ALKALINE EARTH METALS

1.	The electronic configuration of the outermost orbit in the case of alkaline earth metals is				
	$1)^{ns^2}$	$2)^{ns^2np^1}$	$3)^{ns^1}$	$4)^{ns^2np^4}$	
2.	In the periodic tab	ole, the element wit	h atomic number 38 belo	ongs to	
	1) period IV and group II		2)period IV and group IV		
	3) period III and group IV		4)period V and group II		
3.	Which of the following metal carbonates is decomposed on heating?				
	$1)^{Na_2CO_3}$	$2)^{MgCO_3}$	$3)^{K_2CO_3}$	$4)^{K_2CO_3}$	
4.	Beryllium shown diagonal relationshi		ip with		
	1) <i>Na</i>	2) B	3) <i>Al</i>	4) K	
5.	Epsom salt is				
	$1)^{CaSO_4.2H_2O}$	$2)^{MgSO_4.7H_2O}$	$3)^{BaSO_4}$	$4)$ $SrSO_4$	
6.	Plaster of Paris is				
	$1)^{CaSO_4}$	$2)^{CaSO_4.H_2O}$	$3)^{2CaSO_4.H_2O}$	$4)$ CaSO ₄ .2 H_2O	
7.	If CO_2 is passed in	excess into lime wa	ater, the milkiness first f	ormed disappears due to	
	1) Reversal of origi				
	2) Formation of volatile calcium derivative				
	3) Formation of sol	uble calcium bicarb	onate		
	4) Formation of sol	uble magnesium hy	droxide		
8.	Carnallite is				
	1) KCl	$2)$ LiAl $(SiO_3)_2$	3) $MgCl_2.6H_2O$	$4)^{KCl_2.MgCl_2.6H_2O}$	
9.	Which of the follo	wing does not give	flame colouration?		
	$1)^{MgCl_2}$	$2)^{BaCl_2}$	$3)^{CaCO_3}$	$4)$ $SrCO_3$	
10.	Which of the following	lowing alkaline ea	arth metal ions has the	e highest ionic mobility in aqueous	
	solution?				
	1) Be^{2+}	$2)^{Mg^{2+}}$	$3)^{Ba^{2+}}$	4) Ca^{2+}	
11.	The fluorspar is				
	$1)^{CaSO_4}$	$2)$ $BaSO_4$	$3)^{CaF_2}$	$4)^{CaCO_3}$	
12.	Calcium is extract	ed by the electroly	sis of		
	1) Fused mixture of	f^{CaCl_2} and CaF_2	2) ^{CaCl₂} solution		
	3) Fused mixture of	f^{CaCl_2} and NaF	4) $Ca_3(PO_4)_2$ solution		
13.	Magnesium wire b	ourns in the atmosp	phere of ^{CO₂} because		
	1) Magnesium acts as an oxidising agent				
	2) Magensium has 2 electrons in the outermost orbit				
	3) Magnesium acts as a reducing agent and removes oxygen from CO_2				
	4) None of the above				

