P-BLOCK ELEMENTS

LEVEL - I

General Introduction, Electronic Configuration, Occurrence, Variation of Properties, Oxidation States, Trends In Chemical Reactivity:

1.	The most abund	ant metal in ear	th's crust is						
	1) Oxygen	2) Aluminiui	m 3)	Iron	4) Silicon				
2.	The rare elemen	t of the IIIA gro	oup elements is		4				
	1) Aluminium	2) Boron	3)	Gallium	4) Indium				
3.	The atomic volu	The atomic volume of which element is least							
	1) Boron	2) Aluminiui	m 3)	Gallium	4) Thallium				
4.	Al and Ga have	nearly the same	covalent radii,	because of					
	1) greater shielding	ng effect of 's' ele	ectrons of 'Ga' a	toms					
	2) poor shielding	effect of 's' elect	rons of 'Ga' ator	ns					
	3) poor shielding	3) poor shielding effect of 'd' electrons of 'Ga' atoms							
	4) greater shielding	ng effect of 'd' ele	ectrons of 'Ga' a	toms					
5.	Among IIIA gro	up elements the	elements with	highest and	l lowest ionisation potential are				
	1) B, Tl	2) B, In	3)	B, Al	4) B, Ga				
6.	IIIA group elem	ent with lowest	electro- negativ	vity					
	1) Al	2) Tl	3) B	4) G	ra				
7.	The IIIA elemen		~ ·						
	1) Boron	2) Gallium	3) Indium	4) T	halium				
8.	The IIIA elemen		0 1						
	1) Boron	2) Indium	3) Gallium		luminium				
9.	Which of the fol	- 4							
	1.Bi	2.Pb	3.B	4.Tl					
10.	+1 oxidation star								
	1) B	2) Al	3) Ga	4) T					
11.	Thallous chlorid		than Thallic cl	hloride beca	ause of				
	1) More ionic cha	aracter							
	2) Larger size of	Tl ⁺ ion							
	3) High hydration energy of Tl ⁺ ion								
	4) Inert pair effec	et							
12.	Which reacts wi	th acids as well	as alkalies						
	1) Mg	2) Si	3) Al	4) C	u				
13.	Element with g	iant molecular s	structure is						
4	1) B	2) Al	3) Ga	4) T	1				
14.	The abundan	ce of B. Al. Ga	a and TI in ea	arth crust	follows the order				
	1) $B < Al < Ga < Ca$	TI	2) $TI < B$	S < Al < Ga					
	3) $TI < Al < B < C$	Б а	4) $TI < C$	Ga < B < Al					
15.	Melting point	t of B, Al, Ga	and TI decre	asing in th	ie order				
	1) $B > Al > Tl > C$	<i>Ба</i>	2) B = A	l > TI = Ga					
	3) $B > Al > TI = 0$	Ga	4) $Tl > G$	a > Al > B					

16.	An element M reac'M'?	cts with chlor	ine to form a compo	ound "X". The bond angle in 'X' is . What is
	1. Be	2. B		
	3. Mg	4. N		
17.	The hybridization	of central ato	m in compound Alo	Cl_3 is
	1. SP 2.SP ²	$3.\text{SP}^3$	4. SP ³ d	
18.	(A) : Among IIIA g	_	_	melting point
	(R) : Boron has gia		structure	
	The correct an		N • 41	: C(A)
			t) is the correct explan	
	3) (A) is true but (R)		(a) is not the correct extends (b) (b) is false b	
19.	Assertion (A): TlCl			out (IX) is true
1,,	Reason (R): Tl ⁺³ is			
	The correct answer			
			() is the correct explan	nation of (A)
	2) Both (A) and (R)	are true and (R	(a) is not the correct ex	eplanation of (A)
	3) (A) is true but (R)	is false		
	4) (A) is false but (R	•		
20.	The increasing of	order of acid	lic nature of $^{B_2O_3,\dots}$	Al_2O_3,In_2O_3 and $^{Tl}_2O$ is
	1) $Al_2O_3 < In_2O_3 < TI_2$	$_{2}O < B_{2}O_{3}$		
	2) $TI_2O < In_2O_3 < Al_2O_3$	$O_3 < B_2 O_3$		
	3) $Al_2O_3 < B_2O_3 < In_2O_3$	$O_3 < TI_2O$		
	4) $TI_2O < Al_2O_3 < Br_2O_3$	$O_3 < In_2O_3$		
21.	The maximum cova	lency of Alun	ninium is '6' where a	as that of Boron is '4', because
	1) Aluminium is mor	re electropositi	ve than Boron	
	2) 'Al' can form a cat			
				ere as Boron does not
Ame	4) 'Al' is a metal whe			oven Seme Important Compounds Dever
	ic Acid, And Boron		iit of The Group: Do	oron, Some Important Compounds, Borax,
22.			nt in the mineral cry	rolite is
	1) F 2) Cl	3) Br 4)	I	
23.	The chemical form	nula of Felspa	r is	
4	1) $KAISi_3O_8$	2) Na_3AlF_6	3) $NaAlO_2$	4) $K_2SO_4Al_2(So_4)_3.4Al(OH)_3$
24.	The maximum cova	lency of Boro	on is	
	1) 4	2) 3	3) 6	4) 5
25.	The maximum cova	•		
•	1) 3	2) 3	3) 6	4) 5
26.	Aluminium exhibits	o .	-	4) Commonity
27	1) Beryllium Which element conv	2) Silicon	3) Carbon	4) Germanium
41.	Which element can 1) Al	пот тогт а сог 2) В	3) Cs	4) Bi
	1,111	2) 5	5) 05	1) 21

