ORGANIC CHEMISTRY

ORGANIC CHEMISTRY – SOME BASIC PRINCIPLES AND TECHNIQUES

The first organic compound prepared from inorganic compounds was

1.

1. SUB TOPIC NAME: GENERAL INTROUCTION

	1) Urea	2) methane		3) acetic acid	4) ethyl alcohol			
2.	The bond energy (i	in K Cal mol ⁻¹)	of a C-0	C single bond is app	roximately			
	1) 1	2) 10		3) 100	4) 1000			
3.	Which of the follow	ving represents	the giv	en mode of hybridiz	zation $sp^2 - sp^2 - sp - sp$ from left			
	to right?							
	1) $H_3C - CH = CH$	$-CH_3$		$2) HC \equiv C - C \equiv C$	H			
	$3)H_{2}C=CH-C\equiv$	СН		$4) H_2C = CH - CH$	T = CH			
4.	Considering the sta	ate of hybridiza	tion of	carbon atoms, find	out the molecule among the			
	following which is	linear?						
	$1) CH_3 - C \equiv C - CH$	H_3		$2) CH_3 - CH = CH$	$-CH_3$			
	$3) H_2C = CH - CH$	$_2 - C \equiv CH$		4) $CH_3 - CH_2 - CH_3$	$I_2 - CH_3$			
5.	The compound in	which all carbo	n atoms	use only sp ³ hybrid	l orbitals for bond formation is			
	1) CH ₃ CHO	2) CH ₃ COCH	I_3	3) (CH ₃) ₃ COH	4) HCOOH			
6.	Which among the	following has hi	ighest n	elting point?				
	1) (CH ₃ CO) ₂ O	2) CH ₃ CN	4	3) CH ₃ CONH ₂	4) CH ₃ CoCl			
7.				VIOTE 10 10 10 10 10 10 10 1	orbitals of carbon is			
	$1) sp < sp^2 > sp^3$	Total Control	HERY ASSESSED	$3) sp > sp^2 > sp^3$				
8.	Among the following	ng mixtures, dij	pole – d		nteraction is present in			
	1) Benzene and etha	anol		2) acetonitrile and a				
	3) KCl and water			4) benzene and carb	oon tetra chloride			
9.	Match the followin	g						
	Column – I			mn – II (hybrid, pure orbitals)				
	A) C_2H_6		p) 18,					
	B) C ₂ H ₄		q) 8, 0					
	C) C_2H_2		r) 6, 6					
	D) C₆H₆1) A-s, B-q, C-p, D) r	s) 4, 6	2) A-r, B-p, C-q, D-	c.			
	3) A-q, B-r, C-s, D			4) A-p, B-s, C-q, D-				
10.		•	ower ho	•	nydroxy benzoic acid			
10.				ecular hydrogen bo	-			
				•	o .			
4	1) Statement – 1 (A) and statement-2 (R) are true and statement – 2 is the correct explanation for statement – 1(A)							
	•	•	-2 (R) a	re true and statement	z - 2 is not the correct explanation			
	for statement –	l(A)						
	3) Statement – 1 (A	A) is true, statem	ent-2 (R	(a) is false				
	4) Statement – 1 (A							
11.		_		one of the following				
	1) $F - H \dots F$	2) O – H	O	3) $S - H \dots F$	4) F – H O			

12. Which of the following compounds shows evidence of the strongest hydrogen bonding?

1) Propane -1, 2, 3 - triol

2) Propane -1, 2 - diol

3) Propan – 1- ol

4) Propan -2 – ol

13. Which one of the following is the hetero cyclic compound?

- 1) Pyrene
- 2) Thiophene
- 3) Phenol
- 4) Anilene

14. Which one of the following is a non-benzoid aromatic compound?

- 1) Anthracene
- 2) Tropolone
- 3) Aniline
- 4) Naphthalene

15. Which one is not correct for a homologous series?

- 1) All members have a general formula
- 2) All members have same chemical properties
- 3) All members have same physical properties
- 4) All members have same functional group

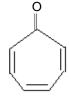
16. Match the following

List - I

List - II

- 1) Benzene
- A) Aromatic (Bicyclic)
- 2) Naphthalene
- B) Aromatic (monocyclic)
- 3) Anthracene
- C) Alicyclic
- 4) Pyridine
- D) Heterocyclic
- 5) Cycloalkane
- E) Aromatic (Tricyclic)
- 1) 1-B, 2-A, 3-E, 4-D, 5-C

2) 1-A, 2-B, 3-C, 4-E, 5-D 4) 1-D, 2-C, 3-B, 4-A, 5-E


3) 1-E, 2-D, 3-A, 4-C, 5-B

17. Choose the non aromatic compound among the following

1)

2)

4)

18. Identify the compounds in which all bond lengths are equal

1)