14.	Select the correct statement out of the following					
	1) Calcium fluoride is soluble in water					
	2) Barium sulphate					
	· · ·	3) Barium hydroxide is insoluble in water				
		phate is soluble in wa				
15.	_	ked lime in water is				
	1) Quick lime	2) milk of lime	3) lime water	4) washing of lime		
16.	The following compounds have benn arranged in order of their increasing thermal stabilities. Identify the correct order					
		$(1), CaCO_3(III), BeCO_3(1II)$,			
	,	,	3)IV < II < I < III			
17.	Silica reacts with forms Y.Y is	magnesium to for	m a magnesium compo	bund X.X reacts with dilute HCl and		
	$1)^{MgO}$	$2)^{MgSiO_3}$	$3)^{SiCl_4}$	$4)^{MgCl_2}$		
18.	Plaster of Paris is contact with water sets into a hard mass. The composition of hard mass is					
	$1)^{CaSO_4.H_2O}$	2) CaSO ₄ .Ca(OH) ₂	$3)$ $CaSO_4.2H_2O$	$4)^{CaSO_4.2H_2O}$		
19.	Cement contains 1					
	$1)^{Ca,Al,O}$	$2)^{Ca,Si,O}$	$3)^{Ca,S,Al,O}$	4)Ca, Al, Si, O		
20.	In cement, lime is	provided by heating	ng			
	,	$2)^{CaCO_3}$	3) <i>CaSO</i> ₄	4)clay		
21.	The raw materials	s used for cement a	re			
	·	2) $CaCO_3$ and clay	3) CaO and SiO_2	4) $Ca(OH)_2$ and clay		
22.	Mortar is a mixtu					
	1) $Ca(OH)_2$, silica a	and water	2) CaCO ₃ and SiO ₂			
	3) CaO and silica		4) $CaCaO_3$, SiO_2 and wa	ter		
23.	Calcium carbide reacts with water to produce					
	1) ^{CH} ₄	$(2)^{C_2H_4}$	$(3)^{C_2H_2}$	$4)^{C_2H_6}$		
24.	Magnesium has polarising power close to that of					
	1) <i>Li</i>	2) Na	3) <i>K</i>	4) Cs		
25.	A 481 VIIII			le. It reacts with hydrogen to form a nt with water. The metal is		
	1) Al	2)Ca	3)Cu	4)Zn		
26.	A compound X or	n heating gives a c	colourless gas. The resid	lue is dissolved in water to obtain Y.		
4	Excess CO_2 is bub X. The compound	bled through aque	ous solution of Y, Z is fo	ormed. Z on gently heating gives back		
	$1)$ $CaCO_3$	$2)^{Na_2CO_3}$	$3)^{Ca(HCO_3)_2}$	4) K_2CO_3		
27.	The process of setting of cement under water is essentially					
	1) an oxidation process		2)a reduction process			
	3) a double decomposition process		4)a hydration process			

28.	$^{\textit{BeF}_2}$ is soluble in water, whereas, the fluorides of other alkaline earth metals are insoluble because of					
	1) BeF_2 Ionic nature	of				
	2) Greater hydration energy of Be^{2+} ion as compared to crystal lattice					
	3) Covalent nature of	of BeF_2	•			
20	4) None of the above		v of the following commo	um da ta		
29.	1) $NaCl < CaO < BaBr$		y of the following compo 2) NaBr < NaCl < BaO < Co			
	3) $NaCl < NaBr < BaO$		4) NaBr < NaCl < CaO < Ba			
30	,		4)11421 (11401 (040 (26			
50.	Plaster of Paris hardnes by 1) Giving off ^{CO₂}		2) utilising water			
	3) Changing into ^{Ca}	aCO_3	4) giving out water			
31.		When hydrated $^{MgCl_2.6H_2O}$ is strongly heated				
31.	1) MgO is formed		$2)^{Mg(OH)_2}$ is formed			
	3) $Mg(OH)Cl$ Is form	ned	4) anhydrous MgCl_2 is for	ormed		
32.	Gypsum is added to	Gypsum is added to clinker during cement manufacture to				
	1) Decrease the rate setting of cement					
	2) Bind the particles	of calcium silicate		*		
	3) Facilitate the form	3) Facilitate the formation of colloidal gel				
	4) All of the above					
33.	Which of the following is most soluble in water?					
	$1)^{MgSO_4}$	$(2)^{CaSO_4}$	$3)$ $SrSO_4$	$4)^{BaSO_4}$		
34.	At high temperatur	At high temperature, nitrogen combines with CaC_2 to give				
	1) Calcium cyanide		2) calcium cyanamide			
	3) Calcium carbonate		4) calcium nitride			
35.	The hydration energy of Mg^{2+} ions is higher than that of					
	1) Al^{3+}	2) Be^{2+}	3) <i>Na</i> ⁺	4) none of these		
36.	Which of the following is used for taking the X-ray spectra of the digestive system?					
	$1)^{CaSO_4}$	2) BaSO ₄	$3)^{MgSO_4}$	$4)^{BaCO_3}$		
37.	The mixture MgCl_2 of and MgO is called					
	1) Sorel cement		2) mixed salt			
	3) Portland cement		4) magnesium oxychloride			
38.	Portland cement de	oes not contain				
	$1)^{Ca_3Al_2O_6}$	$(2)^{Ca_3SiO_3}$	$3)^{Ca_2SiO_4}$	$(4)^{Ca_3(PO_4)_2}$		
39.	When magnesium burns in air, compounds of magnesium formed are magnesium oxide and					
	$1)^{Mg_3N_2}$	$2)^{MgCO_3}$	$3)^{Mg(NO_3)_2}$	$4)^{Mg(NO_2)_2}$		
40.	<i>'</i>		t. It probably contained	,		
	1) <i>Ca</i>	2) <i>Sr</i>	3) <i>Ba</i>	$4)^{Mg}$		

