} \mathrm{M}_{2}\right) / \mathrm{M}_{2}$

$$
=1000(1.123-1) / 1=123 \mathrm{ml}
$$

19) Normality of the acid solution obtained by diluting 250 ml of $0.4 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ with 1000 ml of water is
1)0.1
20) 0.16
21) 0.2
22) 0.08

Solution: For dilution $V_{1} N_{1}=V_{2} N_{2}$
$250 \mathrm{X} 0.4=1250 \mathrm{XV}_{2}$ i.e $\mathrm{V}_{2}=0.08 \mathrm{~N}$
20) 10.6 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was exactly neutralized by 100 ml of $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution. Molarity of $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution is

1) 1.0
2) 2
3) 0.5
4) 2.5

Solution: $10.6 \mathrm{gm}=10.6 / 53=0.2 \mathrm{gm}$ equivalents of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
For complete neutralization, equivalents of $\mathrm{Na}_{2} \mathrm{CO}_{3}=$ equivalents of $\mathrm{H}_{2} \mathrm{SO}_{4}$
i.e $0.2=\mathrm{N}_{\mathrm{a}} \times \quad 100 / 1000$ thus N of $\mathrm{H}_{2} \mathrm{SO}_{4}=2 \mathrm{~N} \therefore \mathrm{M}=\mathrm{N} /$ basicity $=2 / 2=1 \mathrm{M}$
21) A volatile solvent can be separated from non volatile solute by

1) Evaporation
2) Distillation
3) Can't be separated
4) Filtration
5) The molarities of two solutions $A \& B$ are 0.1 M and 0.2 M respectively. If 100 ml of $A$ is mixed with 25 ml of $B$ there is no change in volume. Then final molarity of the solution is
6) 0.16 M
7) 0.18 M
8) 0.12 M
9) 0.28 M

Solution: $M=\frac{M_{1} V_{1}+M_{2} V_{2}}{\left(V_{1}+V_{2}\right)}=\frac{0.1 \times 100+0.2 \times 25}{100+25}=0.12 \mathrm{M}$
23) 200 ml of $\mathrm{KMnO}_{4}$ solution is exactly reduced by 100 ml , 0.5 M oxalic acid solution. The molarity of $\mathrm{KMnO}_{4}$ solution
1)0.1
2) 0.16
3) 0.2
4) 0.08

Solution: $2 \mathrm{KMnO}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4}+5 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{MnSO}_{4}+8 \mathrm{H}_{2} \mathrm{O}+10 \mathrm{CO}_{2}$

$$
\left.\frac{\mathrm{M}_{1} \mathrm{~V}_{1}}{n_{1}}=\frac{\mathrm{M}_{2} \mathrm{~V}_{2}}{\mathrm{n}_{2}} \quad \therefore \mathrm{KMnO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right) \quad \therefore \frac{\mathrm{M}_{1} \times 200}{2}=\frac{0.5 \times 100}{5} \quad, \mathrm{M}_{1}=0.1 \mathrm{M}
$$

$\therefore$ Molarity of $\mathrm{KMnO}_{4}=0.1 \mathrm{M}$
24) 250 ml of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution contains 2.65 g of $\mathrm{Na}_{2} \mathrm{CO}_{3} .10 \mathrm{ml}$ of this solution is added to $\mathbf{~ x m l}$ of water to obtain $\mathbf{0 . 0 0 1} \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution. The value of $\mathbf{x}$ in $\mathbf{~ m l}$
1)1000
2) 990
3) 9990
4) 90

Solution: $\mathrm{M}_{1}=2.65 \mathrm{X} 1000 / 106 \mathrm{X} 250=0.1$
Volume of water added i.e $x=V_{1}\left(M_{1}-M_{2}\right) / M_{2}$

$$
=10(0.1-0.001) / 0.001=990 \mathrm{ml}
$$

25) In acidic medium, dichromate ion oxidizes ferrous ion to ferric ion. If the gram molecular weight of potassium dichromate is $\mathbf{2 9 4}$ gram, its gram equivalent weight is (in grams)
26) 294
27) 147
28) 49
29) 24.5

Solution: in acid medium change in ox.state per molecule of dichromate $=6$
GEW=GMW/6=294/6=49
26) Which of the following is more concentrated?

