SOLUTION-1

1. Normanty of 10	0.0% (W/V) Na_2CO_3 solution	on is	
1) 1N	2) 2N	3) 3N	4) 4N
Hint: N= (w/	(v)%x10/GEW		
=10.6X10/53	=2N		
2. The weight of N	NaOH(in gm) present in 10	0ml of 0.5M NaOH solutio	n is
2) 1	2) 3	3) 2	4) 4
Solution: Wt=	MX GMW X V in lit.=0.5X	X40X100/1000 =2gm	
3; An aqueous s	olution of 6.3g oxalic acid	dihydrate is made up to 25	0ml. Volume of 0.1N
NaOH requ	uired to completely neutral	lize 10ml of this solution is	
1)40 ml	2) 20 ml	3) 10 ml	4) 4 ml
Solution of ox	salic acid N ₁ =(wtX1000)/(G	EWX V in ml)=6.3x1000/63	X250 = 0.4N
$V_aN_a=V_bN_b$ i	e 10Xo.4= V_b X0.1 → V_b =40	ml	
	4		
4. Equivalent wei	ght of hypo in the reaction	$Na_2S_2O_3 + Cl_2 + H_2O \longrightarrow$	$Na_2SO_A + 2HCl + S$,
	ar weight of hypo is		2
1) M	2) M/2	3) M/3	4) 2M
•		, in Na_2SO_4 is +6 and in eler	,
	oxidation state per molecul		nentary form is zero. In
	uct side total ox, state of 's':		
. 7-6		1 ∴ Equivalent weight of h	wno-M/1-M
Change in	ox. State per molecule=0-3=	Equivalent weight of h	y po-1 v1 / 1-1 v1
5) Molarity of nu	 wo water (density=1am/ml) ia	
A 4 4 5	re water (density=1gm/ml)		
1)40M	2) 4M	3) 55.6M	4) 25M
Solution: wt of 1	Hit water=1000gm=1000/18	=55.55 moles, M=n/v in lt=5	55.55/1=55.55M

6	Which one	of these	colutions l	haa biabaat	normality?
U)	WILL OHE	or mese	SOLUMONS I	nas inghesi	normality?

1)8g KOH per 100ml

- 3) $0.5M H_2SO_4$
- 4) 6g NaOH per 100ml
- 5) 1N H₃PO₄

 $N = \frac{\text{wt of solute}}{\text{Gram equivalent weight}} \times \frac{1000}{\text{Vol of solution in ml}}$

7) 10. 6 g Na₂CO₃ is dissolved in water to get 2 M solution. The volume of the solution (in ml) is

- 1) 50 ml
- 2) 40 ml
- 3) 100 ml

4) 10 ml

Solution: Molarity (M) = $\left(\frac{W}{G.M.W}\right)_{\text{solute}} \times \frac{1000}{\text{vol.in ml}} i.e^{2 = \frac{10.6}{106} \times \frac{1000}{V_{\text{ml}}}}$

 \therefore Vol. of solution = 50 ml

:.

- 8) The volume of 0.2M H_2SO_4 solution containing 10 milli equivalents of solute is
 - 1)50 ml
- 2) 40 ml
- 3) 100 ml

4) 25 ml

Solution: N=MX basicity=0.2X2=0.4N, milli equivalents =N X Vin ml

9) The number of moles of oxalic acid required to decolorize completely 0.4 mole of acidified $KMnO_4$ solution is

1)0.4

2) 0.5

3) 1

4) 2

Solution: $2KMnO_4 + 3H_2SO_4 + 5H_2C_2O_4 \rightarrow K_2SO_4 + 2MnSO_4 + 8H_2O + 10CO_2$

10. Assertion (A): Molarity of 0.05N solution of HNO_3 is 0.05M

Reason (R): Molarity & normality of a solution are always equal

The correct answer is

- 2) Both A and R are true and R is correct explanation of A
- 3) Both A and R are true and R is not correct explanation of A
- 4) A is true but R is false
- 4) Both A and R are false

11)	Solid	colution	in	the	following	ic
11)	Sona	Solution	Ш	uie	Tonowing	12

- 1) NaCl in water
- 2) Amalgam 3) Soda water 4) Camphor in air

12) The volume of 0.1N H_2SO_4 solution required to exactly neutralize 5.6g of KOH is