41.	Compounds of alkaline earth metals are less soluble in water than the corresponding alkali nalts due to			than the corresponding alkali metal		
	1) Their high ionisa	tion energy	2) their low electronega	tivity		
	3) Their low hydrati	ion energy	4) their high lattice ener	gy		
42.	In the reaction, Be	$+2NaOH \rightarrow A+H_2$	$OH \rightarrow A + H_2$ A is			
	$1)^{Be(OH)_2}$	2) <i>BeO</i>	$3)^{Na_2BeO_2}$	4) none of these		
43.	Identify the correc					
 Gypsum contains a lower percentage of calcium than plaster of Paris Gypsum is obtained by heating plaster of Paris Plaster of Paris is obtained by hydration of gypsum Plaster of Paris is obtained by partial oxidation of gypsum 						
44.	The sodium is mad	le by electrolysis of	a molten mixture of 40°	$NaCl$ and 60% $CaCl_2$ because		
		e conduction of elect				
	2) Ca^{2+} can $NaCl$ red	luce to Na	•			
	3) Ca^{2+} can displace	Na from NaCl				
	· •	4) this mixture has a lower melting point than <i>NaCl</i>				
45.	The right order of	the solubility of su	lphates of alkaline earth	metals is		
	1) $Be > Ca > Mg > Ba$	> Sr	2) Mg > Be > Ba > Ca > Sr			
	3) $Be > Mg > Ca > Sr >$	> Ba	4) Mg > Ca > Ba > Be > Sr	· ·		
46. Slaking is the process of adding water to						
	$1)^{CaSO_4}$	2) <i>CaCl</i> ₂	$3)^{CaCO_3}$	4) CaO		
47.	The highly efficien	t method of obtain	ing beryllium is			
1) Reduction of beryllium halide with Mg						
	2) Reduction of beryllium oxide with carbon					
	3) Dissociation of beryllium carbide					
40	4) Electrolysis of fused beryllium chloride					
48.	A chloride dissolves appreciably in cold water. When placed on a platinum wire in Bunsen flame, no distinctive colour is noticed. Which one is cation?					
	$(1)^{Mg^{2+}}$	b) <i>Ba</i> ²⁺	$3)Pb^{2+}$	4) Ca^{2+}		
49.		n energies of alkalin	ne earth metal are highe	r than those of the alkali metals.		
	This is because 1) There is increase in the nuclear charge of the alkaline earth metal.					
	2) There is decrease in the nuclear charge of the alkaline earth metal.					
A	AT THE	There is no change in the nuclear charge				
	4) None of the above		inge			
50.	Which of the follow					
	1) Mg burns in air releasing dazzling light rich in UV rays.					
	2) CaCl ₂ .6H ₂ O when mixed with ice gives freezing mixture					
	B) Mg cannot form complexes					
	4) Be can form complexes due to its very small size					

