UNIT-XII ALDEHYDES, KETONES and CARBOXYLIC ACIDS

SUBTOPIC – I: ALDEHYDES

1.	The compound th	at does not possess carb	onyl group is					
	1) CH ₃ CHO 2) CH ₃ COCH ₃							
	3) CH ₃ COOH	4) CH3 - CH	2 - O - CH ₂ - CH ₃					
2.	Hybridization of t	he carbon atom of carbor	nyl group is					
	1) sp	2) sp ² 3) sp ³	4) $sp^{3}d^{2}$					
3.	The Aldehyde grou	up can occur						
	1) Any where in the carbon chain							
	2) In the middle of carbon chain							
	3) Only at the second carbon atom of the chain							
	4) Only at the end carbon atom of the chain							
4.	The shape of HCH	O molecule is						
	1) Pyramid	2) Planar trigonal	3) Linear	4) Angular				
		CH						
5		$CH_3 - CH_2 - C_{CHO}H - C$	$H-CH_2-CH_3$					
5.	IUPAC name of		(2) 2 other (2) mother (2)	n antan al				
	 4-methyl hexana 2 othyl 2 methyl 		2) 3-ethyl-2-methyl pentanal4) 4-methyl heptanal					
6.	3) 2-ethyl-3-methyl	hydroxybutyraldehyde	4) 4-methyl neptanal					
0.	1) 1-hydroxy butan		2) 2-hydroxy butano	1				
	 3) 2-hydroxy butan 		4) 2-hydroxy butyraldehyde					
7.		nd CH3 COCH3 are follo		lachyde				
7.				1) Chair				
	1) Tautomers	2) Functional	3) Metamers	4) Chain				
8.	CH ₂ =CH ₂ +PdCl ₂	$+\mathrm{H}_{2}\mathrm{O} \xrightarrow{CuCl_{2}+H^{+}} \mathrm{CH}_{3}$	-CHO+Pd+2HCl. It i	s known as				
	1) Wacker's method	d	2) Rosenmund's read	ction				
	3) Clemmenson's re	eaction	4) Tischenko reactio	n				
9.	Controlled oxidat	ion of ethyl alcohol gives						
	1) C ₂ H ₄	2) CH ₃ COCH ₃	3) CH ₃ CHO	4) CH ₃ COOC ₂ H ₅				

10. When ethyl alcohol is passed over red hot copper at the formula of the product formed is

- Compound formed when a mixture of vapours of formic and acetic acid is passed over 'MnO' at 300⁰C is
 - 1) Acetone 2) Acetaldehyde 3) Acetic anhydride 4) Aldol
- 12. When a mixture of calcium acetate and calcium formate is heated, we get
 - 1) Acetone2) Acetic acid3) Acetaldehyde4) Methanol

13. Which of the following reactions is called Rosenmund reaction?

- 1) Aldehydes are reduced to alcohols
- 2) Acids are converted to acid chlorides
- 3) Alcohols are reduced to hydrocarbons
- 4) Acid chloride are reduced to Aldehydes

14. Rosenmund's reduction is used for the preparation of

1) Carboxylic acid 2) Aldehydes

3) Esters 4) Carbohydrates

15. $CH_3COCl + H_2 \xrightarrow{Lindlar's} CH_3CHO + HCl$

The above reaction is known as

- 1) Aldol condensation 2) Clemmenson's reduction
- 3) Rosenmund's reduction 4) Carbyl Amine reaction
- 16. Which of the following is a nucleophilic addition reaction?

1) CH₃CHO+NaHSO₃ \rightarrow CH₃CH (OH) SO₃Na

2) CH₃CHO + NH₂OH \rightarrow CH₃-CH=NOH

3) 3(CH₃CHO) \rightarrow (CH₋₃CHO)₃

4) CH₃CHO + $3I_2$ + 4NaOH \rightarrow HCOONa + CHI₃ + $3H_2O$ + 3NaI

17. Cyanohydrine is the product of following

- 1) Acetic acid + SOCI₂ 2) Ethyl alcohol + PCI₃
- 3) Carbonyl compound + HCN 4) Carbonyl compound + NH₂OH