- 1)250 ml
- 2) 500 ml
- 3) 25 ml

4) 1000 ml

Solution: 5.6gm=5.6/56=0.1gm equivalents of KOH

For complete neutralization, equivalents of KOH= equivalents of H_2SO_4

i.e
$$0.1 = 0.1X$$
 Vin lt. \therefore V=1lit

13) Molarity of 0.2% (w/v) NaOH solution is

1)0.2

2) 2

3) 0.05

4)0.5

Solution: 0.2% (w/v) NaOH solution means 0.2 g of NaOH is dissolved in 100 ml of solution.

Molarity =
$$\left(\frac{W}{G.M.W}\right)_{colors} \times \frac{1000}{vol.inml} = \frac{0.2}{40} \times \frac{1000}{100} = 0.05M.$$

14) 20 ml of 0.2 N HCl and 40 ml of 0.4 N HNO3 are mixed and the solution is diluted up to

100 ml. The normality of the resultant solution is

- 1)0.1 N
- 2) 0.15 N
- 3)0.2N

4) 0.4 N

Solution:

$$\therefore N_{\text{Total}} = \frac{N_1 V_1 + N_2 V_2}{V_{\text{Total}}} = \frac{0.2 \times 20 + 0.4 \times 40}{100} = \frac{20}{100} = 0.2N$$

- 15) Which of the following is more concentrated?

 - 1)1M H_2SO_4 2) 1m H_2SO_4
- 3) 1% H_2SO_4 4)1N H_2SO_4

Hint: For poly basic acids the concentration in 1M>1m>1N>1%

16) 20ml of 10N HCl and 10ml of 5 N HCl are mixed and made upto 1 litre with distilled water.

The normality of the resulting solution is

- 1)0.25 N
- 3) 0.20 N

4) 0.1 N

17) What is the nor	rmality of 0.3 M H_3PO	$oldsymbol{q}_4$ in the following reac	tion?				
$H_3PO_4 + 2OH^$	$\longrightarrow HPO_4^{2-} + 2H_2O$						
1)0.15 N	2) 0.30 N	3) 0.10 N	4) 0.60 N				
Solution: as the	acid looses two H ⁺ ions,	its basicity is 2.					
∴ N=MX basicit	y=0.3X2=0.6N						
18) Volume of water	r to be added to 1 litre	of a solution of 1.123 N	acid solution to make it 1N				
solution							
1)900ml	2) 246 ml	3) 123 ml	4) 100 ml				
Solution: volum	Solution: volume of water added= $V_1 (M_1 - M_2) / M_2$						
=1000(1.12	3-1)/1=123ml						
19) Normality of the	acid solution obtained	by diluting 250 ml of	0.4N H_2SO_4 with 1000ml of				
water is							
1)0.1	2) 0.16	3) 0.2	4) 0.08				
Solution: For dilu	ution $V_1N_1 = V_2N_2$						
250X0.4=1250X	V ₂ i.e V ₂ =0.08N						
20) 10.6g of <i>Na</i> ₂ <i>CO</i>	3 was exactly neutraliz	zed by 100ml of H_2SO_4	solution. Molarity of H_2SO_4				
solution is							
1)1.0	2) 2	3) 0.5	4) 2.5				
Solution: 10.6gm	=10.6/53=0.2 gm equiv	alents of Na_2CO_3					
For complete ner	utralization, equivalents	of Na_2CO_3 = equivalent	ts of H_2SO_4				
i.e $0.2 = N_a X 100$	/1000 thus N of H_2SO_4	=2N ∴M=N/basicity=2	/2=1M				
	-	n non volatile solute by					
1) Evaporation	2) Distillation	3) Can't be separated	4) Filtration				
22) The molarities of	two solutions A & B a	re 0.1M and 0.2M resp	ectively. If 100ml of A is				
mixed with 25ml	of B there is no change	e in volume. Then final	molarity of the solution is				
1)0 16 M	2) 0.18 M	3) 0 12 M	4) 0 28 M				