51.	Chemical A is used for water softening to remove temporary hardness. A reacts with Na_2CO_3 to				
	generate caustic soda. When CO_2 is bubbled through A, it turns cloudly. What is the chemical formula of A?				
	$1)^{CaCO_3}$	2) <i>CaO</i>	$3)^{Ca(OH)_2}$	$4)^{Ca(HCO_3)_2}$	
52.	A metal X on hea	ating in nitrogen	gas give X, Y on treat	ment with H_2O give	es a colourless gas
	which when passed	d through $^{ extit{CuSO}_4}$ so	olution gives a blue colo	our. Y is	
	$1)^{Mg(NO_3)_2}$	$2)^{Mg_3N_2}$	$3)^{NH_3}$	$4)^{MgO}$	
53.	The pair of ampho	oteric hydroxides i	İS		
	1) $Be(OH)_2$, $Zn(OH)_2$		$2)^{Al(OH)_3,LiOH}$		
	$_{3)}B(OH)_{3},Be(OH)_{2}$		$4)$ $Be(OH)_2$, $Mg(OH)_2$		
54.	Which of the follow	wing has maximu	m ionisation energy?		
	$1) Ba \rightarrow Ba^{+} + e^{-}$	$2) Be \rightarrow Be^+ + e^-$	$3) Ca \rightarrow Ca^{2+} + 2e^{-}$	4) $Mg \rightarrow Mg^{2+} + 2e^{-}$	
55.	Peroxide bond is p	resent in			
	$1)^{MgO}$	2) <i>CaO</i>	$3)^{LiO_2}$	$4)^{BaO_2}$	
56.	The substance not	likely to contain (CaCO ₃ is		
	1) Dolaminte	2)sea shell	3)calcined gypsum	4)marble statue	
57	(A) Reryllium and	magnesium dono	t impart characteristic (colour to the Runsen	-hurner flame
	•	O .	have high ionisation en		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
	•		R) is the correct explanat		
	2) If both (1) and (R) are correct and (R) is not the correct explanation of (A).				
	3) If (1) is correct a	nd (R) is wrong.			
	4) If (1) is wrong an	nd (R) is correct.			
	e) If both (1) and (F	400000			
58.	(A) $Be(OH)_2$ dissolves in excess of $NaOH$				
	(R) $Be(OH)_2$ is an a	mphoteric compou	nd.		
59.	(A) Alkaline earth				
	4000	_ WHITE	metals are smaller tha	an corresponding al	kali metals in the
60.	same periods of periodic table. (A) Beryllium compounds are covalent in nature. (R) The size of Be ²⁺ ion is larger in comparison to the radii of the other divalent ions of alkaline				
					ent ions of alkaline
	earth metals.				
61.	51. (A) Sulphur is estimated as BaSO_4 and not as MgSO_4 .				
	(R) The ionic radius of Mg^{2+} is smaller than that of Ba^{2+} ion.				
62.	$(\mathbf{A})^{Na_2SO_4}$ is solub				
	(R) Lattice energy of barium sulphate exceeds its hydration energy.				
63.	Identify the correct statement				
	1) The percentage of	of calcium is lower	in gypsum in comparisor	n to plaster of Paris.	

2) Gypsum is not a natural product, It is obtained by heating of plaster of Paris.

3) Plaster of Paris is obtained by hydration of gypsum.4) Plaster of Paris is formed by oxidation of gypsum.

64.
$$X + C + Cl_2 \xrightarrow{High \ temp} Y + CO$$

$$Y + 2H_2O \rightarrow Z + 2HCl$$

Compound Y is found in polymeric chain structure and is an electron deficient molecule. The compound Y is

$$1)$$
 BeO

$$2)^{BeCl_2}$$

$$3)^{Be(OH)_2}$$

4)
$$BeO.Be(OH)_2$$

65.
$$Mg \xrightarrow{Air} X + Y$$

$$\xrightarrow{H_2O}$$
 Z
 $Colourless vas$
Solution $\xrightarrow{CuSO_4}$ (A) Blue coloured solution

Substances X,Y,Z and A are respectively

$$1)$$
 Mg_3N_2 , MgO , NH_3 , $CuSO_4$. $5H_2O$

$$(NO_3)_2, MgO, H_2, CuSO_4.5H_2O_3$$

3)
$$Mg_3N_2$$
, MgO , NH_3 , $\left[Cu(NH_3)_4\right]SO_4$

$$4) Mg (NO_3)_2, MgO_2, H_2O_2, CuSO_4.5H_2O$$

66. The hydration energy of ion Mg^{2+} is

- 1) more than that of Mg^{3+} ion
- 2)more than that of Na^+ ion
- 3) more than that of Al^{3+} ion
- 4)more than that of Be^{2+} ion

$$B \leftarrow \frac{200^{\circ} C}{Strongly \ heated} - CaSO_4 \cdot 2H_2O \xrightarrow{120^{\circ} C}_{Heat} A$$
67.

A, B and C are respectively

- 1) Plaster of Paris, dead burnt plaster, calcium sulphide
- 2) Dead burnt plaster, plaster of Paris, lime
- 3) Plaster of Paris, dead burnt plaster, lime
- 4) Anhydrous calcium sulphate, plaster of Paris, calcium sulphite

68. Match (X) with (Y) and select the correct alternative

X

- A) Sorel cement
- 1) *CaH*₂

B) Anhydrone

2) $BaSO_4 + ZnS$

C) Hydrolith

3) $MgCl_2.5MgO.xH_2O$

D) Lithopone

4) $Mg(ClO_4)$,

- B C D
- 1)
- 1
- 2 c)
- d)