18. The molecular formula of acetaldehyde semicarbazone is

 1) CH₃-CH=N-CO-NH-NH₂
 2) CH₃-CH=N-NH-CONH₂

 3) CH₃-CH=N-OH
 4) CH₃-CH=N-NH₂

19. Which of the following compound undergoes 'Aldol' condensation

	H-C-H CH ₃ -C	<u>,</u> -Н	CH₃-Ç-C	H ₃				
	1) Ö 2) Ö) ₃	s) Ö		both 2 and 3			
20.	The following does not under	go aldol condens	ation in the	presence o	f alkali			
	1) CH ₃ CHO 2) CH ₃ C	ОСН ₃ 3	3) CH ₃ CH ₂ O	CHO 4)	CCl ₃ CHO			
21.	CH ₃ CHO <u>OH</u> →CH ₃ CH	(OH)CH ₂ CHO	represent	S				
	1) Cannizaro's reaction	2	2) Benzoin's	condensatio	n			
	3) Aldol condensation	4) Perkin's r	eaction	G			
22.	2. $CH_3 - CHO \xrightarrow{OH^-} A$. Then IUPAC name of 'A' is							
	1) Aldol	2	2) Prop-1-en	e-2 ol	×			
	3) 4-hydroxy-4methyl 2-penta	none 4	4) 3-hydroxy Butanal					
23.	Aldehydes and Ketones which	h do not have me	thyl groups	adjacent to	o the carbonyl			
	group do not undergo.	, e						
	1) Oxidation	2	2) reduction					
	3) Haloform reaction	4) condensat	ion reaction				
24.	Acetaldehyde reacts with chl	orine to form						
	1) Chloral 2) Acety	chloride 3	3) Chloric a	cid 4)	Chloretone			
25.	Match the following							
	List-A	List	-В					
	Aldehyde	Oxidised produ	ict of Aldeh	yde				
	1. Formaldehyde	A. Acetic Acid						
	2. Acetaldehyde	B. Propanoic ad	cid					
	3. Propionaldehyde	C. Isobutyric a	cid					
	4. Isobutyraldehyde	D. methanoic a	cid					
	1) 1-D, 2-A, 3-B, 4-C		2) 1-A, 2-D,					
	3) 1-A, 2-C, 3-D, 4-B	4) 1-D, 2-B,	3-C, 4-A				

26. The IUPAC name of β -methyl valeraldehyde is

- 1) 2-methyl pentanal2) 3-methyl pentanal
- 3) 2-methyl butanal4) 2-methyl butanal
- 27. The IUPAC name of crotonaldehyde is____
 - 1) Butanal 2) But–2–enal

3) But–l–enal

4) None of these

28. Two isomeric compounds 'A' and 'B' have the formula C₃H₆Cl₂. With aq.KOH solution

'A' gives propionaldehyde and 'B' gives acetone. Then A and B are

1)
$$CH_3$$
- CCl_2 - CH_3 and CH_3 - CH_2 - $CHCl_2$

- 2) CH₃-CHCl-CHCl₂ and CH₃-CH₂-CHCl₂
- 3) CH CH₂– CHCl₂ and CH₃– CCl₂– CH₃
- 4) None
- 29. An alkene on ozonolysis gives acetaldehyde and acetone. The alkene in question is

$$CH_{3} - CH = CH_{3} - CH_{3}$$

$$H_{3} - CH = CH - CH_{3}$$

$$CH_{3} - CH = CH - CH_{2} - CH_{3}$$

- · _
- $3) \operatorname{CH}_2 = \operatorname{CH} \operatorname{CH}_3$
- 4) $(CH_3)_2C = C(CH_3)_2$
- 30. A compound 'X' has the formula C₂Cl₃OH. It gives a red precipitate of Cu₂O with Fehling solution. Then 'X' is
- 2) Chloretone 1) Chloral 3) Chloropicrin 4) Chloroform LiAlH₄ $\rightarrow A \xrightarrow{H^+/170^{\circ}C} B \xrightarrow{excess HBr} C$ In the above series of reaction 'C' is CH₃CHO-31. 1) CH₃-CH₂-OH 2) CH₂=CH₂ 3) CH₃-CH₂ Br 4) CO₂ $CH_3 - CHO \xrightarrow{\text{LiAlH}_4} X \xrightarrow{\text{HI}} Z.$ Then 'Z' is 32. 1) CH₃-CH₂-OH 2) CH₃COOH 3) CH₃-CH₃ 4) C₂H₅I

