7-OXIDATION, REDUCTION, RED-OX REACTIONS, TYPES

1) -2 to 0	2) 0 to + 2	(4) - 3 to $+ 2$	4) - 3 to 0
2) In the reaction Mi	$nO_4^- \rightarrow MnO_2$, the num	lber of OH ⁻ ions invo	lved in the balanced equation is
1) 4	2) 6	3) 3	4) 2
		$+ NO_3^- + H_2O$ the stoicl	niometric coefficients of
$\text{Cr}_2\text{O}_7^{-2}, \text{NO}_2^{-} \& \text{H}^+$ 1) 1, 3, 8	respectively are 2) 1, 4, 8	3) 1, 3, 12	4) 1, 15, 12
,	, , ,	, , ,	
	$_{1} + H_{2}O \rightarrow NO_{3}^{-} + 2H^{+} +$ 2) 3		
1) 4	,	3) 2	4) 1
	on is zero in the comp		4) N. [E. (CN)]
1) $K_4[Fe(CN)_6]$	$2) \left[Fe(H_2O)_5 \right] SO_4$	3) [Fe(CO) ₅]	4) $\operatorname{Na}_{3}\left[\operatorname{Fe}(\operatorname{CN})_{6}\right]$
	owing pair of species, t	he central atom exhib	its same oxidation state
1) SO_4^{-2} , SO_3^{-2}	$2) \text{CrO}_4^{-2}, \text{CrO}_5$	$3) \mathrm{MnO}_2 \mathrm{,MnO}_4^{-2}$	$4) \operatorname{Cr}_2 \operatorname{O}_7^{-2}, \operatorname{Cr}_2 \operatorname{O}_3$
7) In the reaction Mn	$O_4^- + C_2^- O_4^{-2} + H^+ \to Mn^-$	$^{+2} + \text{CO}_2 + \text{H}_2\text{O}$ the coe	efficients of
$\mathrm{MnO_4^-}$, $\mathrm{C_2O_4^{-2}}$, $\mathrm{Mn^{+2}}$ & CO	o ₂ are respectively		
1) 1, 5,1,10	2) 2, 5,2,10	3) 2,3,2,6	4) 1, 6,1,12
8) The element which ex	chibits only one oxidat	ion state in its compou	ınds is
1) Cs	2) C1	3) P	4) Mn
9) The number of electr $Cl_2 \rightarrow ClO_3^-$.	ons required to balanc	ee the following half re	eaction in basic medium is
1) 6	2) 8	3) 10	4) 12
	$+z OH^- \rightarrow a CrO_4^{-2} + b$	H ₂ O. The coefficients	s x, y & z in the above equation
are 1) 1, 2, 3	2) 2, 2, 3	3) 2, 3, 4	4) 3, 2, 4
11) Which is not redox i	reaction among the fol	lowing?	
1) $Cl_2 + 2KI \rightarrow 2KCl$	$+ I_2$	2) $2KClO_3 \rightarrow 2KCl +$	-3O ₂
3) $H_2 + Cl_2 \rightarrow 2HCl$		4) $K_2Cr_2O_7 + 2KOH$	$\rightarrow 2K_2CrO_4 + H_2O$

12) Match the following underlined elements with oxidation numbers

LIST - I

LIST – II

- A) H<u>C</u>N
- 1) + 7
- B) <u>Cl</u>F₃
- 2) + 6
- C) HNO₄
- 3) + 5
- D) <u>Cr</u>O₅
- 4) + 3
- 5) + 2

Correct match is

A B C D

- 1) 5 1 3 2
- 2) 4 3 1 5
- 3) 5 4 3 2
- 4) 3 1 2 4

13) Which of the following is correct

- I) Oxidants reduce themselves
- II) Reduction involve de electronation
- III) Reductants oxidise others

Correct combination is

- 1) All are correct
- 2) I and II are correct
- 3) II and III are correct 4) I and III are correct

