SOLID STATE

1)	Ionic solids are characterized by						
	1) Good conductivity in solid state 2)	High vapor pressure					
	3) Low melting point 4)	Solubility in polar solvents					
2)	Three metals X, Y and Z are crystallized in simple cubic, B.C.C and F.C.C lattices						
	respectively. The number of unit cells in one mole each of the metals respectively						
	1) N, 2N, 4N 2) $N, \frac{N}{2}, \frac{N}{4}$	3) $\frac{N}{4}, \frac{N}{2}$,N 4) 4N,2N,N					
	HINT; The number of atoms per unit ce	Il in simple cubic, B.C.C, and F.C.C are 1, 2, 4					
	respectively.						
3)	The crystal system without any element	of symmetry is					
		hexagonal 4) cubic					
	Hint: cubic system is most symmetric and	Triclinic is most unsymmetrical crystal systems.					
4)		be-shaped ideal crystal of NaCl of mass 1.00 g?					
	1) 2.57×10^{21} unit cells	2) 5.14×10^{21} unit cells					
	3) 1.28×10^{21} unit cells	4) 1.71×10^{21} unit cells					
	Solution: 234gm NaCl contains 6X10 ²³ u	nit cells. 1 g of NaCl contains					
	$=\frac{6\times10^{23}}{234}=2.57\times10^{21}$ unit cells						
	234						
5)	An element having bcc structure has12.	08×10^{23} unit cells. The number of atoms in these					
	cells is						
	1) 12.08×10^{23} 2) 24.16×10^{10}	0^{23} 3) 48.38 × 10 ²³					
6	4) 12.08×10^{22}						
	Solution: No, of atoms per b.c.c unit cell=	2, the number of atoms in 12.08×10^{23} unit cells=					
	$12.08 \times 10^{23} \text{ X2}=24.16 \times 10^{23} \text{ unit cells}$						

6)The number of lattice point per unit cell in B.C.C. and end centered lattice respectively1) 9, 102) 6,63) 6,84)6,10

7)	In a close packed lattice containing 'n' particles, the number of tetrahedral and octahedral voids respectively									
	1) 2n, n	2) n, 2n	-	3) n, n	4) 2n, n/2					
8)	Which of the following is not true about crystalline solids?									
	1) They are rigid and hard									
	2) They possess planes surfaces									
	3) They have definite geometric configuration									
	4) They are	obtained by rapid c	ooling of mo	lten substances						
9)	A salt AB c	rystallizes in the C	sCl structur	e. The anions	at the corners and the cation in					
	the centre h	nence, the limiting	radius ratio	is						
	1) 0.225	2) 0.441	3) 0	.625 4) 0.7	32					
10										
10)		nation numbers of	oxygen and		respectively					
	1) 1, 2	2) 2, 1 3) 4, 2		4) 2, 4						
11)	The crystal system of a compound with unit cell dimensions a=0.387, b=0.387 and									
	c=0.504nm and $\alpha = \beta = 90^{\circ}$ and $\gamma = 120^{\circ}$ is									
	1) Cubic	2) hexage	onal	3) orthorhombi	c 4) rhombohedral					
12)	Which of th	ne following is not a	a crystalline	solid?						
	1) KCl	2) CsCl 3)	Glass	4) Rho	mbic sulphur					
13)	Which of th	ne following is a mo	lecular soli	49						
13)	1) ZnS			4) Dry Ice						
	1) 2115	2) WigO 5) D	famond	4) Dry Icc						
14)	Which one	has highest meltin	g point?							
9	1) Ionic crys	stal 2) Molec	ular crystal	3) Covalent c	cystal 4) Metallic crystal					
15)	For a coval	ent solid, the units	which occur	py lattice point	are					
,	1) Ions	2) Electrons	3) Atoms	-	cules or atoms					

16) The structural unit of a crystal is called

1) Structural motif 2) unit cell 3) crystal lattice 4) space lattice

17)	(Unit cell)	(no of the atoms	per unit cell)
<u> </u>	(• • • • • • • • • • • • • • • • • • •	(110 01 0110 000110	

A) bcc	1) 1
B) fcc	2) 2
C) Simple cube	3) 4

The correct match is

А	В	С	А	В	С
1) 2	3	1	2) 2	1	3
3) 3	1	2	4) 1	2	3

18) In which of following crystal system F.C.C unit cell exists?