28.	Al ₂ O ₃ is			
	1) Neutral	2) Amphoteric	3) Basic	4) Acidic
29.	Basicity of H ₃ BO ₃ is			
	1) 1	2) 2	3) 3	4) 0
30.	When borax is hea	ted strongly it	gives	
	$1.B_2O_3$	$2.Na_2B_4O_7$	$3.NaBO_2$	$4.\text{NaBO}_2 + \text{B}_2\text{O}_3$
31.	Borax glass is a mix	ture of		
	1) $NaBO_2 + B_2O_3$	2) $Na_2B_4O_7 + B_2O_7$	$O_3 3) H_2 B_4 O_7 + B_2 C_1$	O_3 4) $Na_2B_4O_7 + 10H_2O + B_2O_3$
32.	Borax bead test is	•	,	
	1. Divalent metals	2.Heavy metal	S	
	3. Light metal	4.Metals which	h form colored met	aborates
33.	Borax bead test is n	ot given by		
	1) aluminium salt	2) Cobalt salt	3) Copper	4) nickel salt
34.	The colour of Co ($BO_2)_2$ is		
	1. Blue	2.Green	3.Yellow	4.Violet
35.	The metal that do	es not give the b	oorax bead test	4
	1. Chromium	2.Nickel	3.Lead	4.Manganese
36.	The coloured bead	produced whe	en borax is heated	with Cu is
	1. Greenish	2.Green when	hot & blue when co	old
	3. Yellow	4.Red		
37.	In Borax bead test,	-	60007 7 4 70	cts with basic radical to form metaborate?
	1) B_2O_3	2) Na_2BO_3	3) $NaBO_2$	4) $Na_2B_4O_7.10H_2O$
				
38.	Which of the follow		s of borax?	
	1) As a flux in metal			
	2) In making Pyrex g			
	3) In leather industry	for cleaning		
	4) As a preservative	2) b a d anly	2) a b d anly	4) a b a d
39.	1) a,b,c only Borax is used in	2) b,c,d only	3) a,b,d only	4) a,b,c,d
37.	1. Qualitative analy	sis 2 W	Velding	
	3. Pyrex glass	4.A	•	
40.	THE THE P			of diborane molecule are
	1) 18		3) 6	4) 3
41.	The non planar mo	*	,	, -
4	following is	8		
	1) B ₂ H ₆	2) C ₂ H ₄	3) C_6H_6	4) BCl ₃
42.	In diborane the hyb	oridization of B	oron is	
	1) sp	2) sp^2	$3) \text{ sp}^3$	4) $\mathrm{sp}^3\mathrm{d}$
43.	, .			d formation in diborane is
	1) 2		3) 4	4) 6
44.	The H-B-H bridged	angle in dibor	ane is	
	1) 121.50	2) 970	3) 119 ⁰	4) 133 ⁰

45.	The number of three centred, 2 electron bonds in diborane is					
	1) 2	2) 4	3) 3	4) 6		
46.	Total number of el	lectrons shared	l between two l	Boron atoms in B_2H_6 are		
	1) 2	2) 3	3) 4	4) 6		
47.	The bonds not pre	sent in diborar	ne are			
	1) B –H	2) B–H–B	3) B–B	4) H–B–H		
48.	The number of bri	dge hydrogen				
	1) 1	2) 2	3) 3	4) 4		
49.			-	same plane in diborane molecule is		
	1) 2	2) 6	3) 4	4) 3		
50.	The following can					
	1) B_2O_3	2) H ₃ BO ₃	2 3 3			
51.		_	_	laced by methyl groups in diborane i	S	
	1) 2 2) 3	3) 4	4) 6			
52.	Diborane on hydro	•				
	1) B_2O_3	2) H ₃ BO ₃	3) HBO ₂	4) $B_2N_3H_6$		
53.	Diborane reacts w					
	1) BH ₃ .CO	2) $B_3N_3H_6$	3) H ₃ BO ₃	4) B2C2H2		
54.	The empirical form	nula of 'X' in t	he following re	eaction B ₂ H ₆ + NH ₃ X'		
	1) B ₂ NH	2) BNH ₂	3) BNH	4) CH		
55.	Which is not corr	ect for H ₃ BO ₃				
	1. It is used as anti	septic				
	2. As preservative	-				
	3. It gives green co	olour to flame				
	4. All are correct					
56.	$Na_2B_4O_7 + 2H_2O \rightarrow 2$	2NaOH + A The	compound A is	3		
	1) Orthoboric acid		.4			
	3) Tetra Boric Aci	d 4) Pyroboric	acid			
57.	Orthoboric acid v	when heated to	red hot gives			
	1. Metaboric acid	2.Pyroboric	acid			
	3. Boron and wate	r 4.Boric anhy	dride			
58.	Assertion (A): Di			_		
	4 HA 1 1	- ·		en atoms of diborane are substituted	forming	
	1. Both A and R and		•			
4	2. Both A and R a		not correct exp	planation of A		
	3. A is true but R					
	4. A is false but R	is true.				