KEY

	1)	4	2) 2	3) 4	4) 2	5) 3	6) 3	7) 2	8) 1	9) 3	10) 1
	11) 2	12) 3	13) 4	14) 2	15) 3	16) 1	17) 3	18) 2	19) 4	20) 4	
	21) 3	22) 4	23) 3	24) 1	25) 1	26) 2	27) 2	28) 3	29) 1	30) 1	
	31) 3	32) 4								G	
	SUBTOPIC – II: KETONES										
1.	. Ketones can not be prepared by										
	1) Rose	enmund's rea	action								
	2) The	hydrolysis o	f terminal g	gem dih	alides			Þ			
	3) The	oxidation of	primary al	cohols		1					
	4) All o	of these									
2.	When p	propyne is ti	eated witl	h aqueo	ous sulp	huric a	cid in j	presenc	e of M	ercuric	sulphate, the
	major p	product is									
	1) Propa	anal				2) Pro	pyl Hyd	lrogen S	Sulphate	e	
	3) Propa	anol 🥠				4) Pro	panone				
3.	Isoprop	yl alcohol o	n oxidatio	n forms	5						
	1) Aceta	aldehyde	2) Ethyle	ne		3) Eth	er		4) Ace	etone	
4.	Iso proj	pyl alcohol i	n presence	e of Cu	at	300 ⁰ c	gives tl	he follo	wing		
	1) Aceta	ldehyde	2) Acetor	ne	3) For	maldeh	yde	4) Ber	nzaldehy	yde	
5.	Compo	und formed	when vap	ours of	acetic a	acid pas	ssed ove	er 'Mn	0' at 3	00 ⁰ C.	
e	1) Acet	one	2) Acetal	dehyde	3) Ace	etyl chlo	oride	4) Ket	ol		
6.	Calciun	n acetate on	heating gi	ives the	compo	und wi	th form	ula			
	1) CH ₃ O	COCH ₃	2) CH ₃ C	ООН	3) CH	30H		4) CH	3 COO	CH ₃	

7.	Acetone can not be obtained from						
	1) Hydrolysis of isopropylidene chloride						
	2) Hydration of propyne						
	3) Dehydrogenation of isopropyl alco	hol					
	4) Hydrolysis of ester						
8.	The formation of cyanohydrin with	n acetone is an examp	ole for				
	1) nucleophilic addition	2) nucleophilic subs	stitution				
	3) electrophilic addition	4) electrophilic subs	stitution				
9.	Acetone adds up the following with	nout the formation of	water molecule				
	1) NH ₃ 2) 2, 4 - DNP	3) H ₂ NOH	4) HCN				
10.	Aromatic aldehydes react with aron	natic primary amines	s to give				
	1) Amides 2) Schiff's base	s 3) Oximes	4) Cyanohydrins				
11.	When acetone is treated with Ba(C)H) ₂ it gives					
	1) Mesitylene	2) Diacetone alcoho	j]				
	3) Urotropine	4) Mercaptol					
12.	2CH ₃ COCH ₃ \xrightarrow{dryHCl} 'X'. 'X' is						
	1) Mesityl oxide 2) Phorone	3) Acetic acid	4) Mesitylene				
13.	The enol form of acetone contains						
	1) 9σ , 9π bonds 2) 10σ , 8π	₃₎₈ σ _{,10} π	4)90,1 m				
14.	The IUPAC name of methyl isopro	pyl ketone					
	1) 3-methyl-2-pentanone	2) 3-methyl butan-2	2-one				
	3) 2-pentanone	4) 2-methyl pentano	one				
15.	The first oxidation product of the	following alcohol is	a ketone with the same number of				
	carbon atoms						
	1) CH ₃ CH ₂ CH ₂ OH	2) (CH ₃) ₂ CHCH ₂ C	ЭН				
ų,	3) CH ₃ CH (OH)CH ₃	4) (CH ₃) ₃ C - OH					
16.	2, 2-dichloro propane treated with	aq. KOH gives an un	stable product. It is				
	1) CH ₃ COCH ₃	2) CH ₃ CH (OH) CI	H3				
	3) CH ₃ C (OH) ₂ CH ₃	4) CH ₃ CH(OH)CH	₂ CHO				

17. On ozonolysis 2–methyl–2– butene gives

1) 2moles of CH ₃ –CHO	2) 2molesof CH ₃ COCH ₃
3) CH ₃ CHO & CH ₃ COCH ₃	4) CH ₃ CHO & HCHO

18. Which of the products formed when acetone is reacted with barium hydroxide solution?

24. Two isomeric compounds 'A' and 'B' have the formula C₃H₆Cl₂. With aq KOH solution 'A' gives propionaldehyde and 'B' gives acetone. Then 'A' and 'B' are

1) CH₃-CCl₂-CH₃ and CH₃-CH₂-CHCl₂

- 2) CH₃-CHCl-CHCl₂ and CH₃-CH₂-CHCl₂
- 3) CH₃-CH₂-CHCl₂ and CH₃-CCl₂-CH₃
- 4) CH₃-CHCl-CHCl₂ and CH₃-CCl₂-CH₃
- 25. An organic compound CH₃CH(OH)CH₃ on treatment with acidified K₂Cr₂O₇ gives compound 'Y' which reacts with I₂ and sodium carbonate to form triiodomethane. The compound 'Y' is