1) Cubic, hexagonal	2) Orthorhombic, cubic
3) Tetragonal, orthorhombic	4) Triclinic, monoclinic

- 19) Out of seven crystal systems how many have primitive unit cell?
 - 1) 4 2) 2 3) 3
- 20. Which of the following crystallizes in both hexagonal & trigonal crystals?
 1) Ice 2) Quart 3) Diamond. 4) Both 1 &2
- 21) The number of atoms per unit cell of a cubic crystal system is 2, the arrangement of atoms is

4) 7

- 1) Body centered cubic 2) face centered cubic
- 3) end centered cubic 4) simple cubic
- **22)** Coordination number of Na⁺ in NaCl is (1) 3 (2) 4 (3) 5 (4) 6

23) For an ionic crystal or general formula AB and co-ordination number 6, the value of radius ratio will be

- (1) Greater than 0.73 (2) In between 0.414 and 0.732
- (3) In between 0.225 and 0.414 (4) Less than 0.155

24)	Which of the following structure is most uncommon for metals?											
	1) B.C.C	2) s	imple cubic	3) C.C.P	4) H.C.P							
	Hint: Only Po has simple cubic packing.											
25)	Which of the following describes hexagonal close packed arrangement of spheres?											
	1) ABC A	ABA	2) ABC ABC .	3) ABBABB	4) ABA ABB							
26)		e		s ratio limit is								
	1) 0.155	2)	0.732	3) 0.414	4) 0.225							
27)	Which of t	ha fallowing is	on overmle e	f hadre contaned a	uh c							
27)	1) Mg	2) Zinc	3) Copper	f body centered c 4) Pota								
	1) Mg	2) Zinc	5) Copper	4)10ta	ssium							
28)	The co-ord	ination numb	er of a metal c	rystallizing in a h	exagonal close paced structure is							
,												
	1) 12	2 2) 4	3) 8	4) 6								
				S ·								
29)	Tetrahedra	al void is surro	ounded by how	v many spheres?								
	1) 6	2) 4	3) 8	4) 12								
30)	The void be	etween two op	positely direct	ted planar triangl	es of spheres in adjacent layers is							
	called											
	1) Cubic vo	id 2) Tetrahed	ral void 3)	Octahedral void	4) any of these							
31)			acking is more		loss marking							
		lose – packing ral arrangemen	+	2) hexagonal close - packing4) none of the above								
	5) Tetraneu	rai arrangemen	ι	4) none of the	above							
32)	The packin	og efficiency in	a simple cubi	c cell system of ci	vstals is							
0_)	1) 68%	2) 52%	3) 74%	4) 92%	J 54445 45							
	,	,	,	, - · · ·								
33)	The percen	t of void spac	e in a body - c	entered cubic latt	ice is:							
	1) 32%	2) 48%	3) 52%	4) 68%								

34)	If the radius of K^+ and F^- are 133 pm and 136 pm respectively, the distance between K^+								
	and F ⁻ in KF is								
	1) 269 pm 2) 134.5 pm 3) 136 pm 4) 133 pm								
	Hint: distance between K ⁺ and F ⁻ in KF= $r_{k+}+r_{cl-}$								
35)	Potassium crystallizes with a								
	(1) Face-centered cubic lattice (2) Body-centered cubic lattice								
	(3) Simple cubic lattice (4) Orthorhombic lattice								
36)	Glass is								
	(1) Super cooled liquid (2) Crystalline solid (3) Liquid crystal (4) None of these								
37)	Amorphous solids								
	1) have sharp melting points2) give X-ray diffraction bands								
	3) give a regular cut with knife4) are isotropic.								
38)	In a cubic arrangement of A and B atoms, A atoms are at corners of unit cell and B atoms								
	at edge centers. One "A" atom is missing from one corner in each unit cell. The simplest								
	formula of the compound is								
	1) A_2B_3 2) AB_3 3) A_7B_4 4) $A_{7/8}B_3$								
	Solution: A occupy 7 corners=7X1/8 =7/8,B occupy edge centers=12X1/4 =3								
39)	In a compound, atoms of element Y form cubical - closest packing and those of element X								
	occupy 2/3 of tetrahedral voids. The formula of the compound will be								
	1) X_3Y 2) X_4Y_3 3) X_2Y_3 4) X_2Y								
-	Solution: If no. of 'Y' atoms=a, then no of tetrahedral voids=2a								
	Given element X occupies $2/3$ of tetrahedral voids. Thus no. of X atoms= $2aX 2/3=4a/3$								
	X: $Y = 4a/3:a = 4:3$:. The formula of the compound is X_4Y_3								
40)	In an ionic crystal, cation "A" occupies the lattice points in a FCC array and anion "B"								
	occupies the two types of tetrahedral voids. The correct formula of the ionic compound is								
	1) AB ₂ 2) A ₂ B 3) AB 4) A ₂ B ₃								
	Hint: For every atom two tetrahedral voids exist.								