59. Statements regarding B₂H₆

- i) It reacts with NH3 to form diammoniate of diborane
- ii) It has two 3-centered 2- electron bonds
- iii) It does not have any action with chlorine

The correct statements in above are

- 1) iii is only correct
- 2) ii and iii are correct
- 3) i and ii are correct
- 4) i and iii are correct

60. In diborane the Tau-bonds can be formed by the overlapping of orbitals

1)
$$sp^3 - s - sp^3$$

2)
$$sp^{3}-sp^{3}$$

3)
$$sp^2 - sp^3$$

4)
$$sp^2-s-sp^2$$

61. Orthoboric acid contains

- 1. Pyramidal units 2.Linear units
- 3. T-shaped units
- 4. Triangular units

62. Which of the following is not a lewis acid?

- 1) BF₃
- 2) AlCl₃
- 3) PH₃

4) BCla

63.
$$BCl_3 + LiA1H_4 \rightarrow A + LiCl + AlCl_3$$

$$A + H_2O \rightarrow B + H_2$$

 $B \xrightarrow{\text{Red heat}} C$ In this reaction sequence A, B, and C compounds respectively are

1)
$$B_2H_6, B_2O_3, B_1$$

2)
$$B_2H_6, H_3BO_3, B_2O_3$$
 3) B_2H_6, H_3BO_3, B_3

$$(4)$$
 HBF_4, H_3BO_3, B_2O_3

64. The structure of diborane contains

- 1) four 2c- 2e bonds and two 3c-2e bonds
- 2) two 2c- 2e bonds and four 3c-2e bonds
- 3) two 2c- 2e bonds and two 3c-2e bonds
- 4) four 2c- 2e bonds and four 3c-2e bonds

65. Banana bonds in Diborane constitute

- 1) 2 atoms and 3 electrons
- 2) 3 atoms and 2 electrons
- 3) 2 atoms and 2 electrons
- 4) 2 atoms and 4 electrons

66. The number of sigma and pi() bonds present in 'inorganic benzene' respectively are:

- 1) 12,6
- 2) 6,6 3) 6,12 4) 12,3

67. Specify the co-ordination geometry around and hybridization of N and B atoms in a 1:1 complex of BF3 and NH3

- 1) N: tetrahedral, sp^3 ; B: tetrahedral, sp^3
- 2) N: pyramidal, sp³; B: pyramidal, sp³
- 3) N: pyramidal, sp³; B: planar, sp³
- 4) N: pyramidal, sp³; B: tetrahedral, sp³

68. Electronegativity of group 13 elements follow the order

- 1) B > Ga > Al > Tl > In
- 2) B > TI > Ga > Al > In
- 3) B > TI > ln > Ga > Al
- 4) B > Al > TI > ln > Ga

ALUMINIUM: USES, REACTIONS WITH ACIDS AND ALKALIES.

- **69.** Bauxite is an oxide mineral of
 - 1. Barium
- 2.Boron
- 4. Aluminium
- **70.** Which is not a mineral of aluminium?
 - 1. Anhydrite
- 2.Bauxite
- 3. Corundum 4.Diaspore
- Kernite is a mineral containing
 - 1. Aluminium
- 2.Gallium
- 3.Boron

3.Bismuth

4.Silicon

- 72. The important source of boron is
 - 1. Calamine
- 2.Carnalite
 - 3.Colemanite
- 4.Croylite
- Heating an aqueous solution of aluminium chloride to dryness will give **73.**
 - 1) AlCl_3
- 2) Al_2Cl_6
- 3) Al_2O_3
- 4) $Al(OH)Cl_2$
- 74. During electrolytic reduction of Alumina, the reaction at cathode is
 - 1) $2H_2O_2 \rightarrow O_2 + 4H^+ + 4e^-$
- 2) $3F^- \rightarrow 3F + 3e^-$

- 3) $Al^{+3} + 3e^{-} \rightarrow Al$
- 4) $2H^+ + 2e^- \rightarrow H_2$
- 75. X reacts with aqueous NaOH solution to form Y and H2. Aqueous solution of Y is heated to 323-333 K and on passing CO2 into it, Na2CO3 and Z were formed. When Z is heated to 1200°C, Al₂O₃ is formed. X, Y and Z respectively are:
 - 1) Al, AlCl₃, NaAlO₂
 - 2) Zn, Na₂ZnO₂, Al (OH)₃
 - 3) Al, Al (OH)3, AlCl3
 - 4) Al, NaAlO₂, Al (OH)₃
- 76. In metallurgy the substance which can act as de-oxidizer is
 - 1) B
- 2) Al₂O₃
- 3) AlN
- 4) Al
- 77. Duralumin is an alloy of
 - 1) Al + Mg
- 2) Al+Cu+Mg+Mn
- 3) Al+Zn+Mg+Ni 4) Al+Cu
- 78. AlO $^{-}$ 2 ion in aqueous solution exists as
 - 1) $[Al(OH)_4]^-$
- 2) [Al(OH)₄.H₂O]⁻
- 3) $[Al(OH)_4(H_2O)_2]^-$ 4) $[Al(OH)_6]^-$