1) $1 \% \mathrm{H}_{3} \mathrm{PO}_{4}$
2) $1 \mathrm{M} \mathrm{H} \mathrm{H}_{3} \mathrm{PO}_{4}$
3) $1 \mathrm{~m} \mathrm{H}_{3} \mathrm{PO}_{4}$
4) $1 \mathrm{~N} \mathrm{H}_{3} \mathrm{PO}_{4}$
5) Molarity of $\mathbf{1} \%$ ( W/V) $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution is approximately
6) 2.5
7) 1
8) 0.18
9) 0.1

Solution: $\mathrm{M}=(\mathrm{w} / \mathrm{v}) \% \mathrm{X} 10 / \mathrm{GMW}=1 \mathrm{X} 10 / 98=0.102 \mathrm{M}$
28) What volume of 0.8 M solution contains 0.4 mole of solute?

1) 100 ml
2) 125 ml
3) 500 ml
4) 62.5 ml

Solution: $\mathrm{M}=\mathrm{n} / \mathrm{V}$ inlit or V inlit=$=\mathrm{n} / \mathrm{M}=0.4 / 0.8=0.5 \mathrm{lit}=500 \mathrm{ml}$
29) Equivalent weight of a trivalent metal is 9 . The molecular weight of its oxide is

1) 75
2) 36
3) 51
4) 102

Solution: GAW of metal $=$ GEWX valency $=9 \mathrm{X} 3=27$, as metal is trivalent, its oxide is $\mathrm{M}_{2} \mathrm{O}_{3}$.
GMW of $\mathrm{M}_{2} \mathrm{O}_{3}=2 \mathrm{X} 27+3 \mathrm{X} 16=102$
30) $\mathbf{0 . 5}$ mole of $\mathrm{H}_{3} \mathrm{PO}_{4}$ is dissolved in sufficient water and made upto 500 ml in a standard flask. The concentration of the solution is

1) 0.5 M
2) 1 m
3) 1 M
4) 1 N

Solution: $\mathrm{M}=\mathrm{nX} 1000 / \mathrm{V}$ in $\mathrm{ml}=0.5 \mathrm{X} 1000 / 500=1 \mathrm{M}$
31) Which of the following method of expressing concentration is independent of temperature and have no units?

1) Molality
2) Mole fraction
3) Molarity
4) Normality
5) Equivalent weight of $\mathrm{KMnO}_{4}$ in neutral medium is
6) $M / 3$
7) $M / 1$
8) $M / 5$
9) $M / 6$
10) Number of equivalents in $98 \mathrm{gm} \mathbf{H}_{3} \mathrm{PO}_{3}$ is
1)2
11) 1
12) 3
13) $1 / 2$
14) With increase in temperature both normality and molarity of a solution
15) Decreases
16) Increases
17) Remains same
18) Doubles
19) When a solution is diluted $\mathbf{n}$ times, the molarity and normality
20) Decreases by $2 n$ times
21) Decreases by n times
22) Decreases by $n / 2$ times
23) Increases by $n$ times

Hint: N orM inversely proportion to volume.
36) An example for gas in solid solution is

1) Alloy
2) Soda water
3) Occlusion of $\mathrm{H}_{2}$ in pd
4) Iodine in air
5) A solution whose concentration is exactly known is called
6) Centimolar solution
7) Saturated solution
8) Standard solution
9) Any of the above
10) More convenient method of expressing concentration is
11) Molarity
12) Normality
13) \% by weight
14) All of these.
15) $\mathbf{1 0 0} \mathrm{ml}$ of $\mathrm{CH}_{3} \mathrm{OH}(\mathbf{d}=\mathbf{0 . 3 2} \mathbf{g} / \mathbf{m l})$ was taken in a $\mathbf{1 0 0 0} \mathrm{ml}$ flask and water is added upto the mark to prepare solution. The molarity of solution is (volumes are additive)
1)1
16) 2
17) 0.1
18) 0.5

Solution: wt of solute $=$ VXd $=100 \mathrm{X} 0.32=32 \mathrm{gm}$
$\mathrm{M}=\mathrm{wt} \mathrm{X} 1000 / \mathrm{GMWXV}$ in $\mathrm{ml}=32 \mathrm{X} 1000 / 32 \mathrm{X} 1000=1 \mathrm{M}$
40) The molarity of resulting solution formed by mixing equal volumes of 1 M HCl and 1 M $\mathrm{HNO}_{3}$ is
1)2
2) 1
3) 1.5
4) 2.5