Solution: $M = \frac{M_1 V_1 + M_2 V_2}{(V_1 + V_2)} = \frac{0.1 \times 100 + 0.2 \times 25}{100 + 25} = 0.12 \text{ M}$

23)	200 ml of KMnO ₄ solu	tion is exactly reduced l	by 100 ml, 0.5M	oxalic acid solution. The
	molarity of KMnO ₄ so	lution		
	1)0.1	2) 0.16	3) 0.2	4) 0.08
	Solution: $2KMnO_4 + 3$	$H_2SO_4 + 5H_2C_2O_4 \rightarrow$	$K_2SO_4 + 2MnSO_4$	$O_4 + 8H_2O + 10CO_2$
	$\frac{\mathbf{M_{_{1}}V_{_{1}}}}{\mathbf{n_{_{1}}}} = \frac{\mathbf{M_{_{2}}V_{_{2}}}}{\mathbf{n_{_{2}}}} \\ (\mathbf{KMnO_{_{4}}}) (\mathbf{H_{_{2}}C_{_{2}}O_{_{4}}})$	$\therefore \frac{M_{1} \times 200}{2} = \frac{0.5 \times 100}{5} , M_{1}$	1 = 0.1M	
	∴ Molarity of KMnO	$_{4} = 0.1 \text{ M}$		
24)	250ml of Na_2CO_3 solu	tion contains 2.65g of A	Ja_2CO_3 . 10 ml of	this solution is added to xml
	of water to obtain 0.00	1M Na_2CO_3 solution. T	he value of x in	ml
	1)1000	2) 990	3) 9990	4) 90
	Solution: M ₁ =2.65X100	00/106X250=0.1	4. A	
	Volume of water added	i.e $x=V_1 (M_{1-}M_2)/M_2$		
	=10 (0. 1-0.001)/0.0	001=990ml		
25)	In acidic medium, dicl	nromate ion oxidizes fer	rrous ion to ferri	ic ion. If the gram molecular
	weight of potassium di	chromate is 294 gram,	its gram equival	ent weight is (in grams)
	1)294	2) 147	3) 49	4) 24.5
	Solution: in acid medium	n change in ox.state per	molecule of dichr	romate=6
	GEW=GMW/6=294/6=4	19		
26)	Which of the followin	g is more concentrated	?	
	1)1% <i>H</i> ₃ <i>PO</i> ₄	2) 1M H_3PO_4	3) 1m H_3PO_4	4)1N H_3PO_4
	442			
27)	Molarity of 1 %(W/V	H_2SO_4 solution is app	roximately	
	1)2.5	2) 1	3) 0.18	4) 0.1
	Solution: M= (w/v) % X	X10/GMW =1X10/98=0.	102M	
28)	What volume of 0.8M	solution contains 0.4 m	nole of solute?	
	1)100 ml	2) 125 ml	3) 500 ml	4) 62.5 ml
	Solution: M=n/V inlit or	V inlit=n/M=0.4/0.8=0	.5lit=500ml	

www.sakshieducation.com

49)	Equivalent weight of a	trivalent metal is 9. The	molecular weight of its ox	aue is
	1)75	2) 36	3) 51	4) 102
	Solution: GAW of meta	al= GEWX valency =9X3	=27, as metal is trivalent, its	oxide is M ₂ O _{3.}
	GMW of $M_2O_3 = 2X27$	+3X16=102		
30)	0.5 mole of H_3PO_4 is o	lissolved in sufficient wa	ter and made upto 500ml	in a standard
	flask. The concentrat	ion of the solution is		4
	1)0.5 M	2) 1 m	3) 1 M	4) 1 N
	Solution: M=nX1000/V	in ml=0.5X1000/500 =1N	Л	
31)	Which of the following	method of expressing co	oncentration is independer	nt of temperature
	and have no units?			
	1) Molality	2) Mole fraction	3) Molarity 4) Norm	ality
32)	Equivalent weight of	$KMnO_4$ in neutral mediu	ım is	
	1) M/3	2) M/1	3) M/5	4) M/6
33)	Number of equivalent	s in 98gm _{H3} PO ₃ is		
	1)2	2) 1	3) 3	4) 1/2
34)	With increase in tempe	rature both normality a	nd molarity of a solution	
	1) Decreases	2) Increases	3) Remains same	4) Doubles
35)	When a solution is dilu	ited n times, the molarit	y and normality	
	1) Decreases by 2n time	s 2) Decreas	es by n times	
	3) Decreases by n/2 time	es 4) Increases	s by n times	
	Hint: N orM inversely p	proportion to volume.		
30	6) An example for gas	in solid solution is		
	1) Alloy		2) Occlusion of H_2 in pd	
	3) Soda water		4) Iodine in air	