- 79. The aqueous solution of borax turns red litmus to
 - 1.Blue
- 2.No Change
- 3.Red
- 4.White
- 80. Orthoboric acid when heated to red hot gives
 - 1.Metaboric acid
- 2. Pyroboric acid
- 3.Boron and water 4.Boric anhydride
- 81. The hybridization of boron atom in orthoboric acid is
 - 1.sp
- $2.\text{sp}^2$
- $3.\text{sp}^3$
- $4.\text{sp}^3\text{d}$

82. Some statements about the structure of diborane are given below.

- A) NMR and RAMAN spectral studies have confirmed that four hydogens of diborane are one type and remaining two are of another type.
- B) Electron diffraction studies have shown that diborane contains two coplanar groups
- C) Diborane is a planar molecular
- D) Boron of diborane undergoes hybridization

The correct statements are

- 1) only A,B,C,
- 2) Only A and B
- 3) Only B,C,D
- 4) All are correct

83. Assertion (A): Diborane has two types of hydrogens.

Reason (R): By methylation only four hydrogen atoms of diborane are substituted forming

- 1. Both A and R are true and R is correct explanation of A
- 2. Both A and R are true and R is not correct explanation of A
- 3. A is true but R is false
- 4. A is false but R is true.

						h.	· 40 400			
	1) 2	2) 4	3) 1	4) 3	5) 2	6) 1	7) 1	8) 3	9)3	10) 4
11) 4	12) 3	13) 1	14) 4	15) 1	16) 2	17) 2	18)1	29) 1	20) 2	21) 3
22) 4	23) 1	24) 1	25) 3	26) 1	27)2	28) 2	29) 1	30) 4	31) 1	32) 4
33) 1	34) 1	35) 3	36)3	37) 1	38) 4	39) 4	40) 2	41) 1	42) 3	43) 1
44) 2	45)1	46) 3	47) 3	48) 2	49) 2	50) 3	51) 3	52) 2	53) 1	54)2
55) 4	56) 1	57) 4	58) 1	59) 3	60) 1	61) 4	62) 3	63)2	64) 1	65) 2
66) 4	67) 1	68) 3	69) 4	70) 1	71) 1	72)3	73) 3	74) 3	75) 4	76) 4
77) 2	78) 3	79) 1	80)4	81)2						
	82) 2	83) 1								

14TH GROUP ELEMENTS

General Introduction, Electronic Configuration, Occurrence, Variation Of Properties, Oxidation States, Trends In Chemical Reactivity

84.	The valency shell configuration of IVA element is						
	1) ns^2np^1	$2) \text{ ns}^2 \text{np}^2$	$3) \text{ ns}^2 \text{np}^3$	4) ns^2np^4			
85.	The most abundant	IVA group element in	the earth's crust is				
	1) Germanium	2) Carbon	3) Silicon	4) Tin			
86.	The following eleme	ent occurs in the free st	tate				
	1) Carbon	2) Lead	3) Tin	4) Silicon			
87.	The IVA element wi	ith highest and lowest	first ionization pote	ntial values			
	1) C, Pb	2) C, Sn	3) C, Si	4) Si, Pb			
88.	Among the following	g, metalloid is					
	1) C 2) S	3) Ge	4) Pb				
89.	Which one of the fol	llowing element has th	e highest melting po	oint			
	1) Si 2) Pb	3) Sn	4) C				
90.	The element with th	e least density among	IVA group elements	s is			
	1) Carbon	2) Silicon	3) Tin	4) Lead			
91.	The incorrect statem	nent related to the eler	nents of IVA group	is			
	1) The electro negative	vity of Si and Ge is sam	e				
	2) The density of silic	con is least					
	3) Carbon has higher	first ionisation potentia	1				
	4) Lead has the lower	st first ionization potent	ial				
92.	Carbon forms a larg	ge number of compour	nds because				
	1) fixed valency	+ - - - - - - - - - -	2) non-metallic	2) non-metallic nature			
	3) high ionisation pot	tential	4) high catenati	on ability			
93.	The following bond	has highest energy					
	1) Si–Si	2) C–C	3) Sn–Sn	4) Pb–Pb			
94.	Carbon has the high	nest catenation charact	ter because				
	1) C is more electron	egative	2) C has higher	ionisation potential value			
	3) C has only one sta	ble isotope	4) C–C bond is	strong			
95.	The element of IVA	group that has no cate	enation ability				
	1) C 2) Si	3) Ge	4) Pb				
96.	Common oxidation	state of IVA group ele	ments is				
	1) +IV	2) +I	3) +III	4) +II			
97.	+2 oxidation state of	f lead is more stable th	an +4, because of				
	1) penetration power	2) octet configuration 3	3) inert pair effect 4) j	presence of vacant orbitals			
98.	The element exhibit	ing inert pair effect is					
	1) Carbon	2) Silicon	3) Diamond	4) Lead			
99.	Tin shows the oxida	tion state(s)					
	1) +2, +4 2) +1, +2	3) +3, +4 4) only +4					
100	. Stable oxidation sta	te of lead is					