2)

3)

4)

19. Which of the following alkene has highest value of heat of hydrogenation?

20. Which of the following is not a planar molecule?

1) $H_2C = C = CH_2$

2) $H_2C = C = C = CH_2$

3) $H_2C = C = 0$

4) NC - HC = CH - CN

KEY

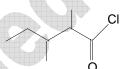
1) 1 2) 3 3) 3 4) 1 5) 3 8) 2 9)3 10) 4 6) 3 7) 4

11) 1 12) 1 13) 2 14) 2 15) 3 16) 1 17) 3 18) 4 19) 4 20) 1

2. SUB TOPIC NAME: NOMENCLATURE OF ORGANIC COMPOUNDS

- The correct decreasing order of preference of functional groups during the IUPAC 1. nomenclature of poly functional compounds is
 - 1) –COOH, -SO₃H, -CONH₂, -CHO
- 2) -SO₃H, -COOH, -CONH₂, -CHO
- 3) -CHO, -COOH, -SO₃H, -CONH₂
- 4) -CONH₂, -CHO, -SO₃H, -COOH
- 2. Which of the following is a correct name according to IUPAC rules?
 - 1) 2, 3-dimethyl hexane

2) 3-ethyl-2-methyl pentane


3) 3, 4-dimethyl pentane

4) 2-ethyl-2-methyl pentane

3. The IUPAC name of

- 1) 3-ethyl-4, 4-dimethyl heptanes
- 2) 1, 1-diethyl -2, 2-dimethyl pentane
- 3) 4, 4-dimethyl-5, 5-diethyl pentane
- 4) 5, 5-diethyl -4, 4-dimethyl pentane

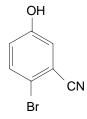
4. The IUPAC name of

is

- 1) 2-ethyl-3-methyl butanoyl chloride
- 3) 3, 4-dimethyl pentanoyl chloride
- 2) 2, 3-dimethyl pentanoyl chlroide
- 4) 1-chloro-1-oxo-2, 3,-dimethyl pentane
- 5. The IUPAC name of the compound

is

- 1) 3, 3-dimethyl-1-1hydroxy cyclohexane
- 2) 1, 1-dimethyl-3-hydroxy cyclohexane
- 3) 3, 3-dimethyl-1-cyclo hexanol
- 4) 1, 1-diethyl -3 cyclo hexanol
- 6. The compound which contains all the four 1° , 2° , 3° and 4° carbon atom is
 - 1) 2, 3-dimethyl pentane


- 2) 3-chloro-2, 3-dimethyl pentane
- 3) 2, 3, 4-trimethyl pentane
- 4) 3, 3-dimethyl pentane

7. The IUPAC name of the compound shown below is

- 1) 2-bromo-6-chloro cyclohex-1-ene
- 2) 6-bromo-2-chloro cyclohexene
- 2) 3-bromo-1-chloro cyclohexene
- 4) 1-bromo-3-chloro cyclohexene

The IUPAC name of the compound shown below is 8.

- 1) 4-bromo-3-cyano phenol
- 3)2-cyano-4-hydroxy bromo benzene
- 9. The IUPAC name of neopentane is
 - 1) 2, 2 dimethyl propane
 - 3)2, 2-dimethyl butane
- 10. The IUPAC name of C₆H₅COCl is
 - 1) benzene acetic acid
 - 3) benzene carbonyl chloride
- 11. Systematic name of Ph-CH₂- COOH is
 - 1) Benzene acetic acid
 - 3) 2-phenyl ethanoic acid
- The IUPAC name of 12.

- 2) 2-bromo-5-hydroxy benzonitrile
- 4) 6-bromo-3-hydroxy benzonitrile
- 2) 2-methyl propane
- 4) 2-methyl butane
- 2) benzene chloro ketone
- 4) chloro phenyl ketone
 - 2) phenyl methyl carboxylic acid
 - 4) 2-phenyl methanoic acid

$$\begin{array}{c}
O \\
\parallel \\
C - NH - C_6H_5
\end{array}$$
is

- 1)N-cyclohexyl benzamide
- 3) N-phenyl-N-cyclohexyl methanamide
- 2) N-cyclohexyl-N-phenyl methyl amide
- 4) N-phenyl cyclo hexane carboxamide

13. Which of the following compounds has isopropyl group?

- 1)2, 2, 3, 3-tetramethyl pentane
- 2) 2, 2-dimethyl pentane
- 3) 2, 2, 3-trimethyl pentane
- 4) 2-methyl pentane

Which one of the following is 5-butyl phenyl vinyl methane? 14.