69. List-1

A) Hydraulic mortar

- B) Dead burnt
- C) Electron
- D) Grignards reagent

List-II

- 1) RMgX
- 2) Aeroplane parts
- 3) Antiseptic
- 4) CaSO₄ anhydrous

The correct match is

- 1) c d b a
- 2) a b d e
- 3) c b d e
- 4) c d a c
- 70. **List-1**

List-II

1) Antacid

3) Alloy

2) In Surgical bandages

4) Slaked lime, sand water, cement

- A) Plaster of paris
- B) Electron
- C) Cement mortar
- $D)^{(MgCO_3)}$
 - $[Mg(OH)_2].ZH_2O$

The correct match is

- A B C
- 1) a b c d
- 2) b c d a
- 3) c b d a
- 4) b c a d
- 71. Match the following

List-1

List-II

D

- A) Fire entinguisher
- 1) C_2H_5MgI
- B) Grignard reagent
- 2) BaCO₃
- C) Moulds and
- 3) *NaHCO*₃
- crucibles
- D) Whitherite
- 4) $CaSO_4.H_2O$
- 5) 2CaSO₄.H₂O

The correct match is

- A B C D
- 1) 3 5 4 1
- 2) 3 1 5 2
- 3) 4 1 2 3
- 4) 5 3 2 4

72. Match the following

List-II List-II

- A) Beryl
- 1) *SrSO*₄
- B) Gypsum
- 2) $BaSO_4$
- C) Celesite
- 3) $Be_3Al_2Si_6O_{18}$
- D) Barytes
- 4) $CaSO_4.2H_2O$

The correct match is

- A B C D
- 1) 3 4 1 2
- 2) 1 2 3 4
- 3) **2 3 1 4**
- 4) 3 2 1 4

KEY

HINTS

71) 2 72) 3

7)
$$Ca(OH)_2 + CO_2 \rightarrow CaCO_3$$

 $CaCO_3 + H_2O + CO_2 \rightarrow Ca(HCO_3)_2$

- 9) Mg^{+2} has high hydration energy
- 13) $Mg + CO_2 \rightarrow MgO + CO$
- **16)** Thermal stability order is $BeCO_3 < MgCO_3 < CaCO_3 < K_2CO_3$

17)
$$SiO_2 + 2Mg \rightarrow 2MgO + Si$$

 $MgO + 2HCl \rightarrow MgCl_2 + H_2O$

23)
$$CaC_2 + 2H_2O \rightarrow Ca(OH)_2 + C_2H_2$$

$$25) Ca + H_2 \rightarrow CaH_2$$

$$CaH_2 + 2H_2O \rightarrow Ca(OH)_2 + 2H_2$$

26)
$$CaCO_3 \rightarrow CaO + CO_2 \uparrow$$

 $CaO + H_2O \rightarrow Ca(OH)_2$
 $Ca(OH)_2 + CO_2 \rightarrow CaCO_3$

28) Be^{+2} have greater hydration energy.

34)
$$CaC_2 + N_2 \xrightarrow{high} Ca(CN)_2$$

42)
$$Be + 2NaOH \rightarrow Na_2BeO_2 + H_2$$

- 45) Due to hydration energy.
- 48) Mg^{+2} do not give flame colour due to high hydration energy.

51)
$$Ca(OH)_2 + Na_2CO_3 \rightarrow NaOH + CaCO_3$$

 $Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$

52)
$$3Mg + N_2 \rightarrow Mg_3N_2$$

 $Mg_3N_2 \xrightarrow{H_2O} NH_3 \uparrow + Mg(OH)_2$
 $NH_3 + CuSO_4 \rightarrow CuSO_46NH_3$

- 59) Be^{+2} has smaller ionic radii compare with remaining in the same group.
- 63) Hence M.wt of Gypsum higher than M.wt of PoP.

64)
$$BeO + C + Cl_2 \xrightarrow{high} BeCl_2 + CO$$

 $BeCl_2 + 2H_2O \rightarrow Be(OH)_2 + 2HCl_2$

66) Hydration energy
$$\times \frac{1}{\text{size of ion}}$$

67)
$$CuSO_4 2H_2O \xrightarrow{120^0 C} CuSO_4 + \frac{1}{2}H_2O(PoP)$$

$$CuSO_4 2H_2O \xrightarrow{200^0 C} CuSO_4 \xrightarrow{Strong} CaO + SO_2 + O_2$$