14) The oxidation number of sodium in Na₂ Hg is

1)+

- (2) + 2
- 3) + 3
- 4) Zero

15) Oxidation numbers of nitrogen in Ammonium nitrite are respectively

- 1) + 3, + 5
- 2) 3 + 3
- 3) + 5, -3
- 4) + 3, 5

16) Oxidation number of nitrogen in Ammonium nitrate are respectively

- 1) +3, +5
- 2) 3 + 3
- 3) 3, +5
- 4) +3, 5

17) In which of the following hydrogen exhibits negative oxidation state

- 1) NH₃
- 2) H₂S
- 3) C_6H_6
- 4) CaH₂

18) The strong reducing agent is

- 1) HNO₂
- 2) H₂S
- 3) H₂SO₃
- 4) SnCl₂

 19) In the reaction Zn+H₂SO₄ → ZnSO₄+H₂ 1) Zn is oxidised in H₂SO₄ 		2) Hydrogen is oxidised in H ₂ SO ₄			
3) Sulphur undergoes reduction in H ₂ SO ₄		4) Sulphur undergoes oxidation in H ₂ SO ₄			
20) When Zn is added to CuSO ₄ solution, Cu is 1) Oxidation of Cu ⁺²		s precipitated. It involves 2) Reduction of Cu ⁺²			
3) Zn is reduced, Cu is	oxidised	4) There is neither oxidation nor reduction			
21) Manganate ion is ch 1) Oxidation	anged to permangana	te ion. It is an example 2) Reduction	e of		
3) Neither oxidation no	or reduction	4) Disproportionation	4) Disproportionation		
,	ed through hot solution	n of caustic potash the	en chlorine in the reaction		
undergoes 1) Oxidation		2) Reduction	\wedge		
3) Oxidation & Reduction		4) Neither oxidation nor reduction			
23) $MnO_4^- + H^+ + S^{-2} \rightarrow M$ transformation 1) 8	$In^{+2} + H_2O + S$, the nur 2) 6	mber of electrons invo	lved during the above 4) 5		
24) The number of mole	s of oxalate ions oxidis	sed by one mole of Mr	O_{4}^{-} ion is		
1) 5	2) $\frac{2}{5}$	3) $\frac{1}{5}$	4) $\frac{5}{2}$		
25) For the redox reaction reactants for the balance 1) 1, 5, 1	VOICE VOICE		The correct coefficients of the 4) 2, 6, 2		
26) List – I A) $P_4 \rightarrow H_2PO_2^-$	List – II I) 2 electrons are invo	olved			
B) $CrO_4^{-2} \rightarrow CrO_5$	II) 6 electrons are involved				
C) $IO_3^- \rightarrow I^-$	III) 4 electrons are involved				
D) $Cl_2 \rightarrow ClO_3^-$	IV) 10 electrons are involved				
	V) No electrons are in	nvolved			
The correct match is					
1) A – III, B – V, C – II, D – IV		2) A – IV, B – I, C – V, D – II			
3) A – I, B – II, C – III, D – IV		4) A – II, B – III, C – IV, D – V			

$27) \operatorname{Cr} \xrightarrow{\operatorname{OH}^{-}} \left[\operatorname{Cr} \left(\operatorname{OH} \right)_{4} \right]$	for the bal	anced ox	xidation half reaction	on the number of electrons and	
OH ions required respect 1) 4, 4	etively 2) 4, 3		3) 3, 4	4) 2, 2	
28) The oxidation number 1) + 3	r of iron in tl 2) + 2	ie browi	ring complex is 3) + 4	4) +1	
stoichiometric equation,		a, b and	, , , ,	$_3$ + $\mathrm{H}_2\mathrm{O}$. In this un balanced 4) 2, 8 and 16	
30) The number of moles of $FeSO_4$ In balanced equation of $K_2Cr_2O_7 + H_2SO_4 + FeSO_4 \rightarrow K_2SO_4 + Cr_2(SO_4)_3 + Fe_2(SO_4)_3 + H_2O_{is}$					
1) 1	2) 7		3) 6	4) 2	
		$I^+ \to Mn^2$	$^{2+} + CO_2$ the number	ers of moles of H+ ions involved in	
the balanced equation ar 1) 9	e 2) 16		3) 6	4) 12	
	32) In the reaction, $Cl_2 + \overline{O}H \rightarrow C\overline{1} + \overline{O}Cl$ the number of moles of $\overline{O}H$ ions involved in the above				
equation is 1) 2	2) 3		3) 4	4) 5	
33) In the equation p $NH_3 + q$	$O_2 \rightarrow r H_2 C$	+s NO	, the stoichometric	coefficient of which species is 4.	
I) NH ₃	II) O ₂		III) H ₂ O	IV) NO	
The correct answer is					
1) I, II and III	2) I and IV		3) II, III and IV	4) II and III	
34) Assertion: (A): The oxida Reason: (R): Fe always					
1) Both A and R are true	e, R is correct	explanat	tion of A.		
2) Both A and R are true	e, R is not the	correct e	explanation of A.		
3) A is true but R is false	e		4) both A and R are	e false	
35) In the conversion of BaO 1) Barium increases	2) Oxygen in			es 4) Barium decreases	
36. Oxidation state of Ni in Ni (CO)4 is					
1) 0	2) 4	3) 8	4)2		