2)

4)

15. The general molecular formula which represents the homologous series of alkanol is

1)
$$C_n H_{2n+2} O$$

2)
$$C_n H_{2n} O_2$$

3)
$$C_n H_{2n} O$$

4)
$$C_n H_{2n+1} O$$

The general formula $C_n H_{2n} O_2$ could be for open chain 16.

- 1) Dialdehydes
- 2) diketones
- 3) carboxylic acids

The IUPAC name of the compound having the formulae $HC \equiv C - CH = CH$, is 17.

18. Give the IUPAC name for CH₃CH₂O CH CH₂CH₂CH₂Cl

- 1) 2-ethoxy-5-chloro pentane
- 2) 1-chloro-4-ethoxy-4-methyl pentane
- 3) 1-chloro-4-ethoxy pentane
- 4) ethyl-1-chloropentyl ether

19. Name the compound given below is

$$H_3C$$
 CH_3
 CH_3

- 1) 4-ethyl-3-methyl octane
- 2) 3-methyl-4-ethyl octane

3) 2, 3-diethyl heptane

4) 5-ethyl-6-methyl octane

Names of some compounds are given. Which one is not in IUPAC system 20.

1)
$$CH_3 - CH_2 - CH_2 - CH_3 - CH_2 - CH_3 = CH_3 = CH_3 + CH_2 - CH_3 = CH_3 = CH_3 + CH_3 = CH_3$$

2)
$$CH_3 - CH - CH - CH_3 : 3$$
-methyl-2-butanol $CH_3 - CH_3 = CH_3 - CH_3 = CH_3$

3)
$$CH_3 - CH_2 - CH - CH - CH_3$$
: 2-ethyl-3-methyl bute-1-ene $CH_2 - CH_3 - CH_3$

4)
$$CH_3 - C \equiv CH(CH_3)_2$$
: 4-methyl-2-pentyne

KEY

3. SUB TOPIC NAME: PURIFICATION AND CHARACTERISATION OF ORGANIC **COMPOUNDS**

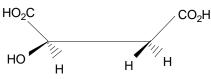
1. In the Lassaigne's test for the detection of Sulphur, the purple colour is due to the formation of

1)
$$Na_4 \lceil Fe(CN)_5 NOS \rceil$$

2)
$$Na_3 \lceil Fe(CN)_5 S \rceil$$

3)
$$Na_2 \lceil Fe(CN), NOS \rceil$$

4)
$$Na_3 \lceil Fe(CN)_6 \rceil$$


2.	$Cl-C_2H_4COOH$ is heated with fuming HNO ₃ and then AgNO ₃ is added in the test tube. The							
	precipitate obtained is	0) 4 (0) 37 11						
	1) AgCl, White coloured	2) AgCl, Yellow co						
2	3) AgNO ₃ , AgCl White coloured		ag, Yellow coloured					
3.	In Lassaigne's test, the organic comp	-	ece of sodium metal in oeder to					
	1) Increase the ionization of the compo							
	2) Increase the reactivity of the compo		1-					
	3) Convert the covalent compound into		ounas					
1	4) Decrease the mid point of the compo		n outpoot when N and C both are					
4.	Red coloured complex ion formed or	i adding reci3 to soutur	n extract when N and S both are					
	present in organic compounds $11 \left[\frac{1}{2} \left(\frac{CN}{2} \right) \right]^{-4} \qquad 21 \left[\frac{1}{2} \left(\frac{CN}{2} \right) \right]^{-4}$	2) [E.(CMG)] ⁺	$A \subseteq \left[E \setminus (CM) \right]$					
	1) $\left[Fe(CN)_6 \right]^{-4}$ 2) $\left[Fe(CNS)_3 \right]$							
5.	A hydrocarbon on heating with cupr		_					
	'A' gives on a reaction with anhydro	•						
	1) White 2) Blue	3) Green	4) Orange					
6.	In Kjeldahl's method, the nitrogen o	of the organic compound	l is converted into during					
	digestion							
	1) NH_4Cl 2) $(NH_4)_2SO_4$	3) NH ₃	4) N ₂ gas					
7.	Turpentine oil is purified by							
	1) Steam distillation	2) Fractional distill						
	3) Azeotropic distillation	4) Chemical metho						
8.	Which of the following can be used as adsorbent in adsorption chromatography?							
	1) Silica gel 2) Alumina	3) Cellulose	4) All of these					
9.	The sodium extract of an organic con							
	addition of lead acetate solution give							
	black precipitate. This confirms the solution gives a black precipitate. This confirms the							
	presence of in the organic comp		A) (7)					
10	1) N 2) P	3) S	4) Cl					
10.	In Dumas' method, the gas collected							
1.1	1) N ₂ 2) NO	3) NH ₃	4) H ₂					
11.	Chromatography is used for the sepa		4) All of these					
10	1) Sugars 2) Plant Pigmen	· ·	4) All of these					
12.	A mixture contains four solid organi	• '						
	from the solid to the vapour state. The	_	e separated from the rest by					
	1) Distillation	2) Sublimation						
12	3) Fractional distillation	4) Crystallisation	zone and ablamatamm?					
13.	How will you separate a mixture of t 1) Sublimation	2) Filtration	zene and emorotorm:					
4	3) Fractional distillation	4) Crystallisation						
1./		4) Crystallisation						
14.	In paper chromatography,1) Moving phase is liquid and stationar	ry nhace is colid						
	2) Moving phase is liquid and stationar	• •						
	3) Moving phase is inquite and stationary	• •						
	4) Moving phase is solid and stationary	•						

