THERMODYNAMICS-1

1.	Hot Milk in a thermos flask is an example for
	1) Isolated system 2) Open system 3) Closed system 4) Adiabatic system
2.	In open system, system and surroundings exchange
_	1) Energy only 2) Matter only 3) both 1 &2 4) Neither 1 nor 2
3.	Which of the following is a state function?
	1) Intrinsic energy 2) Enthalpy 3)Heat 4) both 1 &2
4.	The standard heat of combustion of graphite carbon is -393.5 KJ mol ⁻¹ . The standard enthalpy
	of CO ₂ is
	1) +393.5 KJ mol ⁻¹ 2) -393. 5 KJ mol ⁻¹ 3) +196.75 KJ mol ⁻¹ 4) -196.75 KJ mol ⁻¹
5.	Which of the following is a path function
	1) Internal energy 2)Enthalpy 3) Work 4) Entropy
6.	Mathematical representation of 1 st law of Thermodynamics is
_	1) $Q = E + W$ 2) $H = E + PV$ 3) $W = Q \times E$ 4) $\Delta H = \Delta E + v\Delta P$
7.	Which of the following values of heat of formation indicates that the product is least stable?
	1) -393.5 KJ 2) -972.7 KJ 3) +89.9 Kj 4) +272.2 KJ
	Endothermic compound is less stable. More endothermic is least stable.
8.	Enthalpy change in a cyclic process is
	1) infinite 2) can't be predicted 3) unity 4)zero
9.	According to 1st law of Thermodynamics
	1) Energy can be created but not destroyed 2) Energy cannot be created but can be destroyed
10	3) Energy can be created and destroyed 4) Energy neither be created nor destroyed
10.	Internal energy does not include 1) without items I an energy 2) protection of concerns the transfer of concerns the conc
11.	1) vibrational energy 2) rotational energy3) energy due to gravitational pull 4) potential energy At a given temperature internal energy of 4.4gm dry ice is
11.	1) same as 4.4gm liquid CO ₂ 2) same as 4.4gm CO ₂ gas
	3) same as 8.8gm dry ice 4) same as 0.1 moles of dry ice
12.	The change in internal energy of a system depends on
	1) initial and final states of the system 2) the path if reversible
	3) the path if irreversible 4) initial, final states and also on the path
13.	Enthalpy change during a reaction does not depend upon
	1) conditions of a reaction 2) initial and final concentration
	3) physical states of reactants and products 4) number of steps in the reaction
14.	The standard enthalpies of n-pentane, isopentane and neopentane are -35.0, -37.0 and -40.0
	K.cal/mole respectively. The most stable isomer of pentane in terms of energy is
15	1) n-pentane 2) iso pentane 3) neo pentane 4) both 1 &2 The enthalpies of the elements in their standard states are arbitrarily assumed to be
15.	1) zero at 298 K and 1 atm 2) unity at 298 K and 1 atm
	3) Zero at all temperatures 4) zero at 273 K and 1 atm
16.	The standard enthalpy is zero for the substance
10.	1) C (graphite) 2) C (diamond) 3) $CO_{2(gas)}$ 4) all
17.	The heat required to raise the temperature of a body by 1°C is called
1/.	1) specific heat 2) Heat capacity 3) water equivalent 4) Heat energy
18.	In exothermic reaction
10.	1) $H_R = H_P$ 2) $H_R > H_P$ 3) $H_R < H_P$ 4) $\Delta H = 0$
	/ K 1 -/K1 -/K1 -/K

19. The incorrect IUPAC convention

- 1) Heat gained by system +ve sign
- 2) Work done by system ve sign
- 3) Work done on the system +ve sign 4) Work done on the system -ve sign

20. Which of the following is an endothermic reaction?

- 1) $C + O_2 \rightarrow CO_2$
- 2) $N_2 + O_2 \rightarrow NO$
- 3) $3H_2 + N_2 \rightarrow 2NH_3$
- 4) $PCl_3 + Cl_2 \rightarrow PCl_5$

21 change in enthalpy and change in internal energy are equal at room temperature for