37	Oxidation	state	of Fe in	$\mathbf{K}_{\mathbf{A}\mathbf{I}}$	Fe(CN	1/1
31.	Oxidation	state	or re iii	\mathbf{N}_{4}	recon	<i>1</i> 61

1) +6

2) +4

3) + 2

4) + 5

38 .In which of the following the oxidation state of chlorine is +5?

1) HClO₄

2) HClO₃

3) HClO₂

4) HCl

39. All elements commonly exhibit an oxidation state of

1) + 1

2)-1

3) zero

4) + 2

40. The maximum oxidaton state that fluorine exhibits is

2) zero 3) +1

4) + 2

41. The element that always exhibits a negative oxidation state in its compounds is

1) Nitrogen

2) Oxygen

3) Fluorine

4) Chlorine

42) The oxidation number of Nitrogen is fractional in

1) NH₃

2) N₃H

3) N_2H_4

4) NH₂OH

KEY

HINTS

1. In NH₃ oxidation state of N is x+3=0, x=-3 In elementary state ox, no is zero

2. $MnO_4^- \rightarrow MnO_2$,

Balancing oxygen MnO_4 $\rightarrow MnO_2+2H_2O$

 MnO_4 +4H₂O \rightarrow MnO₂+2H₂O +4OH Balancing H;

Balancing charge: $MnO_4^- + 2H_2O + 3e \rightarrow MnO_2 + 4OH^-$

3. The stoichiometric equation is

$$Cr_2O_7^{-2} + 3NO_2^- + 8H^+ \rightarrow 2Cr^{+3} + 3NO_3^- + 4H_2O$$

$${}_{4}$$
, $NO_{2} + H_{2}O \rightarrow NO_{3}^{-} + 2H^{+} + ne^{-}$,

Total charge in reactants side=0

Total charge in products side=-1+2 =+1. Hence n=1

www.sakshieducation.com

- 5. Ox.state of metal in metal carbonyl is zero.
- 6. O.s of Cr in CrO_4^{-2} is x+4(-2)=-2, x=+6

In CrO₅, one normal and 4 peroxy oxygen atoms are present. X+4(-1)+(-2)=0,x=+6

- 7. Balanced equation is $2MnO_4^- + 5C_2O_4^{-2} + 16H^+ \rightarrow 2Mn^{+2} + 10CO_2 + 8H_2O_3$
- 8. Elements of IA always show +1 in their compounds.
- 9. $Cl_2 \rightarrow 2ClO_3$

Balancing oxygen Cl₂+6H₂O→2ClO₃

Balancing H; $Cl_2 + 6H_2O + 12OH^2 \rightarrow 2ClO_3^2 + 12H_2O$

Balancing charge: $Cl_2 + 12OH^- + 10e \rightarrow 2ClO_3^- + 6H_2O$

- **10. Balanced equation is** $\times 2Cr(OH)_3 + 3H_2O_2 + 4OH^- \rightarrow 2CrO_4^{-2} + 8H_2O$
- 11. Ox.S of Cr is same (+6) in both sides.
- 12. in HNO₄, two peroxy O atoms present.