Solution: $M=\frac{M_{1} V_{1}+M_{2} V_{2}}{\left(V_{1}+V_{2}\right)}=\frac{1 \times V+1 \times V}{V+V}=1 M$
41) 0.6 g of a metal carbonate is neutralized by 300 ml of centimolar HCl solution. The equivalent weight of metal carbonate is
1)100
2) 50
3) 150
4) 200

Solution: wt of metal carbonate/GEW $=\mathrm{N}_{\mathrm{a}} \mathrm{XV}_{\mathrm{a}}$ in lt

$$
0.6 / \mathrm{GEW}=0.01 \mathrm{X} 300 / 1000, \quad \therefore \quad \mathrm{GEW}=200
$$

42) A solution is labeled as 10 N . To prepare 100 ml of 0.1 N solution, the volume of water to be added to the concentrated solution is
43) 90 ml
44) 99 ml
45) 990 ml
46) 1 ml

Solution: $\mathrm{V}_{1} \mathrm{~N}_{1}=\mathrm{V}_{2} \mathrm{~N}_{2}, \mathrm{~V}_{1}=100 \mathrm{X} 0.1 / 10=1 \mathrm{ml}$
$\therefore$ Volume of water added $=\mathrm{V}_{2}-\mathrm{V} 1=100-1=99 \mathrm{ml}$
43) The solubility of a gas in liquid increases with

1) Increase in temperature
2) reduction of gas pressure
3) Decrease in temperature and increase in gas pressure
4) amount of liquid taken.
5) The volume of water that must be added to a mixture of 250 ml of 6 M HCl and 650 ml of 3M HCl to obtain 3M solution is
6) 75 ml
7) 150 ml
3). $300 \mathrm{ml}^{-}$
8) 250 ml

Solution: $M=\frac{M_{1} V_{1}+M_{2} V_{2}}{\left(V_{1}+V_{2}+\text { vol.ofwater }\right)}$
45) Equal volumes of $0.1 \mathrm{M} \mathrm{NaNO}_{3}$ and 0.2 M NaCl solutions are mixed. The concentration of nitrate ions in the resultant mixture will be

1) 0.1 M
2) 0.2 M
3) 0.05 M
4) 0.15 M

Solution: As equal volumes are mixed the vol.of solution is doubled. [ $\left.\mathrm{NO}_{3}{ }^{-}\right]=0.1 / 2=0.05 \mathrm{~N}$ or M
46) The following are some statements about solution
i) In a binary solution, two components are present
ii) A homogenous solution consists of two phases
iii) In a binary solution, component generally present in higher amount is known as solvent

1) All are correct
2) Only (i) and (ii) are correct
3) Only (i) and (iii) are correct
4) (ii) and (iii) are correct

## 47) Match the following

## List-I

A. gas in liquid
B. liquid in gas
C. liquid in solid
D. solid in solid

A
1)5
2)1
3) 4
4) 2

## List-II

1. camphor in air
2. bronze
3. water in air
4. Oxygen in water
5. amalgam The correct answer is

B
C

43
23
5
1
48) 0.84 g of metal carbonate reacts exactly with 40 ml of $\frac{\mathrm{N}}{2} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution. Equivalent weight of metal is

1) 84 g
2) 21 g
3) 42 g
4) 12 g

Solution: wt of metal carbonate/GEW $=\mathrm{N}_{\mathrm{a}} \mathrm{XV}_{\mathrm{a}}$ in lt

$$
0.84 / \mathrm{GEW}=0.5 \mathrm{X} 40 / 1000, \quad \therefore \quad \text { GEW of metal carbonate }=42
$$

GEW of METAL=42- GEW of $\mathrm{CO}_{3}{ }^{-2}=42-30=12 \mathrm{~g}$.

## 49) Solubility of a solute in a solvent depends on

1) Nature of solute
2) Nature of solvent
3) Temperature 4) All the above

## 50) Correct relation is

1. Molarity $x$ Eq. Wt $=$ Normality $x$ Mol. Wt
2. Molarity x Mol.wt = Normality x Eq. Wt
3. Molarity x Normality $=$ M.wt x Eq. Wt
4. $\frac{\text { Molarity }}{M \cdot w t}=\frac{\text { Normality }}{E q \cdot w t}$
51) In acidic medium, molarity of $0.3 \mathrm{~N} \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution is
52) 0.3
53) 0.05
54) 1.8
55) 0.15

Solution: N=MX change in ox. State per mole, $M=0.3 / 6=0.05$
52) The concentration of sulphate ions in 0.1 M potash alum solution is