15.		est and stallisa			que for isolatio nistillation	n, purification 3) Sublimatio		paration of orga 4) Chromatogr	anic compound is	
16.	, ,					*		ased upon their		
	1) Den				olubility	3) Boiling po		4) Crystalline i		
17.	Nitrog	gen pro	esent in	an or	ganic compoun	d is estimated	as i	in Duma's meth	od and as in	
	kjelda	hl's m	ethod.							
	1) NH	$_3$, N_2 re	espectiv	ely		2) N_2 , NH_3 r	espectiv	vely		
	3) (<i>NI</i>	H_4 ₂ So	O_4 , NH	4Cl res _]	pectively	4) N ₂ , NCl ₃	respecti	vely		
18.	Durin	g the t	est of h	alogen	s by silver nitra	ate test, the so	dium ex	xtract is first bo	iled with a few	
	drops	of HN	O ₃ to					4		
	1) dec	ompos	e sodiu	m halid	les present	2) help in the	e precipi	tation of AgCl		
	3) incr	ease th	ne conce	entratio	on of NO_3^- ions	4) decompose	e Na ₂ S a	and NaCN if form	ned	
19.	0.59g	of an c	rganic	compo	ound was kjelda	ahlished. The	ammon	ia evolved was j	passed in 50cm ³ of	
	1 N H	I ₂ SO ₄ .	The r	esidual	acid needed 6	$60 \text{ cm}^3 \text{ of N/2}$	NaOH	solution. The	percentage of the	
	nitrog	en in t	his con	npoun	l is		4	dray.		
	1) 14			2) 28		3) 42		4) 56		
20.		_	-		•	• • •			analysis gives C,	
			H, 9.67		•	mula of the compound is:				
21	1) CH.	-	•_	2) Cl	=	3) CH ₃ O		4) CHO	Tl	
21.	0.2 g of an organic compound on complete combustion gives 0.18 g of water. The percentage of hydrogen in it is:									
	1) 10	gen m	it is:	2) 20		3) 30	7	4) 15		
22.	,	g of	an org			m · 4m	ı. hvdra	*	en on combustion	
									in the substance?	
	1) 73.2		0		3.45%	3) 83.23%		4) 89.50%		
23.	Four	hypotł	netical	binary	mixtures are	given below v	vith the	ir boiling point	s. Which of them	
	can be	e separ	ated by	y simpl	le distillation?					
		•	$^{\circ}$ C) + B			B) A(b.p. 78°		. •		
		- 4	$^{\circ}$ C) + C			D) A(b.p. 78°C) + D(b.p. 130°C)				
	1) A a	nd B o	•	2) C	only	3) C and D only 4) A, B and D only			only	
24.		List -	v v				List –			
		a T	pound)			(Formula)				
	I)		ian blue thiocy			i) $Na_2[Fe(CN)_5 NO]$				
	II)	Terric	unocy	anate		ii) $Na_4 \left[Fe(CN)_5 NOS \right]$				
	III)	III) Sodium nitroprusside			iii) $Fe_4 \Big[Fe(CN)_6 \Big]_3$					
	IV)	Viole	t colou	r comp	ound formula in	iv) $\left[Fe(CNS)_3 \right]$				
		the te	st for su	ılphur						
		I	II	III	IV					
	1)	iii	iv	I	ii					
	2)	iii	iv	ii	i					
	3)	iii	I	ii	iv					
	4)	T	137	ii	iii					