$$+1 + X + 2(-2) + 2(-1) = 0, X = +5$$

- 14. O.S of metal in an alloy is zero.
- 15. NH₄NO₂ contains NH₄⁺ and NO₂⁻ ions. In NH₄⁺ O.S of N is -3 and in NO₂⁻ is +3
- 16. NH₄NO₃ contains NH₄⁺ and NO₃⁻ ions. In NH₄⁺ O.S of N is -3 and in NO₃⁻ is +5.
- 17. 'H' shows +ve oxidation state in metallic hydrides.
- 18. As 'S' is in its lowest oxidation state.
- 19. O.S of Zn increases from 0 to +2.
- 20. O.S of Cu decreases from +2 to 0.
- 21. O.S of Mn increases from +6 to +7.
- 22. 6NaOH+ 3Cl₂→5NaCl+NaClO₃+3H₂O, O.S of changes from 0 to -1 and 0 to +5.

23.
$$2\text{MnO}_4^- + 16\text{H}^+ + 5\text{S}^{-2} \rightarrow 2\text{Mn}^{+2} + 8\text{H}_2\text{O} + 5\text{S}$$

Mn gains 10e and S⁻² looses 10e

24.
$$2KMnO_4 + 5H_2C_2O_4 + 3H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4 + 10CO_2 + 8H_2O$$

As per equation 2moles KMnO₄ oxidises 5 moles of Oxallic acid.

1mole KMnO₄ oxidises 5/2 moles of Oxallic acid

25.
$$K_2Cr_2O_7 + H_2SO_4 + FeSO_4 \rightarrow K_2SO_4 + Cr_2(SO_4)_3 + Fe_2(SO_4)_3 + H_2O_4$$

26.
$$2\text{Cr (OH)}_3 + 4\text{OH}^- + 1\text{O}_3^- \rightarrow \text{I}^- + 2 \text{CrO}_4^{-2} + 5\text{H}_2\text{O}$$

27.
$$Cr \rightarrow [Cr(OH)_4]^-$$

Balance oxygen atoms

$$Cr + 4H_2O \rightarrow \left[Cr(OH)_4\right]^{-1}$$

Balance hydrogen atoms $Cr + 4H_2O + 4OH^-$

$$Cr + 4H_2O + 4OH^- \rightarrow \left[Cr(OH)_4\right]^- + 4H_2O$$

Balance the charge

 $Cr + 4H_2O + 4OH^- \rightarrow \left[Cr(OH)_4\right]^- + 4H_2O + 3e^-$

28: The brown ring complex compound is [Fe (H₂O)₅ NO] SO₄.

The complex ion is $[Fe (H_2O)_5 NO]^{2+}$

Oxidation numbers of H₂O is zero and NO is+1.

Oxidation state of Fe is +1

- **29. Balanced equation is** $2 \text{ KMnO}_4 + 8 \text{ H}_2 \text{SO}_4 + 10 \text{ FeSO}_4 \rightarrow \text{K}_2 \text{SO}_4 + 2 \text{MnSO}_4 + 5 \text{Fe}_2 \left(\text{SO}_4 \right)_3 + 8 \text{H}_2 \text{O}_4 + 2 \text{MnSO}_4 +$
- 30. Balanced equation is

$$K_2Cr_2O_7 + 7H_2SO_4 + 6FeSO_4 \rightarrow K_2SO_4 + Cr_2(SO_4)_3 + 3Fe_2(SO_4)_3 + 7H_2O_4 + 2FeSO_4 \rightarrow K_2SO_4 + Cr_2(SO_4)_3 + 2FeSO_4 + Cr_2(SO_4)_3 + 2FeSO_5 + Cr_2(SO_5)_5 + Cr_2$$

31.
$$2MnO_4^- + 5C_2O_4^{2-} + 16H^+ \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$$

- 32. Cl₂+2 OH⁻→Cl̄+ ClŌ+H₂O
- 33. $4 \text{ NH}_3 + 5 \text{ O}_2 \rightarrow 6 \text{ H}_2 \text{O} + 4 \text{ NO}$
- 34. Fe₃O₄ is a mixed oxide of FeO and Fe₂O₃. Thus Fe shows +2 and +3 OX.States
- 35. OX.ST of oxygen decreases from -1 to -2.