1) combustion of glucose

2) combustion of ethylene

- 3) combustion of methane
- 4) combustion of ethyl alcohol

22. The difference between heats of reaction at constant pressure and at constant volume for the reaction

$$2C_6H_{6(l)} + 15O_2(g) \rightarrow 12CO_2(g) + 6H_2O(l)$$
 at 250C in KJ is

- 1) 7.43
- 2) + 3.72
- 3) 3.72
- 4) + 7.43

Hint: $\Delta H = \Delta E + \Delta n RT$

$$\Delta H - \Delta E = (-3)X8.314X10^{-3}X298 = -7.43Kj$$

23. For which of the following reactions $\Delta H = \Delta E - 2RT$

- 1) $N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$
- 2) $N_{2(g)} + O_{2(g)} \rightarrow 2NO_{(g)}$
- 3) $NH_4HS_{(s)} \rightarrow NH_{3(g)} + H_2S_{(g)}$
- 4) $PCl_{5(g)} \rightarrow PCl_{3(g)} + Cl_{2(g)}$

Hint: $\Delta H = \Delta E + \Delta n RT$

Given $\Delta H = \Delta E - 2RT$ i.e $\Delta n = -2$

24. For which of these process is the value of ΔH negative

- i) $N_2 + O_2 \rightarrow 2NO$
- ii) $N_2 + 3H_2 \xrightarrow{Fe+Mo} 2NH_3$
- $CO_2 + O_2 \xrightarrow{V_2O_5} 2SO_3$
- iv) $H_2 + I_2 \xrightarrow{pt} 2HI$
- 1. i and ii are correct

2. ii and iii are correct

3. iii and iv are correct

4. i and iv are correct

25. Heat of neutralization is least when

- 1) NaOH is neutralised by CH₃COOH
- 2) NaOH is neutralised by HCl
- 3) NH₄OH is neutralised by CH₃COOH
- 4) NH₄OH is neutralised by HNO₃

26. For the reaction $C_2H_{4(g)}+3O_{2(g)}\rightarrow 2CO_{2(g)}+2$ $H_2O_{(g)}$, the difference between enthalpy change and

internal energy change is

- 1) -RT
- 2) +RT
- 3) -2RT
- 4) zero

Hint: $\Delta H = \Delta E + \Delta n RT$

27. The following is not a combustion reaction

- (1) $CO + \frac{1}{2}O_2 \rightarrow CO_2$
- 2) $C + O_2 \rightarrow CO_2$
- $(C + \frac{1}{2}O_2 \rightarrow CO)$

4) $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

Match the following 28.

List -I

$\Delta H < 0$

- A)
- B) $\Delta H = \Delta E + \Delta nRT$
- C) Bomb-calorimeter
- D) Hess law is based on correct match

List-II

- 1) First law of thermodynamics
- 2) Heat of combustion
- 3) Relationship between Q_p and Q_v
- 4) Exothermic reaction

2

A	В	\mathbf{C}	D	
1. 1	2	3	4	
2.4	3	2	1	
3. 4	3	1	2	
4.	3	1	4	

- $2H_{2(g)} + 2Cl_{2(g)} \rightarrow 4HCl(g), \Delta H^0 = -92.3kJ$ 29.
 - i) If the equation is reversed, the value ΔH^0 equal to +92.3Kj
 - ii) The four H-Cl bonds are stronger than the four bonds in 2H₂ and 2Cl₂
 - iii) The ΔH^0 value will be -92.3Kj if the HCl is produced as a liquid
 - 1. all are correct 2. i only correct 3. i and ii are correct
- 4. iii only correct

The correct statement among the following **30.**

- i) heat of reaction depends on the temperature at which the reaction is carried
- ii) ΔH for neutralization is always -Ve.
- iii) experimentally heat of combustion is ΔE .
- 1. i only correct
- 2. ii only correct 3. iii only correct 4. all are correct

31. Match the following

List-I

List - II

- A) solid→vapour
- 1) 32.8
- B) $H_2 + Cl_2 \rightarrow 2HCl$
- 2) -22

$$\Delta H = -44$$
 K.cals

heat of formation HCl (k.cal)

- C) heat of combustion of
- 3) 1 calories

graphite is-393.5 k.J its

calorific value of (in k.J)