37)	A solution wh	iose concentration i	s exactly knov	vn is called		
	1) Centimolar	solution		2) Saturat	ted solution	
	3) Standard so	lution		4) Any of	f the above	
38)	More conveni	ent method of expr	essing concent	ration is		
30)	1) Molarity	2) Normality 3)	_		hasa	
	•					
39)	100ml of <i>CH</i> ₃ 0	$OH (\mathbf{d} = 0.32 \text{ g/ml})$	was taken in a	1000ml fla	isk and water is ac	lded upto th
	mark to prep	are solution. The m	olarity of solu	tion is (volu	umes are additive)	
	1)1	2) 2	3)	0.1	4) 0.	5
	Solution: wt of	solute=VXd=100X0).32=32gm			
	M=wt X1000/0	GMWXV in ml= 322	X1000/32X100	0 = 1M		
40)	The molarity of	of resulting solution	formed by mi	xing equal	volumes of 1M H	Cl and 1M
	HNO_3 is					
	1)2	2) 1	3)	1.5	4) 2.	5
	Solution: $M = \frac{1}{2}$	$\frac{M_1V_1 + M_2V_2}{(V_1 + V_2)} = \frac{1 \times V + 1 \times V_2}{V + V_2}$	$\frac{V}{N} = 1M$			
		$(V_1 + V_2)$ $V + V$				
41)	0.6g of a metal	carbonate is neutr	alized by 300n	al of centim	nolar HCl solution	. The
	equivalent weig	ght of metal carbons	ate is			
	1)100	2) 50	3)	150	4) 20	00
	Solution: wt o	f metal carbonate/GF	$EW = N_a XV_a$ in	1t		
	0.6/GI	EW=0.01X300/1000	, \therefore GEW =	200		
	A 4 50					
42)	A solution is l	abeled as 10N. To p	repare 100ml	of 0.1N solu	ution, the volume	of water to
	be added to th	e concentrated solu	ition is			
	1)90 ml	2) 99 ml	3)	990 ml	4) 1	ml
	Solution: V ₁ N	$_{1}$ = $V_{2} N_{2}$, V_{1} =100 X	0.1/10=1ml			
	· Volume of wa	ter added=V ₂ -V1 =1	00-1=99ml			
43)	The solubility	of a gas in liquid in	ncreases with			
	1) Increase in	temperature			2) reduction of gas	s pressure
	3) Decrease in	temperature and inc	crease in gas pr	essure	4) amount of liqui	d taken.

44)	The volume of water	that must be a	dded to a mixture of	250ml of 6M HCl and 650ml of
	3M HCl to obtain 3M	solution is		
	1) 75ml	2) 150ml	3). 300ml`	4) 250ml
	Solution: $M = \frac{M_1 V_2}{(V_1 + V_2 + V_3)}$	$\frac{V_1 + M_2 V_2}{\text{-vol.ofwater}}$		
45)	Equal volumes of 0.1	M NaNO ₃ and (0.2 M NaCl solutions	are mixed. The concentration of
	nitrate ions in the res	ultant mixture v	vill be	
	1) 0.1 M	2) 0.2 M	3) 0.05 M	4) 0.15 M
	Solution: As equal vol	umes are mixed t	he vol.of solution is do	ubled.[NO_3^-]=0.1/2= 0.05N or M
46)	The following are so	ne statements al	bout solution	
	i) In a binary solution	n, two componer	nts are present	
	ii) A homogenous solu	ıtion consists of	two phases	
	iii) In a binary solution	n, component ge	enerally present in hig	her amount is known as solvent
	1) All are correct		2) Only (i) a	nd (ii) are correct
	3) Only (i) and (iii) are	correct	4) (ii) and (ii	i) are correct
4	7) Match the following List-I	List-II		
	A. gas in liquid	1. camphor in	air	
	B. liquid in gas	2. bronze		
	C. liquid in solid	3. water in air		
	D. solid in solid	4. Oxygen in v	vater	
		5. amalgam Tl	he correct answer is	
	A	В	C	D
	1)5		4 3	2
	2)1		2 3	4
	3)4	3	5	2
	4) 2	4	1	3