25.	0.157	g of an	organ	ic compou	ınd in sul _l	phur est	imation	a gave (0.4813 g of barium su	ılphate. The	
	percei	ntage of	f sulph	ur in the c	ompound	is			_	_	
	1) 17.2	_	•	2) 21.059	-	3) 42.	28%		4) 42.1%		
26.	· ·		nd of C	,		,		1:3:	5 by weights. If mole	cular weight	
		_			molecular	_				8	
	1) C ₂ H			2) C_3H_4N		3) C ₆ I		-P	4) $C_9H_{12}N_2$		
27.			a evolv			, -		an org	anic compound for e	stimation of	
							_	_	cess of acid required		
	_		-			-			organic compound is		
	1) Ure	•	uroziu	2) Benza	-		etamide		4) Thiourea		
28.	· ·		omnou	· ·		•			ontain $C = 20\%$, $H=6$	67% and N	
20.		-	_	_					g with a solid residu		
									on. The compound is	e. The sonu	
								e soluti	4) CH ₃ NCO		
20			ONH ₂	,		, ,	H ₂) ₂ CO			a leialdhalla	
29.		_	_	_		_	_		digested according t	=	
								4000	.1 M HCl solution. T		
		_			M NaOH	solution	for co	mplete	neutralization. The p	ercentage of	
	_		ne com	pound is		a \ a a					
	1) 47.4	4		2) 23.7		3) 29.	5		4) 59.0		
20						-4					
30.			_	or and be	nzoic acid		ALT VISION	-			
		limatio				2) extraction with a solvent					
	3) che	mical n	nethod		A	4) frac	4) fractional crystallisation				
						KEY					
	1) 1	2) 1	3) 3	4) 2 5) 2 6) 2	7) 1	8) 4	9) 3	10) 1		
	11) 4	12) 2	13) 3	14) 2 1:	5) 4 16) 2	2 17) 2	18) 4	19) 4	20) 3		
		4									
	21) 1	22) 1	23) 3	24) 1 2:	5) 4 26) 3	3 27) 1	28) 2	29) 2	30) 3		
				4. SU	J B TOPIC	NAME	: ISOM	IERISM	1		
			>								
1.	Comp	ounds	having	same nun	nber and k	ind of a	toms bu	ıt differ	ent arrangement of a	itoms in	
	802 A807 N <u>S</u> 8		les are						G		
	1) Isot	opes		2) polym	ers	3) iso:	mers		4) allotropes		
2.	700000	•	utome		tobserved	*	-		, 1		
4	Harry Control of the	I_5COC_6					I₅COCI	H=CH ₂			
			H_2 COC	H_3			2) C ₆ H ₅ COCH=CH ₂ 4) CH ₃ COCH ₂ COCH ₃				
3.				nany isom	ers?	., СП	,		<i>5</i>		
	1) 2			2) 3		3) 4			4) 5		

4.	Which one of the following will show optical isomerism?							
	1) CH ₂ OH – COOH		2) $\left(CH_3\right)_2 CH$	-СООН				
	3) CH ₃ CH (OH) CO	ОН	4) $(CH_3)_2 C(Cl)COOH$					
5.	Number of a cyclic	isomers represent	ed by molecular for	mula C ₄ H ₁₀ O is				
	1) 4	2) 5	3) 6	4) 7				
6.	The isomerism that	arises due to rest	ricted bond rotation	is				
	1) Position isomerism	n	2) metamerism					
	3) geometrical isome	erism	4) functional is	omerism				
7.	Identify the compou	ınd that exhibits t	automerism		**			
	1) 2-butene	2) Lactic acid	3) Phenol	4) 2-pentanone				
8.	cis-2-butene and tra	ins-2-butene are						
	1) Optical isomers		2) Conformatio					
	3) Structural isomers		4) Configuratio	nal isomers				
9.	Geometrical isomer	ism is not exhibite	•					
	1) 2-Butene		2) Propene					
	3) 3-methyl pent-2-ene 4) 2-methyl but-2-ene							
10.	The number of Stereoisomers possible for a compound of the molecular formula CH ₃ -							
	CH=CH-CH (OH)-							
	1) 2	2) 3	3) 4	4) 6				
11.	The number of opti							
1.0	1) 2	2) 3	3) 4	4) 6				
12.	A similarity betwee							
	1) each forms equal number of isomers for a given compound							
	2) if in a compound one is present then so is the other							
	3) both are included in stereo isomerism							
1.2	4) they have no similar to the fall of	A TOTAL ACTION A						
13.	Which one of the fo	nowing will have		hytono				
	1) 2-chloro butane		2) 2, 3-dichloro					
1.4	3) 2, 3-dichloro pent		4) 2-Hydroprop	anoic acid				
14.	Number of structur	2) 4		1) 6				
15.	1) 3 The two structures	*	3) 5	4) 6				
13.		_	:H ₂ OH					
	CH ₃	1	.п ₂ ОП					
	НО Н	но —	— н					
	Н	н —	— ОН					
	CH ₂ OH	C	:H ₃					
4	1) Pair of diastereon	ners	2) Pair of enant					
	3) same molecule		4) both are opti	cally inactive				