	1) +2	2) +1, +2	3) +3, +4	4) +4				
101	.Which of	f the following	statements is	correct with respect to the property of elements with				
	increase i	n atomic numb	er in the carbon	family?				
				e stability of +2 oxidation state increases				
	,	nisation energy		4) their atomic size decreases				
102			•	plex compounds?				
	1) C	2) Si	3) Ge	4) Al				
103		_	s a semiconducto					
	1) C	2) Si	3) Ge	4) 2 and 3				
104		_	s an amphoteric					
	1) CO ₂	2) SiO ₂	3) SnO ₂	4) CaO				
105	. Maximun	n covalency exl	nibited by Carbo	on and Silicon are respectively				
	1) 4, 6	2) 4, 4	3) 6, 6	4) 4, 8				
106	. Si has dia	igonal relations	ship with					
	1) Sulphu	r	2) Boron	3) Aluminium 4) Carbon				
107	.The differ	rence in proper	ties of CH ₄ and	SiH ₄ is due to				
	1) Large d	lifference in the	electronegativity	of carbon and silicon				
	2) Less dif	fference in the si	ize of carbon and	Silicon atoms				
	3) the inal	oility of carbon	to expand its octer	t				
	4) the inal	oility of silicon t	to form double bo	onds				
108	3. Which of	the following d	loes not exist?					
	1) CCl_6^{-2}	2	2) SiF_6^{-2}					
	3) GeF_6^{-2}	2	4) SnCl ₆ ⁻²					
109	. In H ₂ SiF	6, the covalenc	y of Si is					
	1) 2	2) 4	3) 6	4) 8				
110	. An unstal	ble compound i	is					
	1) CCl ₄	2) SiCl ₄	3) GeCl ₄	4) PbCl ₄				
111	.(A) : Pb(+2) is more sta	ble than Pb(+4)					
	$(\mathbf{R}): \mathbf{The}$	e element lead e	exhibits variable	oxidation states				
	The correct	ct answer is						
	1) Both (A	A) and (R) are tr	ue and (R) is the	correct explanation of (A)				
	2) Both (A	A) and (R) are tr	ue and (R) is not	the correct explanation of (A)				
	3) (A) is t	rue but (R) is fa	lse					
	4) (A) is f	alse but (R) is tr	rue					
112	.(A) : Car	bon forms a la	rge number of co	ompounds				
	(R) : Car	bon has high c	atenation power					
	The correct	ct answer is						
	1) Both (A	A) and (R) are tr	ue and (R) is the	correct explanation of (A)				
	2) Both (A	A) and (R) are tr	ue and (R) is not	the correct explanation of (A)				
	3) (A) is t	rue but (R) is fa	lse					
	4) (A) is f	4) (A) is false but (R) is true						

113. CO can be used as a fuel b	out not CO ₂ because
---------------------------------	---------------------------------

- 1) CO₂ is not a good fuel
- 2) CO is a good fuel
- 3) CO can be oxidized but not CO₂
- 4) CO₂ can be oxidized but not CO

114. The order of calorific values of fuel gases is

- 1) Carburetted water gas > Producer gas > Semi water gas
- 2) Carburetted water gas > Semi water gas > Producer gas
- 3) Producer gas > Semi water gas > Carburetted water gas
- 4) Semi water gas > Producer gas > Carburetted water gas

115. Regarding fuel gases

- I) Water gas is called blue gas
- II) Major component in producer gas is CO
- III) Major component in semi water gas is N2

The correct combination is

- 1) I & III are correct
- 2) I & II are correct
- 3) all are correct
- 4) II & III are correct

116. Which of the following oxides is amphoteric in character?

- 1) CaO
- 2) CO₂
- 3) SiO₂
- 4) SnO₂

117. The stability of dihalides of Si, Ge, Sn and Pb increases steadily in the sequence

- 1) $PbX_2 < Sn X_2 < Ge X_2 < Si X_2$
- 2) $GeX_2 < SiX_2 < SnX_2 < PbX_2$
- 3) $\operatorname{Si} X_2 < \operatorname{Ge} X_2 < \operatorname{Pb} X_2 < \operatorname{Sn} X_2$
- 4) $Si X_2 < Ge X_2 < Sn X_2 < Pb X_2$

Anomalous Behaviour Of First Element: Carbon, Allotropic Forms, Physical And Chemical Properties, Uses Of Some Important Compounds: Oxides