1) 0.4 M
2) 0.3 M
3) 0.2 M
4) 0.1 M

Solution; Formula of potash alum is $\mathrm{K}_{2} \mathrm{SO}_{4} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} 24 \mathrm{H}_{2} \mathrm{O}$.i molecule contains
4 sulphate ions. $\therefore\left[\mathrm{SO}^{-2}\right]=0.1 \mathrm{X} 4=0.4$
53) In $46 \%(w / w)$ aqueous solution of ethyl alcohol the mole fraction of alcohol is

1) 0.5
2) 0.25
3) 0.75
4) 0.65

Solution: $46 \% \mathrm{w} / \mathrm{w}$ means 100 gm solution contains 46 gm of alcohol
$\therefore \quad$ Wt of alcohol $=46 \mathrm{gm}$. Wt of water $=100-46=54 \mathrm{gm}$.
Moles of alcohol=n=46/46=1 and moles of water i.e $\mathrm{N}=54 / 18=3$
$\therefore \quad$ Mole fraction of alcohol $=\mathrm{n} / \mathrm{n}+\mathrm{N}=1 / 1+3=0.25$
54) If 0.46 g of Ethanol is dissolved in 1000 g of $\mathrm{H}_{2} \mathrm{O}$, the molality of the ethanol solution is

1) 0.1 m
2) 0.02 m
3) 0.2 m
4) 0.01 m

Solution: Wt of ethanol (solute) $=0.46 \mathrm{~g}, \mathrm{Wt}$. of water $($ solvent $)=1000 \mathrm{~g}$
G.M. W of ethanol $=46 \mathrm{~g}$

Molality $=\left(\frac{\mathrm{W}}{\text { G.M.W }}\right)_{\text {solue }} \times \frac{1000}{\text { wtof solvent in gms }}=\frac{0.46}{46} \times \frac{1000}{1000}=0.01 \mathrm{~m}$
55) The molality of a $9.8 \%(\mathrm{w} / \mathrm{w})$ solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is

1) 1.1 m
2) 2.2 m
3) 1 m
4) 2 m

Solution: $9.8 \%(\mathrm{w} / \mathrm{w})$ solution means 9.8 g of the solute are present in 100 g of solution.
Wt of solute $=9.8 \mathrm{~g}, \quad$ wt of solvent $=100-9.8=90.2 \mathrm{~g}$
Molality =

$$
\left(\frac{\mathrm{W}}{\mathrm{G} . \mathrm{M} . \mathrm{W}}\right)_{\text {Solute }} \times \frac{1000}{\text { wt. of solvent in gm }}=\frac{9.8}{98} \times \frac{1000}{90.2}=1.1 \mathrm{~m}
$$

56) The molality of $\mathbf{4 \%}(\mathrm{w} / \mathrm{v}) \mathrm{NaOH}$ solution having the density $1.02 \mathrm{~g} / \mathrm{ml}$. is
57) 1.2 m
58) 0.98 m
59) 1.02 m
60) 1 m

Solution: $4 \%(\mathrm{w} / \mathrm{v}) \mathrm{NaOH}$ solution contains 4 g of NaOH is 100 ml of the solution.
Density of the solution $=1.02 \mathrm{~g} / \mathrm{ml}$
Wt of the solute in 100 ml of the solution $=4 \mathrm{~g}$
Wt of 100 ml of the solution $=\quad 100 \times 1.02=102 \mathrm{~g}$
Wt. of solvent $=\mathrm{Wt}$ of solution -Wt of solute $=102-4=98 \mathrm{~g}$.
$\therefore$ Molality $=\left(\frac{\mathrm{W}}{\text { G.M.W }}\right)_{\text {solue }} \times \frac{1000}{\text { wt of solvent in gms }}=\frac{4}{40} \times \frac{1000}{98}=1.02 \mathrm{~m}$
57) 6 g of urea is mixed with 16.2 g of $\mathrm{H}_{2} \mathrm{O}$ the mole fraction of urea in the mixture is
1)6/22.2
2)22.2/6
3)0.9
4)0.1

Solution: Mole fraction of urea $=\frac{n_{\text {wrea }}}{n_{\text {wea }}+n_{H_{2} O}}=\frac{\left(\frac{6}{60}\right)}{\left(\frac{6}{60}+\frac{16.2}{18}\right)}=\frac{0.1}{0.1+0.9}=0.1$
58). In a normal solution of $\mathrm{BaCl}_{2}$, normalities of $\mathrm{Ba}^{+2}$ and $\mathrm{Cl}^{-}$are in the ratio