16. The absolute configuration of

- 1) S. R
- 2) S, S
- 3) R, R
- 4) R, S

17. Which of the following cannot exist in 'syn' and 'anti' forms?

1) C_6H_5 -N=N-OH

2) $C_6H_5-N=N-C_6H_5$

3) C_6H_5 -CH=N-OH

4) $(C_6H_5)_2 C = N - OH$

18. **Match the following**

List – I

List - II

- 1) Pair of chain isomers
- A) $CH_3COCH_2COO\ C_2H_5$; $CH_3C(OH) = CHCOO\ C_2H_5$
- 2) A pair of position isomers
- B) CH₃CH₂ CH₂CHO; CH₃COCH₂CH₃
- 3) A pair of functional isomers C) $CH_3CH_2 C \equiv CH$; $CH_3C \equiv CCH_3$
 - D) CH₃CH₂ CH₂CH₃; CH₃-CH(CH₃)-CH₃
- 4) A pair of tautomers
- 2) 1-D, 2-C, 3-B, 4-A

1) 1-A, 2-B, 3-C, 4-D 3)1-B, 2-D, 3-A, 4-C

4) 1-C, 2-A, 3-D, 4-B

19. Which of the following is correctly matched?

Compound

Number of geometrical isomers

1) $CH_3 - CH = CH - CH = CH - C_2H_5$

4

2) $CH_3 - (CH = CH)_4 - CH_3$

2

3) $H_2C = CH - CH = CH_2$

10

- 4) CH_3 (-CH = CH)₅ CH₃

20. Increasing order of stability among the three main conformations (i.e., eclipse, anti, gauche) of 2-fluoro ethanol is

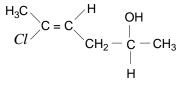
1) eclipse, gauche, anti

2) gauche, eclipse, anti

3) eclipse, anti, gauche

4) anti, gauche, eclipse

21. The correct name of the following structure is

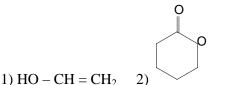

$$H$$
 $C = C$
 H
 $C = C$
 CH

- 1) (E), (E) -2, 4-hexadiene
- 2) (Z), (Z)-3, 5-hexadiene

3)(E), (Z)-3, 5-hexadiene

4) (Z), (E) -2, 4, hexadiene

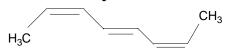
22. The compound whose stereo chemical formula is written below exhibits 'x' geometrical isomers and 'y' optical isomers


The values of 'x' and 'y' are

- 1) 4 and 4
- 2) 2 and 2
- 3) 2 and 4
- 4) 4 and 2

23. Which of the following cycloalkanes involves maximum torsional strain?

- 1) Cyclopropane
- 2) Cyclobutane
- 3) Cyclopentane
- 4) Cyclohexane


- 24. Dihedral angle in staggered and eclipsed conformations are
 - 1) 60° and 0°
- 2) 0° and 60°
- 3) 60°, 120°
- 4) 120°, 60°
- 25. The energy barrier between eclipsed and staggered forms is
 - 1) 6.7 kJ/mol
- 2) 12.55 kJ/mol
- 3) 29.7 kJ/mol
- 4) 44 kJ/mol
- 26. Which of the following compounds cannot show tautomerism?

27. The IUPAC name of the compounds

- 1) (2E, 4E, 6Z)-octa-2, 4, 6-triene
- 2) (2E, 4E, 6E)-octa-2, 4, 6-triene
- 3) (2Z, 4E, 6Z)-octa-2, 4, 6-triene
- 4) (2Z, 4Z, 6Z)-octa-2, 4, 6-triene

KEY

- 6) 3 7) 4 1) 3 2) 1 3) 4 4) 3 5) 4 10) 3
- 11) 3 12) 3 13) 2 14) 3 15) 3 16) 3 17) 4 18) 2 19) 1 20) 3
 - 21) 4 22) 2 23) 1 24) 1 25) 2 26) 3 27) 3

5. SUB TOPIC NAME: MECHANISM OF ORGANIC REACTIONS

1. Polarization of electrons in acrolein may be written as

1)
$$H_2C = CH - CH = 0$$

$$H_2C = CH - CH = O$$

$$\begin{array}{ccc}
\delta^{-} & \delta^{+} \\
H_{2}C = CH - CH = O
\end{array}$$

2)
$$H_{2}C = CH - CH = O$$

$$H_{2}C = CH - CH = O$$

$$H_{2}C = CH - CH = O$$

- 2. The stablest free radical among the following is
 - 1) CH₃ CH₂
- 2) CH₃ CH₂ CH₃ 3) CH₃ CH₂ CH₃

- Which of the following ions is most stable? 3.
 - 1) CH₃ CH₂ CH₂
- 2) CH₃ CH₂ CH₃
 - 3) (CH₃)₃C
- 4. The strongest acid amongst the following compound is
 - 1) HCOOH