118. Which is not an allotrope of carbon?

- 1) Graphite
- 2) Diamond amond is
- 3) Carborundum
- 4) Coke

119. The geometry of 'C' in diamond is

- 1) Planar
- 2) Tetrahedral
- 3) Linear
- 4) Octahedral

120. The number of carbon atoms bonded to each carbon atom in diamond crystal is

- 1) 2
- 2) 4
- 3)3

4) 1

121. C-C bond length in Diamond is

- 1) 1.33Å 2) 1.54Å
- 3) 1.20Å
- 4) 1.8Å

122. Diamond is hard because of bond present in it.

- 1) covalent
- 2) Ionic
- 3) dative
- 4) metallic

123. Delocalised electrons are not present in

- 1) Petroleum Coke
- 2) Graphite
- 3) Gas Carbon
- 4) Dimond

124. When diamond is heated in vaccum at 2000⁰C, the substance formed is

- 1) Amorphous carbon
- 2) Coal
- 3) Graphite
- 4) Carbon monoxide

125. The formula of Carborundum is

- 1) SiO₂
- 2) Na₂SiO₃
- 3) SiC 4) H₄SiO₄

126. Thermodynamically	most stable allotrope	of carbon is						
1) Diamond	2) Graphite	3) Coal	4) Coke					
127. In graphite hybridiz	ation of carbon is							
1) sp 2) sp^2	$3) \text{ sp}^3 \text{d}$	$4) \text{ sp}^3$						
128. All carbon atoms are	e sp ³ hybridised in the	following substance	except					
1) Methane	2) Ethane	3) Diamond	4) Graphite					
129. Layer structure is pr	resent in							
1) Graphite	2) Coal	3) Diamond	4) Coke					
130. The C–C bond length		-						
1) 1.54A, 3.35A	2) 1.4A, 2.35A	3) 1.42A, 3.35 A	4) 1.34A, 3.35A					
131. Graphite is a good co								
1) Crystalline structur	e 2) sp^2 hybridised	carbon						
3) Free electrons	4) free atoms							
132. Hybridisation of car	bon atom in carbon di	oxide is						
1) sp^2 2) sp^3	3) sp	4) dsp^2						
133. The oxide which exis	sts as solid at room ten	- 4Hb HIL						
1) CO 2) CO ₂	3) SiO_2	4) SO ₂						
134. The following is an a	cidic gaseous oxide							
1) PbO_2 2) SnO_2	3) SiO ₂	4) CO ₂						
135. Water gas is a mixtu	re of							
1) $CO_2 + H_2$	2) $CO + H_2$	3) $CO + N_2$	4) $CO_2 + H_2O$					
136. Producer gas is a mi	xture of							
1) $CO + CO_2$	2) CO + H ₂ O	3) CO + N ₂	4) $CO + O_2$					
137. The major compone	nt in producer gas is							
1) H ₂ 2) CO	3) N ₂	4) CO ₂						
138. The common constit	uent of producer gas a	and water gas is						
1) N ₂ 2) CO	3) CO ₂	4) H ₂						
139. Semi water gas is ma	ainly a mixture of	_						
1) N ₂ , CO and H ₂		CH ₄ 3) CH ₄ , CO and F	H ₂ 4) N ₂ , CO ₂ and CO					
140. The correct statemen			2 , 2 , 2					
4 10000000	nufactured in a generate							
	2) The maximum covalency of silicon is four							
	3) Formation of water gas is an endothermic reaction							
4) Producer gas is known as blue gas								
141. A mixture of CO, H ₂ and hydrocarbons is known as								
1) Water gas 2) Carburetted water gas								
3) Semi water gas 4) Producer gas								
142. A gas which burns w	vith blue flame is							
1) CO 2) N ₂	3) NO	4) CO ₂						
143. Among the following	g calorific value is high	est for						
1) Water gas	2) Producer gas							
3) Semi water gas	4) Carburetted wa	ater gas						

144. Calorific value lowest for

- 1) Water gas
- 2) Producer gas
- 3) Semi water gas
- 4) Carburetted water gas

145. Calorific value is highest for which of the following fuel gas?

- 1) coal gas
- 2) water gas
- 3) producer gas
- 4) carbondioxide gas

146. The hybrid orbitals with 33.33% s – character are involved in the bonding of one of the crystalline allotropes of carbon. The allotrope is

- 1) Carbon black
- 2) Graphite
- 3) Diamond
- 4) Gas carbon

147. The correct statement regarding Graphite is

- 1) Graphite is not a conductor because; it does not contain free electrons
- 2) Graphite is a three dimensional conductor because, the p-electrons are delocalized three dimensionally
- 3) Graphite is a two dimensional conductor because p-electrons are delocalized two dimensionally
- 4) In graphite all the carbon atoms under go sp³ hybridization

148. The following are some statements about graphite

- I) Used as a lubricant
- II) Used in lead pencils
- III) It has sp hybridised carbons

The correct combination is

- 1) all are correct
- 2) only I and II are correct
- 3) only II is correct
- 4) only II and III are correct

149.(A): Diamond is a very hard element

(R) : Diamond has giant three dimensional network structure and C-C bond is a strong bond

The correct answer is

- 1) Both (A) and (R) are true and (R) is the correct explanation of (A)
- 2) Both (A) and (R) are true and (R) is not the correct explanation of (A)
- 3) (A) is true but (R) is false
- 4) (A) is false but (R) is true