48)	0.84g of metal	l carbonate reacts exac	tly with 40ml of $\frac{N}{2}$ H_2	SO_4 solution. Equivalent
	weight of meta		Z	
	1)84g	2) 21g	3) 42g	4) 12g
	, 0	metal carbonate/GEW =	, ,	1) 128
			GEW of metal carbona	te = 42
		$\Delta L = 42$ - GEW of $CO_3^{-2} =$		
		- · · · · · · · · · · · · · · · · · · ·	6	
49)	Solubility of	a solute in a solvent dep	oends on	
	·	-	ent 3) Temperature 4)	All the above
	,	,	,	
50)	Correct rela	tion is		
	1. Molarity x	Eq. Wt = Normality x M	Mol. Wt	
	2. Molarity x	Mol.wt = Normality x I	Eq. Wt	
	3. Molarity x	Normality = M.wt x Eq	. Wt	
	Molarity _	Normality		
	$\frac{Molarity}{M.wt} =$	Eq.wt		
51)	In acidic med	lium, molarity of 0.3N	$K_2Cr_2O_7$ solution is	
	1)0.3	2) 0.05	3) 1.8	4) 0.15
	Solution: N=	MX change in ox. State	per mole, M=0.3/6=0.05	5
	•			
52)	The concentration	on of sulphate ions in 0.1	M potash alum solution	is
	1)0.4M	2) 0.3 M	3) 0.2 M	4) 0. 1 M
	Solution; For	rmula of potash alum is l	$K_2SO_4Al_2(SO_4)_3$ 24 H_2C) i molecule contains
		ns. ∴[SO4 ⁻²]=0.1X4=0.		of morecure contains
A	4 sulphate io	ns. ∴[50 1]=0.111 1=0.	•	
53)		_	hyl alcohol the mole fra	
	1)0.5	2) 0.25	3) 0.75	4) 0.65
_		_	ution contains 46gm of a	alcohol
··		= 46 gm. Wt of water $= 10$	-	2
	Moles of alcoh	noI=n=46/46=1 and mole	es of water i.e $N=54/18=3$	3

 \therefore Mole fraction of alcohol =n/n+N =1/1+3=0.25

www.sakshieducation.com

54) If 0.46g of Ethanol is dissolved in 1000 g of H₂O, the molality of the ethanol solution is

1)0.1m

2) 0.02m

3) 0.2m

4) 0.01m

Solution: Wt of ethanol (solute) =0.46g, Wt. of water (solvent) = 1000 g

G.M. W of ethanol = 46 g

 $Molality = \frac{\left(\frac{W}{G.M.W}\right)_{solute} \times \frac{1000}{\text{wt of solvent in gms}}}{\sqrt{\frac{1000}{46} \times \frac{1000}{1000}}} = 0.01 \,\text{m}$

55) The molality of a 9.8% (w/w) solution of H_2SO_4 is

1)1.1m

2) 2.2m

3)1m

4)2m

Solution: 9.8% (w/w) solution means 9.8 g of the solute are present in 100g of solution.

Wt of solute = 9.8g, wt of solvent = 100-9.8 = 90.2g

Molality =

 $\left(\frac{W}{G.M.W}\right)_{\text{Solute}} \times \frac{1000}{\text{wt. of solvent in gm}} = \frac{9.8}{98} \times \frac{1000}{90.2} = 1.1 \text{m}$

56) The molality of 4% (w/v) NaOH solution having the density 1.02 g/ml. is

1)1.2m

2) 0.98m

3)1.02m

4)1m

Solution: 4% (w/v) NaOH solution contains 4g of NaOH is 100ml of the solution.