41. A solid is made up of two types of atoms "X" and "Y". Atoms of "X" occupy all the octahedral sites while the atoms of "Y" have hcp arrangement. Its formula is

1) XY 2) X_2Y 3) XY_2 4) XY_4

Hint: For every atom, one octahedral void exists. ... Both X & Y are in 1:1 ratio.

42) A solid has a structure in which W atoms are located at the corners of the cubic lattice, O atoms at the centre of the edges and Na atom at the centre of the cube. The formula of the compound is

1) NaWO₂ 2) NaWO₃ 3) NaWO₄ 4) Na₂WO₃ Solution: No. of W at corners = 8X1/8=1No of O at edges =12X1/4=3No of Na at center = 1 \therefore s Formula:. NaWO₃

- 43) Edge length of a body centered cube is 400 pm. its body diagonal length would be 1) 600 pm 2) 566 pm 3) 693 pm 4) 500 pm Hint: Body diagonal length = $\sqrt{3}$ a
- 44) Copper crystallizes in fcc with a unit cell length of 361 pm. What is the radius of copper atom?

1) 127 pm 2) 157 pm 3) 181 pm 4) 108 pm **Hint:** Atomic radius (r) = $\frac{a}{2\sqrt{2}} = 0.3535$ a

45) Ar crystallizes in a F.C.C lattice with one atom at each lattice point. If the edge length is
5.311A⁰ at OK, the distance between nearest neighboring atoms in Ar at 'O'K is
1) 3.755 A⁰ 2) 7.355 A⁰ 3) 5.735 A⁰ 4) 1.877 A⁰

Hint: in fcc distance between nearest neighbors (d) = $2r = \frac{a}{\sqrt{2}} = 0.707$ a

- 46) KMnO₄ is well known example of
 (1) Triclinic system (2) Tetragonal system (3) Monoclinic System (4) Trigonal
- 47) Body diagonal of a cube is 866 pm. Its edge length would be

1) 408 pm 2)1000 pm 3) 500 pm 4) 600 pm

Hint; length of body diagonal = $\sqrt{3} a$

48) The radius of Na⁺ is 92 pm and that of Cl⁻ is 178 pm. The edge length of unit cell in NaCl would be (pm)

1) 178 2) 86 3) 270 4) 540

Hint; edge length of f.c.c unit cell (a) $=2[r_c + r_a]$

49) A body centered cubic solid is made up of two elements A and B. Atom of A occupies two corners of the cube. If the remaining position in the cell are occupied by the atoms of B, the formula of the compound

1) AB_3 2) A_3B_2 3) AB_2 4) AB_7 **Hint;** Effective no. of 'A' atoms=2X1/8 =1/4 Effective no. of 'B' atoms =6X1/8 +1 =7/4 Formula = $A_{1/4}B_{7/4}$ i.e. AB_7

- 50) Match the elements (in List I) with the shape of the crystal (in List II)
 - List IList II(A) Be1. Body-centred cubic(B) Ca2. Simple cubic(C) Ba3. Face-centred cubic(D) Po4. Hexagonal close- packed

 - 1) A 4, B-3, C-1, D-2 2) A 4, B-3, C-2, D-1

3) A-2, B-4, C-1, D-3 4) A-4, B-1, C-3, D-2

KEY

1) 2	2) 1	3) 2	4) 1	5) 2	6) 1	7) 1	8)4	9) 4	10) 4
11) 2	12) 3	13) 4	14) 3	15) 3	16) 1	17) 1	18) 2	19) 4	20) 4
21) 1	22) 4	23) 2	24) 2	25) 2	26) 3	27) 4	28) 1	29) 2	30) 3
31) 2	32) 2	33) 1	34)1	35) 2	36)1	37)4	38)4	39)2	40)1
41)1	42) 2	43) 3	44) 1	45) 1	46)4	47)3	48)4	49) 3	50)1