- 2) CH₃COOH
- 3) CH₃ CH₂ CH (Cl) COOH
- 4) Cl CH₂ CH₂ CH₂ COOH
- Which of the following has the highest nucleophilicity? 5.
 - 1) F^{-}
- 2) *OH*⁻
- 3) CH₂
- 4) NH_{2}^{-}
- 6. Which of the following has the most acidic hydrogen?
 - 1) 3-Hexanone
- 2) 2, 4-Hexanedione 3) 2, 5-Hexanedione 4) 2, 3-Hexanedione

		www.saks	hieducation.com				
7.	Due to the presence	e of an unpaired elect	ron, free radicals are				
	1) Chemically reacti	ve	2) Chemically inacti	ive			
	3) Anions		4) Cations				
8.	The correct stability order of the following resonance structures is						
	I) $H_2C = N^+ = N^-$	II) $H_2 \stackrel{+}{C} - N = \stackrel{-}{N}$	III) $H_2 \stackrel{-}{C} - \stackrel{+}{N} \equiv N$	$IV) \ H_2 \stackrel{-}{C} - N = \stackrel{+}{N}$			
	1) $I > II > IV > III$	2) I > III > II > IV	3) $II > I > III > IV$	4) $III > I > IV > II$			
9.	Which one of the following carbanions is the least stable?						
	, , –		_				

1)
$$(CH_3)_3 \overline{C}$$

3)
$$HC \equiv \overline{C}$$

4)
$$CH_3CH_2^-$$

10. Which of the following intermediates have the complete octet around the carbon atom?

11. Hyperconjugation involves overlap of the following orbitals

1)
$$\sigma$$
 – σ

2)
$$\sigma - p$$

3)
$$p - p$$

4)
$$\pi - \pi$$

12. The basicity of aniline is less than that of cyclohexylamine. This is due to

13. The increasing order of stability of the following free radicals is

1)
$$(CH_3)_2 \dot{C} H < (CH_3)_3 \dot{C} < (C_6H_5)_2 \dot{C} H < (C_6H_5)_3 \dot{C}$$

2)
$$(C_6H_5)_3$$
 $\dot{C} < (C_6H_5)_2$ $\dot{C}H < (CH_3)_3$ $\dot{C} < (CH_3)_2$ $\dot{C}H$

3)
$$(C_6H_5)_2\dot{C}H < (C_6H_5)_3\dot{C} < (CH_3)_3\dot{C} < (CH_3)_2\dot{C}H$$

4)
$$(CH_3)_2 \dot{C} H < (CH_3)_3 \dot{C} < (C_6H_5)_3 \dot{C} < (C_6H_5)_2 \dot{C} H$$

14. Which of the following hydrocarbons has the lowest dipole moment

$$H_3C$$
 $C = C$

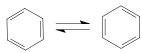
2)
$$CH_3C \equiv C - CH_3$$

3)
$$CH_3CH_2C \equiv CH$$

4)
$$H_2C = CH - C \equiv CH$$

The arrangement of $(CH_3)_2 C - (CH_3)_2 CH - CH_3 CH_2$ when attached a benzene or an 15. unsaturated group in increasing order of inductive effect is

1)
$$(CH_3)_3 C - < (CH_3)_2 CH - < CH_3 CH_2 - 2) CH_3 CH_2 - < (CH_3)_2 CH - < (CH_3)_3 C - < (CH_3)_3 CH_3 - (CH_3)_3 CH_3 - < (CH_3)_3 CH_3 - < (CH_3)_3 CH_3 - < (CH_3)_3$$


2)
$$CH_3CH_2 - < (CH_3)_2 CH - < (CH_3)_2 CH$$

3)
$$(CH_3)_2 CH - < (CH_3)_3 C - < CH_3 CH_2 - 4) (CH_3)_3 C - < CH_3 CH_2 - < (CH_3)_2 CH - 4$$

4)
$$(CH_3)_3 C - < CH_3 CH_2 - < (CH_3)_3 CH -$$

Which of the following statements regarding the resonance energy of benzene is correct? 16.

- 1) The energy required to break the C-H bond in benzene
- 2) The energy required to break the C-C bond in benzene
- 3) The energy is a measure of stability of benzene