- D) 4.184 Joules is equal to
- 4) endothermic

Correct match is

\mathbf{A}	В	C	D
1. 1	2	3	4
2.4	3	2	1
3. 4	2	1	3
4. 2	1	4	3

32. Match the following

 $HNO_3 + KOH$

- i) 55.2 kJ per mol
- B) $CH_3COOH + KOH$
- ii) Path function
- C) Internal Energy
- iii) 57.3 kJ per mol
- D) Work done
- iv) State function
- 1) A-(iii), B-(i),
- C(iv),
- 2) A-(i), B-(ii),
- 3) A-(ii), B-(i),
- C(iii), D(iv)
- D(iv) C(ii),

Assertion (A): The enthalpy of formation of $H_2O_{(l)}$ is greater than that of $H_2O_{(g)}$

D(ii)

Reason (R): Enthalpy change is negative for the condensation reaction $^{H_2O_{(g)}} \rightarrow ^{H_2O_{(l)}}$

- 1. Both assertion and reason are correct, reason is the correct explanation of the assertion
- 2. Both assertion and reason are correct reason is the not correct explanation of the assertion
- 3. A is correct, R is incorrect
- 4. both A and R are incorrect

34. Match the follwing

List-I

- A) Heat of Hydration
- B) Heat of Transition
- C)Molar volume of a gas
- D) volume of a gas

List -II

- 1) is an Intensive property
- 2 is an Extensive property
 - 3) ΔH is always -Ve
- 4) ΔH may be +Ve or -Ve

The correct match is

\mathbf{A}	В	C	\mathbf{L}
1) 1	2	3	4
2)4	3	1	2
1) 1 2) 4 3)3	4	1	2
4) 2	1	4	3

35. A gas contained a cylinder fitted with a friction less piston expands against a constant pressure 1atm from a volume of 2 litre to volume of 12 litre. In doing so, it absorbs 800J thermal energy from surrounding, then the ΔE for the process is

Solution: $W = -P \times \Delta V = -1X(12-2) = -10$ lit.atm = -10X101.37kj = -1013.7kj $\Delta E = q - w = 800 - 1013.7 = -213.7 \text{Kj}$

 $C_P = 7.03 calmol^{-1} des^{-1}$ and $R = 8.31 Jmol^{-1} des^{-1}$

1) 125cal

2) 252cal

3) 50cal

4) 500cal

Solution:

$$C_P - C_V = R$$
 $C_V = 7.03 - 1.99 = 5.04$

Heat absorbed by 5mole of oxygen in heating from 10 to $20^0 = 5 \times Cr \times \Delta T = 5 \times 5.04 \times 10 = 252 cal$. Since the gas is heated at constant volume, no external work is done W = 0.

So change in internal energy will be equal to heat absorbed.

$$\Delta E = q + W = 252 + 0 = 252cal$$

37.	The amount of work done by	2mole of a	n ideal ga	s at 298K	in reversible	isothermal	expansion
	from 10litre to 20litre is						

1) -120J

2) - 2452J

3) -3434.9J

4) 2200J

Solution:

$$W = -2.303nRT \log \frac{V_2}{V_1}$$

38. 5moles of an ideal gas at 27⁰C expands isothermally and reversibly from a volume of 1L to 10L. The work done in KJ is

1) -14.7

2) -28.72

3) + 28.72

4) - 56.72

Solution:

$$W = -2.303nRT \log \frac{V_2}{V_1}$$

$$=$$
 -2.303 X5X8.314 X10⁻³ X300Xlog(10/1)=-28.7KJ

39. 10litres of an ideal gas confined to a volume of 10L is released into atmosphere at 300K where the pressure is 1bar. The work done by the gas is $(R = 0.083L \, bar \, K^{-1} mol^{-1})$

1) 249L bar

2) 259L bar

3) 239L bar

4) 220L bar

Solution:
$$V_2 = \frac{nRT}{P} = 249L$$
, $W = P\Delta V = 1 \times (249 - 10) = 239L \ bar$

40. 1 mole of a gas is heated at constant pressure to raise its temperature by 1^0 C. The work done in Joules is