1) CH₃OH 2) CH₃COCH₃ 3) CH₃CHO 4) CH₃CH(OH)CH₃

26. The molecular weight of acetone is M. The molecular weight of diacetone alcohol is
1) M
2) M/2
3) 2M
4) 3M

- 27. Compound 'A' with formula C₃H₆O forms phenyl hydrazone and gives negative Tollen's test. Compound 'A' on reduction gives propane. Then compound 'A' is
 - 1) a primary alcohol 2) an aldehyde 3) a ketone 4) a secondary alcohol

$$CH_{3}C \equiv CH \xrightarrow{H_{3}SO_{4}} B.$$
28. Then 'B' is

- 1) Acetone
- 3) Acetaldehyde

2) Trichloroacetone

4) Chloral

29. Identify the final product Z in the following reaction sequence

 $Me_2C = O + HCN \xrightarrow{H_3O^+} Y \xrightarrow{H_2SO_4} \Delta$

1) (CH₃)₂ -C-(OH)-COOH

3) HO – CH₂ -CH- (CH₃) COOH

2) CH₂ = C (CH₃)- COOH
4) CH₃ -CH = CHCOOH

KEY

	1)	4	2) 4	3) 4	4) 2	5) 1	6) 1	7) 4	8) 1	9) 4	10) 2	
	11) 2	12) 1	13) 4	14) 2	15) 3	16) 3	17) 3	18) 1	19) 4	20) 1		
	21) 3	22) 4	23) 3	24) 3	25) 2	26) 3	27) 3	28) 1	29) 2			
	SUB TOPIC – III: AROMATIC ALDEHYDES											
1.	1. The solvent used in Etard's reaction during the formation of benzaldehyde from toluene is											
	1) aceti	c acid	2) water			3) lic	l.NH₃	Ð	4) CS	S_2		
2.	The fin	al product o	btained w	hen tol	uene is	subjec	ted to s	ide cha	in chlo	rinatio	n followed by	
	hydroly	vsis at 737 K	is									
	1) Phen	ol	2) Benzal	dehyde	\mathbf{A}	3) Ace	etophen	one	4) Chl	orobenz	zene	
3.	The pro	oduct forme	d in Gatte	rmann-	Koch f	ormyla	tion rea	iction is	S			
	1) Chlo	robenzene	2) Benzo	yl chlor	rdie	3) Benzaldehyde 4) Acetophenone						
4.	Which	of the follow	ving can be	e used a	s form	ulating	agent i	n the p	resence	of AlC	13?	
	1) HCO	OH + HCl	2) CO + H	C1		3) $CO + Cl_2$ 4) $HCl + O_2$						
5	Etard's	reaction in	volves the	prepara	ation of	benzal	dehyde	from				
	1) Tolue	ene	2) Ethyl be	nzene		3) Ber	nzoyl ch	loride	4) Soc	lium bei	nzoate	
6.	Oxidati	on of toluer	e with Cr	O3 in tl	he pres	ence of	(CH ₃ C	0) ₂ 0	gives a	produc	et A which on	
	treatme	ent with aq.	NaOH pro	duce								
(1) C ₆ H	5СНО	2) C ₆ H ₅ CO	DONa		3) (C ₆	(H ₅ CO)	20	4) (CH	I ₃ CO) ₂	0	
7.	Benzald	lehyde can∣	be prepare	d by								
4	1) Etard	reaction				2) Gattermann-koch formylation						
	3) Oxidation of benzyl alcohol						4) All the above					
8.	Chloroa	acetaldehyd	e and acet	yl chlor	ide are							
	1) Positi	ion isomers				2) Cha	ain isom	ers				
	3) Meta	mers				4) Fun	octional	group i	somers			
	www.sakshieducation.com											

9.	Benzaldehyde can be prepared by oxidation of toluene by							
	1) Acidic KMnO ₄	2) K ₂ Cr ₂ O ₇	3) CrO_2Cl_2	4) All				
10.	. Hydrogenation of benzoyl chloride in the presence of Pd and BaSO ₄ gives							
	1) Benzyl Alcohol	2) Benzaldehyde	3) Benzoic acid	4) Phenol				
11.	In Etard reaction of p	reparation of Benzald	lehyde the reagent us	ed is				
	1) Chromyl chloride	2) Acetyl chloride	3) Water	4) Benzyl nitrate				
12.	Benzaldehyde is obtain	ned from toluene by						
	1) Rosenmund's reduction	on	2) Cannizzaro reactio	on				
	3) Kolbe's reaction		4) Etard reaction					
13.	$C_6H_6 + CO + HCl$	$\xrightarrow{AnhydAlCl_3} \mathbf{X} + \mathbf{HCl c}$	ompound X is					
	1) C ₆ H ₅ CH ₃ 2)	C ₆ H ₅ CH ₂ Cl	3) C ₆ H ₅ CHO	4) C ₆ H ₅ COOH.				
14.	In the reaction			Ť				
	$C_{6}H_{5}CH_{3} \xrightarrow{(CH_{3}CO)_{2}O} M \xrightarrow{alkaline}_{hydrolysis} C_{6}H_{5}CHO Acetic anhydride is used$							
	$C_6H_5CH_3$ CrO_3	hydrolysis C ₆ H ₅ C	CHO Acetic anhydride	e is used				
	1) As a catalyst		2) As an oxidising agent					
	3) To from a non–oxidiz	zable derivative of ben	zaldehyde					
	4) To help the reaction t	to proceed smoothly						
15.	For cannizzaro's react	ion. Which is necessa	ry?					
	1) Presence of α_{-C}		2) Absence of α_{-C}					
	3) Presence of α_{-H}		4) Absence of α_{-H}					
16.	The reaction							
	$C_6H_5CHO + CH_3CHO$	$\longrightarrow C_6H_5-CH$	=CH–CHO+H ₂ O is ki	nown as				
	1) Cannizzaro reaction		2) Aldol condensation					
	3) Claisen – Schmidt co	ondensation	4) Benzoin condensation					
17.	$C_6H_5CHO + HCN \rightarrow$	C ₆ H ₅ CH (CN) OH	the product would be					
	1) Racemate	2) Optically acative	3) A meso compound	d 4) Ethyl formate				
18.	Benzaldehyde reacts w	vith NH3 to give						
	1) Phyenyl Cyanide	2) Hydrobenzamide	3) Aniline	4) Benzamide				