150.(A): Diamond is non conductor of electricity

- (R) : In diamond carbon atom is sp^2 hybridised the correct answer is
- 1) Both (A) and (R) are true and (R) is the correct explanation of (A)
- 2) Both (A) and (R) are true and (R) is not the correct explanation of (A)
- 3) (A) is true but (R) is false
- 4) (A) is false but (R) is true

151.(A) : Graphite is used as a lubricant

(R) : Graphite has a layer lattice structure and the attractive forces between layers are weak

The correct answer is

- 1) Both (A) and (R) are true and (R) is the correct explanation of (A)
- 2) Both (A) and (R) are true and (R) is not the correct explanation of (A)
- 3) (A) is true but (R) is false
- 4) (A) is false but (R) is true

152	The followin	g are some s	tatements abou	t graphite		
	I) C – C bond	length is 1.42	2A°			
	II) distance b	etween two la	ayers is 3.35A°			
	III) bond ang					
	The correct c					
	1) all are corn		2) only I and II			
	3) only II is c		4) all are incor			
153	_	_	=	=	er and L ₂ is the length	ı in-between
	two layers of	f graphite. T	he approximate	e ratio between L ₁ ar	nd L ₂ is	
	1) 1:1		2) 2:5	3) 5 : 2	4) 1 : 5	
154			ngth (in A°) in d			
		3.34	3) 2.0	4) 5.2		
155		_		ng optical instrument	ts?	
	1) SiO ₂ 2)	Si	3) SiH ₄	4) SiC		
156			of C, Si and G	Ge is in the order Ge	e < Si < C. The Bond	energies in (KJ
	Mol ⁻¹) resp	•		4	(2001)	
	1) 167, 180, 3		2) 180, 167, 34			
	3) 348, 167,		4) 348, 180, 16			
157	Which one o	f the following	ng is correct set	for 'SiO ₂ '?		
	1) Linear, Ac	eidic	2) Linear, Bas	ic		
	3) Tetrahedra	ıl, Acidic	4) Angular, Ba	asic		
158			ee electrons con	ntributed by each car	rbon atom in graphite	e?
	,) 3 3) 2	4) 1			
159				ely difficult to melt.	The reason for this ar	nomalous
	behaviour is		40000-90000	The state of the s		
		tropic form o		ones a libro molevanom		
	•			nasses like polymers	y bound carbon atoms	with wook
	interplate	7000	inged in large pia	ites of filigs of strong	ly bound carbon atoms	willi weak
	•	crystalline sul	bstance			
160	,	· 411	· ·	n two carbon atoms i	n calcium carbide arc	2
			one sigma, two			
			two sigma, two	•		
Imr	VIOLOD, 10 <u>1</u> 010		con and a few us			
-	4			zeolites, their uses.		
	Silica is high			,		
		discrete mol				
	2) It has man	y resonance s	structures			
		t network stru				
	4) Each Si at	om is surroun	nded by 4 Si aton	ns		
162	Silica has th	e following s	tructure			
	1) Linear		2) Planar	3) Angular	4) Polymeric	

163	. In SiO ₂ ea	ach silicon aton	n is surrounded by				
	1) 4 oxygen atoms in a square planar manner				4 oxygen atoms i	n a tetrahedral manner	
	3) 6 oxygen atoms in a octahedral manner				4) 3 oxygen atoms in a planar fashion		
164	. Silica con	tains					
	1) $SiO^{2}-4$	2) $SiO^{3}-4$	3) SiO ⁻ ₄	4)	SiO_4 tetrahedral	units	
165	. The oxida	tion state of Si	in H ₂ SiF ₆				
	1) + II	2) + IV	3) + VI	4)	+ VIII		
166	. Which of	the following re	eacts with silica				
	1) HF	2) HCl	3) HBr	4)	HI		
167	. The hybri	dization of carl	bon in CO and silicon	in	SiO ₂ respectivel	ly are	
	1) sp, sp		2) sp^2 , sp^2	3)	sp, sp^3	4) sp, sp ²	
168	. SiO ₂ is no	ot soluble in					
	1) HF	2) NaOH	3) KOH	4)	HNO ₃		
169	. An acidic	flux among the	following is		•		
	1) CaO	2) MgO	3) SiO ₂	4)	CaH ₂		
170	. Silicon tet	rafluoride on h	ydrolysis gives				
	1) Ortho si	ilicic acid and m	eta silicic acid				
	2) Ortho si	ilicic acid and hy	ydrofluoro silicic acid				
	*	licic acid and sil					
 .		•	ydrofluoro silicic acid	ď			
171		ture of 'SiO ₂ ' is		1			
	1) Octahed		2) Tetrahedral	3)	Trigonal	4) Linear	
172	. Water gla		2) G 4 17 17 1	2)		4) 41 1 4	
172		-	2) Sodium silicate	3)	water gas	4) crystal carbonate	
1/3	_	ting unit of silic		4)	$RSiO_2$		
154	_	2) R_2SiO	2		2		
174			r the formation of sili	(CO	ne polymers are		
	 Silicates Silanes 		2) Chloro silanes4) Silicon carbide				
175	,	are the polymer	rs formed by hydrolys	sis (of		
1,0	1) Silicono	4 WHEN THE Y	2) Silanes				
	3) Silicates		4) Chlorosilanes				
176		structural unit	in silicates is				
	1) SiO_2	2) Si_2O_6	3) Si_3O_2	4)	SiO_4		
177	. Which of	the following co	ontain discerte SiO4 ⁴	– to	etrahedron units		
74	1) Ortho si		2) Pyro silicates		Cyclic silicates		
178		s an example fo	· •	3)	Cyclic silicates	+) 1150cstos	
	1) Zeolite		2) Amphibole	3)	Pyroxene	4) Silicone	
179	*	is an example f	_	,	•	•	
	1) Sheet si		2) Chain silicates	3)	3D silicates	4) Ortho silicates	
180	. Amphibol	les belongs to					
	1) Frame v	work silicates 2)	Chain silicates	3)	Cyclic silicates	4) Pyrosilicates	