1) $2: 1$
2) $1: 2$
3) $1: 1$
4) $2: 3$

Solution: $\mathrm{BaCl}_{2} \rightarrow \mathrm{Ba}^{+2}+2 \mathrm{Cl}^{-} \quad 1 \mathrm{~N} \quad 1 \mathrm{~N} \quad 2 \mathrm{~N}$
59) Match List-I with List-II

List-I
$\begin{array}{ll}\text { A. Molarity } & \text { i) no units } \\ \text { B. Molality } & \text { ii) gm.equivalents/lit } \\ \text { C. Normality } & \text { iii) mol/lit } \\ \text { D. Mole fraction } & \text { iv) moles/ kg. Solvent } \\ & \text { v) gm. equivalents/ kg. Solvent }\end{array}$
The correct match is:
A $\quad$ B $\quad$ C

1) (iv) (iii) (ii) (i)
2) (iv)
(v) (ii)
(i)
3) (iii) (iv) (i) (ii)
4) 
5) If 20 ml of 1 M HCl solution is exactly neutralized by 10 ml of $\mathrm{Ca}(\mathrm{OH})_{2}$ solution, the strength of $\mathrm{Ca}(\mathrm{OH})_{2}$ in grams per liter of the solution is
6) 37
7) 74
3)111
8) 148

Solution: ${ }^{2 \mathrm{HCl}+\mathrm{Ca}(\mathrm{OH})_{2} \longrightarrow \mathrm{CaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}, ~}$

$$
\frac{M_{1} V_{1}}{\substack{\mathrm{~m}_{1} \\
\text { (Hac) }}}=\frac{\mathrm{M}_{2} \mathrm{~V}_{2}}{\mathrm{n}_{2}}\left(\begin{array}{c}
\text { (adout })
\end{array} \quad \Rightarrow \frac{1 \times 20}{2}=\frac{M_{2} \times 10}{1}, M_{2}=1.0 \mathrm{M}\right.
$$

Molarity of $\mathrm{Ca}(\mathrm{OH})_{2}=1.0 \mathrm{M}$
Strength of $\mathrm{Ca}(\mathrm{OH})_{2}$ solution $=$ Molarity XM.wt $=1 \mathrm{X} 74=74 \mathrm{~g} /$ litre .
61) A gaseous mixture contains four gases $A, B, C$ and $D$. The mole fraction of " $B$ " is 0.5 . The mole fraction of " A " is

1) 0.525 2) 0.375
2) 0.625
3) 0.732

Solution: As $\mathrm{X}_{\mathrm{B}}=0.5, \mathrm{X}_{\mathrm{A}}+\mathrm{X}_{\mathrm{C}}+\mathrm{X}_{\mathrm{D}}=1-0.5=0.5 \quad \therefore \mathrm{X}_{\mathrm{A}}<0.5$
62) The maximum allowable level of carbon monoxide in air is $9 \mathrm{mg}^{\mathbf{~ p e r}} \mathbf{d m}^{\mathbf{3}}$, the level in $\mathbf{~ p p m}$ is

1) 9
2) 18
3) 90
4) 900

Solution; $1 \mathrm{dm}^{3}=1 \mathrm{lit}, \quad 1 \mathrm{mg} / \mathrm{lit}=1 \mathrm{ppm}$

KEY:

| 1) 2 | 2)3 | 3) 1 | 4) 1 | 5) 3 | 6)3 | 7) 1 | 8)4 | 9)3 | 10)3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11)2 | 12)4 | 13) 3 | 14)3 | 15)1 | 16) 1 | 17)4 | 18) 3 | 19) 4 | 20) 1 |
| 21)2 | 22) 3 | 23)1 | 24)2 | 25)3 | 26)2 | 27)4 | 28)3 | 29)4 | 30)3 |
| 31) 2 | 32)1 | 33) 1 | 34) 1 | 35) 2 | 36)2 | 37) 3 | 38)1 | 39)1 | 40)2 |
| 41)4 | 42)2 | 43) 3 | 44)4 | 45)3 | 46) 3 | 47)3 | 48) 4 | 49) 4 | 50) 2 |
| 51)2 | 52) 1 | 53)2 | 54)4 | 55)1 | 56)3 | 57)4 | 58)2 | 59)4 | 60)2 |
| 61) 2 | 62)1 |  |  |  |  |  |  |  |  |