19. Which of the following does not undergo benzoin condensation?

1) Benzene carbaldehyde	2) p - Toluene carbaldehyde
3) Phenylethanal	4) 4 - Methaoxybenzaldehyde

20. Reaction of C₆H₅CHO with CH₃NH₂ gives

1) C ₆ H ₅ COOH	2) $C_6H_5 - N = NCl + 2H_2O$
3) $C_6H_5 - CH = N - CH_3$	4) C ₆ H ₅ NH ₂

21. Nitration of acetophenone using nitrating mixture produces mainly

1) o – nitro acetophenone	2) p – nitro acetophenone
---------------------------	---------------------------

3) m – nitro acetophenone 4) m – nitrobenzoic acid

KEY

1)	4	2) 2	3) 3	4) 2	5) 1 6) 1	7) 4	8) 4	9) 3	10) 2
11) 1	12) 4	13) 3	14) 3	15) 4	16) 2 17) 2	18) 4	19) 3	20) 3	

21) 3

SUB TOPIC – IV: CARBOXYLIC ACIDS

1. IUPAC name of β - Chloro - α -methyl butyric aicd

1. 3-chloro-2 methyl Butanoic acid	2. 2-chloro-3-methyl Butanoic acid
------------------------------------	------------------------------------

3. 2-chloro-3- methyl-Butan-4-acid 4. 3-chloro-isopentanoic acid

сн,соон

2. II

IUPA	С	name	of
TOTIE	\cdot	manne	U.

1) Benzoic acid

2) 2-phenyl ethanoic acid

3) Benzene 1, 2 carboxyllic acid 4) 1-phenyl ethanoic acid

3. Which of the following is a pair of functional isomers?

1) CH ₃ COCH ₃ , CH ₃ CHO	2) C ₂ H ₅ CO ₂ H, CH ₃ CO ₂ CH ₃
3) C ₂ H ₅ CO ₂ H, CH ₃ CO ₂ C ₂ H ₅	4) CH ₃ CO ₂ H, CH ₃ CHO

4. The weaker acid among the following is

$$\begin{array}{ccc} & & \\ 1 \end{array} CH_{3}COOH \\ & & \\ 2 \end{array} ClCH_{2}COOH \\ & & \\ 3 \end{array} Cl_{3}COOH \\ & & \\ 4 \end{array} (CH_{3})_{2}CHCOOH \\ \end{array}$$

5. The correct order of decreasing acid strength of trichloroacetic acid (A), trifluoro acetic acid (B), acetic acid (C) and formic acid (D) is

1) A > B > C > D 2) A > C > B > D 3) B > A > D > C 4) B > D > C > A

- 6. Which of the following orders is true regarding the acidic nature of COOH?
 - 1) Formic acid > Acetic acid > Propanoic acid
 - 2) Formic acid > Acetic acid < Propanoic acid
 - 3) Formic acid < Acetic acid < Propanoic acid
 - 4) Formic acid < Acetic acid >Propanoic acid
- 7. On hydrolysis an ester gave a carboxylic acid. The 'K' salt of that acid on Kolbe's electrolysis gave ethane. That ester is