Density of the solution = 1.02 g/ml

Wt of the solute in 100 ml of the solution = 4g

Wt of 100 ml of the solution = $100 \times 1.02 = 102 \text{ g}$

Wt. of solvent = Wt of solution - Wt of solute = 102-4= 98 g.

$$\therefore \text{ Molality} = \left(\frac{W}{G.M.W}\right)_{\text{Solute}} \times \frac{1000}{\text{wt of solvent in gms}} = \frac{4}{40} \times \frac{1000}{98} = 1.02 \text{m}$$

57) 6 g of urea is mixed with 16. 2g of H_2O the mole fraction of urea in the mixture is

1)6/22.2

2)22.2/6

3)0.9

4)0.1

Solution: Mole fraction of
$$urea = \frac{n_{urea}}{n_{urea} + n_{H_2O}} = \frac{\left(\frac{6}{60}\right)}{\left(\frac{6}{60} + \frac{16.2}{18}\right)} = \frac{0.1}{0.1 + 0.9} = 0.1$$

58). In a normal solution of BaCl₂, normalities of Ba⁺² and Cl ⁻ are in the ratio

1) 2:1

2) 1:2

3) 1:1

4) 2:3

Solution: BaCl₂ \rightarrow . Ba⁺² +2 Cl -

1N

1N 2N

59) **Match List-I with List-II**

List-I

List-II

- A. Molarity
- i) no units
- **B.** Molality
- ii) gm.equivalents/lit
- C. Normality
- iii) mol/lit
- D. Mole fraction
- iv) moles/kg. Solvent
- v) gm. equivalents/kg. Solvent

The correct match is:

- A
- В
- \mathbf{C}

D

(i)

(i)

(ii)

- 1) (iv)
- (iii)
- (ii)
- 2) (iv)
- (v)
- (ii)
- 3) (iii)
- (iv)
- (i)
- 4) (iii)
- (iv)
- (ii) (i)

If 20 ml of 1M HCl solution is exactly neutralized by 10 ml of Ca (OH)2 solution, the **60**) strength of Ca(OH)₂ in grams per liter of the solution is

1)37

- 2) 74
- 3)111
- 4)148

Solution: $^{2HCl+Ca(OH)_2} \longrightarrow ^{CaCl_2+2H_2O}$

$$\frac{M_1V_1}{n_1} = \frac{M_2V_2}{n_2}$$

$$(Ca(OH)_2)$$

$$\Rightarrow \frac{1\times 20}{2} = \frac{M}{2}$$

$$\frac{\overline{n_1}}{\overline{n_2}} = \frac{\overline{n_2}}{\overline{n_2}}$$

$$\Rightarrow \frac{1 \times 20}{2} = \frac{M_2 \times 10}{1}, M_2 = 1.0M$$

Molarity of Ca $(OH)_2 = 1.0 M$

Strength of Ca (OH)₂ solution = Molarity XM.wt = 1X74=74 g/litre.

61) A gaseous mixture contains four gases A, B, C and D. The mole fraction of "B" is 0.5. The mole fraction of "A" is

- 1) 0.525 2) 0.375
- 3) 0.625
- 4) 0.732

Solution: As $X_B=0.5$, $X_A+X_C+X_D=1-0.5=0.5$ $\therefore X_A<0.5$

62) The maximum allowable level of carbon monoxide in air is 9mg per dm³, the level in ppm is

1)9

2) 18

- 3)90
- 4) 900

Solution; 1 dm³=1lit, 1mg/lit=1ppm

www.sakshieducation.com

KEY:

1) 2	2)3	3) 1	4) 1	5) 3	6)3	7) 1	8)4	9)3	10)3
11)2	12)4	13) 3	14)3	15)1	16) 1	17)4	18) 3	19) 4	20) 1
21)2	22) 3	23)1	24)2	25)3	26)2	27)4	28)3	29)4	30)3
31) 2	32)1	33) 1	34) 1	35) 2	36)2	37) 3	38)1	39)1	40)2
41)4	42)2	43) 3	44)4	45)3	46) 3	47)3	48) 4	49) 4	50) 2
51)2	52) 1	53)2	54)4	55)1	56)3	57)4	58)2	59)4	60)2
61) 2	62)1								