181. Which of the following	ng is not a frame work	silicate.									
1) Zeolite	2) Kaolin										
3) Ultramarine	4) Feldspar										
182. SiO ₂ is a solid while CO ₂ is a gas, this is because											
1)SiO ₂ contains weak Vanderwaal attraction while CO ₂ contains strong covalent bonds											
2) Solid SiO ₂ has a three dimensional net work structure whereas CO ₂ contain discrete molecules.											
3) Both contain strong covalent bonds											
4) Both contain weak vanderwaal attraction											
183.SiO $_2$ + A \rightarrow X + Y. In this reaction Y is one of the global warming gases. A is the water soluble											
alkalimetal carbonate whose molecular weight is 106. The common name of 'X' is											
1) Washing soda	2) Baking soda	3) Flint glass	4) Water glass								
184. SiCl ₄ undergoes hydr	•	nce									
	1) C–Cl bond is stronger than Si–Cl bond										
2) Electronegativity of											
3) Electronegativity of Cl is greater than C											
4)Silicon contains vacant d orbitals and its maximum covalency is 6 185. The following are some statements about SiCl ₄											
I) SiCl ₄ undergoes hyd	•		>								
II) It acts as a lewis ac											
III) Si atom is sp ³ hyb											
The correct combination is											
•	1) All are correct 2) only I and II are correct 3) Only II is correct 4) only II and III are correct										
3) Only II is correct 186. What is X in the follo	400	ie correct									
SiCl ₄ +H ₂ OX+HCl	wing reaction.	,									
1) H ₄ SiO ₄	2) SiH ₄	3) (SiOOH) ₂	4) Si(ClO ₄) ₄								
4		· · · · · · -	e rise to cross linked silicone								
polymer on hydroly		te one which will giv	e rise to cross mixed sincone								
1) R_2SiCl_2	2) RSiCl ₃	3) R_2SiCl	4) R_4Si								
188. Identify B in the foll	lowing reaction	,	,								
$H_2SiO_4 \xrightarrow{1000^0 C} A \xrightarrow{Cara}$	$\xrightarrow{bon} B + CO$										
1) Carborundum	2) Quartz 3) Kiesulgu	ıhr	4) Sand stone								
189. Hydrolysis of $SiCl_4$ gives compound X and HCl, On heating to $1000^{\circ}C$ X looses water and forms											
Y. Identify X and Y	-										
1) H_2SiO_4 And SiO_2	· ·	<i>'</i>	4) H_2SiO_4 and SiC								
190. What is the empiric											
1) $(Si_2O_5)_n^{2n-}$	2) $(SiO_3)_n^{2n-}$	3) $\left(SiO_3\right)_n^{n-}$	4) $(Si_2O_7)_n^{3n-}$								

					<u>KEY</u>				
84) 2	85) 3	86) 1	87) 2	88) 3	89) 4	90) 2	91) 4		
92) 4	93) 2	94) 4	95) 4	96) 1	97) 3	98) 4	99) 1		
100) 1	101) 2	102) 1	103) 4	104) 3	105) 1	106) 2	107)1		
108) 1	109) 3	110) 4	111) 2	112) 1	113) 3	114) 2	115) 1		
116) 4	117) 4	118) 3	119) 2	120) 2	121) 2	122) 1	123) 4		
124) 3	125) 3	126) 2	127) 2	128) 4	129) 1	130) 3	131) 3		
132)3 1	133) 3	134) 4	135) 2	136) 3	137) 3	138) 2	139) 1		
140) 3 1	41)2	142)1	143) 4	144) 2 145)	1 146) 2	147) 3	148) 2	>	
149) 1	150) 3	151) 1	152)2	153) 2	154) 1	155) 1	156) 4	157)3	158)4
159) 3	160) 2	161) 3	162)4	163) 2	164) 4	165)2	166)1	167) 3	168)4
169) 3	170) 2	171) 2	172)2	173)2	174) 2	175)4	176) 4	177) 1	178)2
179) 4	180) 2	171)2	182)2	183) 4	184)4	185) 1	186) 1	187) 2	188)1
189)1	190) 1								