1) methyl ethanoate 2) methyl methanoate 3) ethyl methanoate 4) ethyl propanoate

8. CH₃OH
$$\xrightarrow{(1)X}$$
 CH₃COOH. In this reaction 'X' is
1) CO₂ 2) CO 3) MgO 4)C
9. $C_{i}H_{j}CONH_{2} \xrightarrow{H_{3}O^{\oplus}} A^{+} NH_{3}$ What is A ?
1) $C_{6}H_{6}$ 2) $C_{6}H_{5}COOH$ 3) $C_{6}H_{5}NH_{2}$ 4) $C_{6}H_{5}CN$
10. CH₃-Mg-Br+CO₂ X $\xrightarrow{H_{3}O^{\oplus}}$ Y. In this reaction 'Y' is
1) HCOOH 2) CH₃COOH 3) C₂H₅COOH 4) HCHO
11. Methyl cyanide on hydrolysis gives following
1) Acetic acid 2) Acetaldehyde 3) Acetone 4) Methyl amine
12. The reaction of CH₃MgBr on dry ice followed by acid hydrolysis gives
1) acetic acid 2) formic acid 3) acetone 4) acetaldehyde
13. $C_{6}H_{5}COOC_{2}H_{5} \xrightarrow{H_{3}O^{\oplus}} A + C_{2}H_{5}OH$, What is A?
1) $C_{6}H_{6}$ 2) $C_{6}H_{5}NH_{2}$ 3) $C_{6}H_{5}C_{2}H_{5}$ 4) $C_{6}H_{5}COOH$

14.	Toluene <u>KM</u>	$nO_4/KOH/H_3O^{\oplus}$	• A. What i	s A?						
	1) Acetice acid	2) Benz	zene	3) Benzoic ac	cid 4) Benzaldehyde					
15.	Which of the fo	ollowing has hig	ghest boilin	g point?						
	$1) C_2 H_5 OH$	2) CH	₃ COOH	3) <i>CH</i> ₃ <i>COC</i>	$H_3 \qquad {}_{4)} HCOOCH_3$					
16.	$CH_3 - C - OH$	$I + X \rightarrow Fruity$	smell com	pound. Then 'X	' is					
	1) Aldehyde	2) Chlo	roform	3) Alcohol	4) Base					
17.	The products f	formed when <i>P</i>	Cl ₅ reacts	with acetic acid	are					
	1) CH_3COCl ,	H_3PO_3		CH_3COC	Cl, H_3PO_4					
	3) <i>CH</i> ₃ <i>COCl</i> ,	HCl		$_{4)}$ $CH_{3}COC$	2) CH_3COCl, H_3PO_4 4) $CH_3COCl, POCl_3, HCl$					
18.	_		s effervesce	ences on treatmo	ent with aqueous saturated sodium					
	bicarbonate. 'A	A' can be								
	1) An alkane			2) An alkyl h	alide					
	3) A carboxylic	acid		4) A ketone						
19.	-				to liberate hydrogen and (ii) with					
	Na ₂ CO ₃ soluti	on to liberate (CO_2 . The co	ompound is						
	1) an alcohol	2) a carboxylic	acid 3) an	n ether	4) an ester					
20.	Which compou	ınd will give br	isk efferves	scence of CO ₂ or	n treatment with NaHCO3?					
	1) Ethyl alcohol	l 2) acetaldehydd	e 3) ao	cetone	4) acetic acid					
21.	Acetic acid rea	ects with ethano	ol in the pr	esence of H ₂ SO	4 to form 'X' and water. Which of					
	the following is	s 'X'?								
	1) CH ₃ CH ₂ CO	OC ₂ H ₅	2) CH ₃ COO	CH ₃						
	3) CH ₃ COC ₂ H	5	4) CH ₃ COO	DC ₂ H ₅						
22.	Which hydroge	en atom of acet	ic acid is re	eplaced by Cl ₂ in	n presence of P?					
đ	$_{1)} \alpha_{-hydroge}$	'n	2) ca	arboxylic hydrog	en					
	3) Both		4) o	xygen of carboxy	y group					
				- •						