4) The energy required to convert

17. Hyperconjugation is most useful for stabilizing which of the following carbocations?

18.	Which is the decreasing order of acidity in, HCOOH (I), CH ₃ COOH (II), CH ₃ CH ₂ COOH (III)								
	and C ₆ H ₅ COOH (IV	V) ?							
	1) $I > II > III > IV$	2) IV > III > II > I	3) $IV > I > II > III$	4) I > IV > II > III					
19.	In the following con	npounds phenol (I), P	-cresol (II), m-nitrop	henol (III) and P-					
	nitrophenol (IV), the	e order of acidity is							
	1) III $>$ IV $>$ I $>$ II	2) I > IV > III > II	3) II $>$ I $>$ III $>$ IV	4) IV > III > I > II					
20.	Inductive effect invo	olves							
	1) displacement of σ	- electrons	2) delocalization of π - electrons						
	3) delocalization of <i>a</i>		4) displacement of π - electrons						
21.		-	penzene (II) and nitro	obenzene (III), the case of					
	reaction with electro	-							
	1) $II > III > I$	2) III > II > I	3) II $>$ I $>$ III	4) I > II > III					
22.		phenomenon is possik							
	1) H2C = CH2		2) CH3CH2 - CH = 0						
	$3) C_6H_5CH = CH_2$		$4) \left(CH_3 \right)_3 C - CH =$	CH_2					
23.	Which of the follow	ing contains three pai	irs of electron?						
	1) Carbocation	2) Carbanion	3) Free radical	4) Zwitler ion					
24.	Which of the follow	ing is an electrophilic	reagent?						
	1) H ₂ O	2) <i>OH</i> ⁻	3) NO_2^+	4) <i>CN</i> ⁻					
25.	The following reaction is an example of								
	O	HO H CN →							
	1) Nucleophilic subst		2) Electrophilic substitution						
	3) Electrophilic addit	A 10001007 4000	4) Nucleophilic addi	tion					
26.	The following reacti	ion is $C_2H_5Br + KOH$	$\rightarrow C_2H_5OH + KBr$						
	1) electrophilic subst	itution	2) elimination						
	3) nucleophilic substi	itution	4) addition						
27	The following woods	ion is H.C. CH De	$\begin{array}{c c} Br & Br \\ & \\ \end{array}$						
27.		$ \text{fon is } H_2C = CH_2 + BH $							
	1) Electrophilic addit		2) Electrophilic substitution4) nucleophilic substitution						
28.	3) nucleophilic additi	n occurs with the fort	-	itution					
26.	1) one sigma bond	ii occurs with the fort	2) one pi bond						
	3) one sigma and one	ni hond	4) two sigma and one	e ni hond					
29.		f a covalent bond car	,	e proond					
_,.	1) free radical	i d covarciiv sond can	2) both carbocation a	and carbanion					
	3) only carbocation		4) only carbanion						
30.	•	zation involving sigm	•						
	1) Hybridization	2) conformation	3) hyperconjugation	4) resolution					

31. Least active electrophile is

1)
$$CH_3 - \stackrel{\circ}{C} - OCH_3$$
 2) $CH_3 - \stackrel{\circ}{C} - Cl$ 3) $CH_3 - \stackrel{\circ}{C} - NMe_2$ 4) $CH_3 - \stackrel{\circ}{C} - SCH_3$

32. Stability of alkyl carbocations can be explained by

A) Inductive effect B) Resonance C) Hyper conjugations D) Electromeric effect 1) A and B 2) A and D 3) C and D 4) A and C

33. Which of the following is correct regarding the –I effect of the substituents?

$$1) - NR_2 < -OR < -F \quad 2) - NR_2 > -OR < -F \quad 3) - NR_2 < -OR > -F \quad 4) - NR_2 > -OR > -F$$

34. Which statement is correct for inductive effect?

- 1) It is a permanent effect
- 2) It is the property of single bond
- 3) It causes permanent polarization in the molecule
- 4) All are correct

35. Which statement is correct for electromeric effect?

- 1) It is a temporary effect
- 2) It is the property of π -bond
- 3) It takes place in the presence of attacking reagent
- 4) All are correct

36. Which one of the following series contains electrophiles only?

1)
$$H_2O$$
, SO_3 , H_3O^+ 2) NH_3 , H_2O , $AlCl_3$ 3) $AlCl_3$, SO_3 , $\stackrel{+}{N}O_2$ 4) H_2O , $\stackrel{+}{Cl}$, NH_3

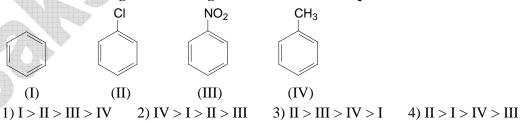
37. Which of these species is/are electrophiles

1): CCl₂ 2) AlCl₃ 3) SO₃ 4) All of these

38. The formation of cyanohydrins from a ketone is an example of

1) Electrophilic addition

- 2) Nucleophilic addition
- 3) Nucleophilic substitution
- 4) Electrophilic substitution


39. The stability of the compounds

3)
$$4 > 1 > 3 > 2$$

4)
$$2 > 3 > 4 > 1$$

40. Write the following in decreasing order towards electrophilic substitution reaction

KEY

1) 1	2) 4	3) 3	4) 3	5) 3	6) 2	7) 1	8) 2	9) 1	10) 2
11) 2	12) 2	13) 1	14) 2	15) 1	16) 3	17) 1	18) 4	19) 4	20) 1