1) -4.3

2) -8.314 3) -16.62

4) Unpredictable

Solution: W=- $nR\Delta T = -1 \times 8.314 \times 1 = -8.314 J$

41. 3.0 moles of ideal gas is heated at constant pressure from 47^{0} C to 147^{0} C. then the work expansion of gas is

1) - 2.494KJ

2) + 2.494KJ

3) - 10.5KJ

4) + 10.5KJ

Solution:W=-nR∆T

$$=-3X 8.314X10^{-3}(147-47)=-2.494KJ$$

42. The pKa values of four acids A,B,C and D are 9.14, 9.92, 2.86 and 1.3 respectively. The heat of neutralisation is more in the following reaction

1) $A + NaOH \rightarrow$

2) $B + NaOH \rightarrow$

3) D + NaOH \rightarrow

(4) C + NaOH $\rightarrow \dots$

Solution: Lower P_a^k represents strong acid. The heat of neutralisation is more for a strong acid.

43. The heats of neutralisation of acids A,B,C and D with NaOH are -13.5 K.cal, -12.7 K.cal, -11.8 K.cal, -12.4 K.cal respectively.

The weakest acid is

1) A

2) B

3) C

4) D

Solution: If the heat of neutralisation is lowest then the acid is weakest.

44. According to $H_2(g) + I_2(g) \rightarrow 2HI(g), \Delta H = 51.9$ KJ. heat of formation of HI is

1) 51.9 KJ

2) -51.9 KJ

3) -25. 95 KJ

4) 25.95 KJ

Solution: heat of formation = ΔH per mole=(51.9/2)=25.95

The heat of formation of $H_2O_{(1)}$ is -286.2 KJ. The heat of formation of $H_2O_{(g)}$ is likely to be **45.**

1) -286.2 KJ

2) -290.78 KJ

3) -335.2 KJ

4) -242.76 KJ

Solution: $H_2O_{(1)} \rightarrow H_2O_{(g)}$ is an Endothermic process.

 $NH_4Cl(s) + H_2O \rightarrow NH_4Cl(aq)$ $\Delta H = 16.3 KJ$ 46.

 ΔH in the above reaction represents

1) heat of solution 2) heat of hydration

3) heat of dilution 4) heat of ionization

A system absorbs 10 kJ of heat and does 4 kJ of work. The internal energy of the system. 47.

1) Decreases by 6 kJ

2) Increases by 6 kJ

3) Decreases by 14 kJ

4) Decreases by 14 kJ

Solution: q=10Kj, W=-4Kj thus $\Delta E=q+W=10$ -4=6Kj

When 4 grams of methane is completely burnt in oxygen, the heat evolved is 224 kJ. What is the heat of combustion (in KJ) of methane?

1) -1120 2) -968 3) -896

4) - 560

Solution: Heat of Combustion= heat liberated per 1 mole

if 4gm of methane given 224KJ then 1mole i.e 16gm of methane gives (16/4)x224=896KJ.

49. One mole of ideal gas expands freely at 310 K from five litre volume to 10 litre volume. Then ΔE and Δ H of the process are respectively

1) 0 and 5 cal

2) 0 and 5 x 300 cal

3) 0 and 0 4) 5 and 0 cal

Hint: for an Ideal gas $\Delta H=0$ and $\Delta E=0$

50. The heat of dissociation (in K.cals/mole) of CH₄ and C₂H₆ are 360 and 620 respectively. From these the C - C bond energy in the ethane can be evaluated as

1) 260

2) 130

3) 80

4) 200

Solution:

Average energy of C-H bond in CH₄=(360/4)=90

C₂H₆ has 6 C-H bonds and 1 C-C bond.

6C-Hbonds +1 C-C bond = 540

energy of C-C = 620-(6C-H)=620-6X90=620-540=80K.cal

KEY

1)1 2)3 4)2 5)3 6)1 7)4 9)4 10)3 3)4 11)4 12)1 13)4 14)3 15)1 16)1 17)1 18)2 19)4 20)2 21)1 22)1 23)1 24)2 25)3 26)4 27)3 28)2 29)3 30)4 31)3 32)1 33)1 34)2 35)1 36)2 37)3 38)2 39)3 40)2 41)1 42)3 43)3 44)4 45)4 46)1 47)2 48)3 49)3 50)3