23.	СН3СООН –	$\xrightarrow{P_4O_{10}} \mathbf{X} \text{ In this r}$	eaction 'X' is				
	1) CH ₃ COCl		2) CH ₃ CONH ₂				
	3) (CH ₃ CO) ₂ O)	4) CH ₃ COOC ₂ H ₅				
24.	Acetyl chloride	e can't be obtained fr	rom Acetic acid with	following reagent.			
	1) PCl ₃	2) PCl ₅	3) SOCl ₂	4) S_2Cl_2			
25.	Which of the fo	llowing compound d	oes not undergo H.V	Z reaction?			
	1) $CH_3 - CH - CH - CH$	СООН	2) CH ₃ -CH ₂ -COOH	I			
	3) (CH ₃) ₃ C-COO	ЭH	4) CH ₃ -COOH				
26.	In vinegar the	concentration of ace	tic acid is nearly				
	1) 5%	2) 2%	3) 6-10%	4) 100%			
27.	A + HCN	$\xrightarrow{SO_4}$ Lactic Acid He	ere 'A' is				
	1) HCOOH	2) CH ₃ COOH	3) CH ₃ CHO	4) CH ₃ -CH ₂ OH			
28.	$2CH_3COOH \rightarrow$	(CH ₃ CO) 2 O Here	the dehydrating age	ent used is			
	1) conc. H_2SO_4	2) P ₂ O ₅	3) CaO	4) CaCl ₂			
29.	During Kolbe's	electrolysis of potass	ium acetate solution	the anode products are			
	1) CH ₃ -CH ₃ , CC	02	2) CH ₃ -CH ₃	, H ₂			
	3) CH ₃ -CH ₂ -CH	2-CH ₃ , CO ₂	4) CH ₄ , CH ₃	3-CH3			
30.	Two isomeric c	ompounds A and B	have the formula C ₂	H ₄ O ₂ . Among them only 'B' gives			
	brisk effervesce	nce with NaHCO3 so	olution. Then 'A' and	d 'B' are			
	1) HCOOCH ₃ , C	CH ₃ COOH	2) HCOOCH ₃ , CH ₃	CH ₂ OH			
	3) CH ₃ COOH, HCOOCH ₃ 4) HCOOH, CH ₃ COOH						
31.	CH ₃ COOH + C	$CaCO_3 \xrightarrow{\Delta} A \xrightarrow{\Delta} B^-$	$\xrightarrow{\text{Ba(OH)}_2} \mathbf{C. Here } \mathbf{C}$	is			
	1) Acetone cyano	ohydrins	2) diacetone amine				
	3) diacetone alco	hol	4) methylene				

- **32.** The catalyst used in the manufacture of acetic acid from acetaldehyde by the atmospheric oxygen is
 - 1) (CH₃COO) ₂Mn 2) (CH₃COO)₂ Zn
 - 3) CH₃COOK 4) CH₃COONa
- 33. Which of the following is the correct order of strength of carboxylic acids?

1) $HCOOH > CH_3COOH > C_2H_5COOH > (CH_3)_2CHCOOH$

 $2) \ CCl_3COOH > CHCl_2COOH > CH_2ClCOOH > CH_3COOH$

- 3) CF₃COOH > CCl₃COOH > CBr₃COOH > CI₃COOH
- 4) All of these
- **34.** The decreasing strength of the acids is
 - 1) $CHCl_2COOH > CH_2CICOOH > CH_3COOH$
 - 2) $CH_3COOH > CH_2CICOOH > CHCl_2COOH$
 - 3) $CH_2CICOOH > CHCl_2COOH > CH_3COOH$
 - 4) CH₂Cl₂COOH > CH₃COOH > CHCl₂COOH
- 35. The correct order of increasing acidic strength of the following acids is

- **36.** Which of the following orders is true regarding the acetic nature of monosubstituted acetic acid?
 - 1) Fluoroacetic acid > Chloroacetic acid > Bromoacetic acid
 - 2) Fluoroacetic acid < Chloroacetic acid < Bromoacetic acid
 - 3) Fluoroacetic acid < Chloroacetic acid >Bromoacetic acid
 - 4) Fluoroacetic acid < Chloroacetic acid < Bromoacetic acid

37. Assertion (A): CH₃CN on hydrolysis gives Acetic Acid

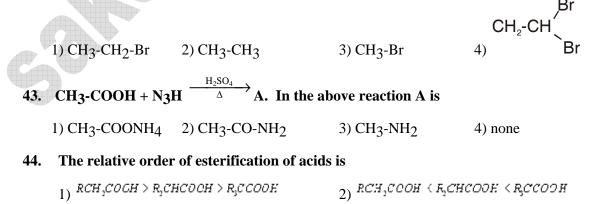
Reason (R): Cyanides on hydrolysis liberates 'NH3' gas

- 1. Both 'A' and 'R' ae true and 'R' is the correct explanation of A
- 2. Both 'A' and 'R' are true and 'R' is not the correct explanation of A
- 3. 'A' is true but 'R' is false
- 4. 'A' is false but 'R' is true.

 $KMnO_4/H_2SO4$

38.

A. What is A?


1) Oxalic acid2) Malonic acid3) Succenic acid

4) Adipic acid

- 39. Which of the following will not undergo Hell Volhard Zelinsky Reaction?
 - 1) CH₃COOH 2) CH₃CH₂COOH
 - 3) 2,2-dimethyl propionic acid 4) 2-methyl propionic acid
- 40. CH₃-Mg-Br+CO₂ \rightarrow X $\xrightarrow{H_3O^{\oplus}}$ Y. In this reaction 'Y' is
 - 1. HCOOH 2. CH₃COOH
 - 3. C₂H₅COOH 4. HCHO
- 41. $CH_3COOH \xrightarrow{LiAIH_4} A \xrightarrow{Ni}_{H_2} B$

In this reaction A and B respectively are

- 1. CH₃OH & CH₄ 2. C₂H₅OH & C₂H₆
- 3. CH₃CHO & C₂H₅ OC₂H₅
- 4. C₂H₅OH & CH₃OCH₃
- 42. CH₃-COOH $\xrightarrow{A_{gOH}} A \xrightarrow{Br_2/CCl_4} B$. In the above reaction 'B' is

 $3) RCH_{2}COOH < R_{2}CCOOH < R_{1}CHCOOH$ $4) R_{3}CCOOH > RCH_{2}COOH > R_{2}CHCOOH$

45. The product 'C' in the following reaction is

$$\begin{array}{c} \xrightarrow{\text{NH}_3} (A) \xrightarrow{\text{heat}} (B) \xrightarrow{P_2O_5,\text{heat}} (C) \\ 1) \text{ RNH}_2 \qquad 2) \text{ RCN} \qquad 3) \text{ RNC} \end{array}$$

4) RCONH₂

46. The order of increasing acid strength is

1) $C_2H_5OH < C_6H_5OH < CH_3COOH < HCOOH$

3)
$$C_2H_5OH < HCOOH < C_6H_5OH < CH_3COOH$$

4)
$$C_2H_5OH < C_6H_5OH < HCOOH < CH_3COOH$$

47. The organic compounds A and B react with sodium metal and release H₂ gas A and B react with each other to given ethyl acetate. Then A and B are

1)
$$CH_3COOH$$
 and C_2H_5OH

2) HCOOH and C_2H_5OH

$$_{3)}$$
 CH₃COOH and CH₃OH

(4)
$$CH_3COOH$$
 and $HCOOH$

48. In the reaction sequence,

 $C_2H_5Cl + KCN$

$$\rightarrow x \xrightarrow{H_3O^2} y$$

What is the molecular formula of Y?

 C_2H_5OH

1) $C_{3}H_{6}O_{2}$ 2) $C_{3}H_{5}N$ 3) $C_{2}H_{4}O_{2}$ 4) $C_{2}H_{6}O$

49. Oxidation product of 'X' with molecular formula C₂H₄O is Y with molecular formula C₂H₄O₂. The compound Y is

- 50. Acetic acid is reacted with metallic sodium to form hydrogen and "X". When 'X' is heated with soda lime, 'Y' and sodium carbonate are formed. 'Y' is
 - 1) C_2H_6COOH 2) CH₄ 3) CH₃COONa 4) CH₃CONH₂

51. Compounds X and Y give effervescence with Na₂CO₃ solution. X gives a white precipitate with ammonical AgNO₃ while Y given a sweet smelling compound on heating with alcohol. X and Y are

	1) HCOOH and CH ₃ COOH	2) CH ₃ CHO and CH ₃ COOH						
	3) CH ₃ COOH ad CH ₃ COCH ₃	4) CH ₃ COCH ₃ and HCOOH						
52.	Consider the following reactions							
	$CH_{3}COOH \xrightarrow{CaCO_{3}} A \xrightarrow{Heat} B$	Compound B is						
	1)An ether2) an alcohol	3) an aldehyde 4) a ketone						
53.	The percentage of carbon in the product	formed when acetic acid reacts with hydrogen in						
	the presence of Nickel under pressure at e	levated temperature is						
	1) 75% 2) 80% 3) 90 % 4) 70 %							
54.	Which on oxidation will not give a carboxy	ylic acid with the same number of carbon atoms?						
	1) <i>CH</i> ₃ <i>COCH</i> ₃ 2) <i>CCl</i> ₃ <i>CH</i> ₂ <i>CHO</i>	3) $CH_3CH_2CH_2OH_{4}$ CH_3CH_2CHO						
55.	The treatment of CH_3CH_2COOH with cl	nlorine in the presence of phosphorus gives						
	1) CH ₃ CH ₂ COCl	$2) CH_3CH_2CH_2Cl$						
	3) <i>CH</i> ₃ <i>CH</i> (<i>Cl</i>) <i>COOH</i>	$_{4)} CH_{2}(Cl) CH_{2}COOH$						
	KEY							

	1)	1	2) 2	3) 2	4) 4	5) 3	6) 1	7) 1	8) 2	9) 2	10) 2
	11) 1	12) 1	13) 4	14) 3	15) 2	16) 3	17) 4	18) 3	19) 2	20) 4	
C	21) 4	22) 1	23) 3	24) 4	25) 3	26) 3	27) 3	28) 2	29) 1	30) 1	
4	31) 3	32) 1	33) 4	34) 1	35) 3	36) 1	37) 1	38) 4	39) 3	40) 2	
	41) 2	42) 3	43) 1	44) 2	45) 2	46) 1	47) 1	48) 1	49) 1	50) 2	
	51) 1	52) 4	53) 2	54) 1							