GENETICS

1. Which of the following is mismatched pair of disease and its related symptom?

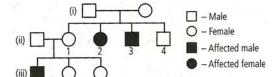
Disease

Symptom

- Phenylketonuria Urine turns black on exposure to air
 Down's syndrome Physical and mental retardation
- 3) Klinefelter's syndrome sterile males
 - 4) Turner's syndrome sterile females.

2. (Normal man) × (Carrier woman)

XY
(Vormal man) × (Carrier woman)


XX
(XX
XX
XY
XY
XY
(Carrier daughter) (Normal (Normal (Disease))

Inheritance of which of the following traits is shown in the above given cross?

- 1) X-linked dominant trait
- 3) Autosomal recessive trait

- 2) X-linked recessive trait
- 4) Autosomal dominant trait.

3.

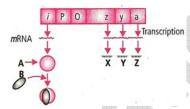
Study the given pedigree chart for sickle-cell anaemia and select the most appropriate option for the genotypes.

Genotypes of parents Genotypes of 1st and 3rd child in F,

- 1) Hb^A Hb^S, Hb^A Hb^A Hb^A, Hb^A Hb^S
- 2) Hb^A Hb^S, Hb^A Hb^S Hb^A Hb^A, Hb^A Hb^A
- 3) $Hb^A Hb^A$, $Hb^A Hb^S$ $Hb^A Hb^A$, $Hb^S Hb^S$
- 4) Hb^A Hb^S, Hb^A Hb^S Hb^A Hb^S, Hb^S Hb^S.
- 4. Which one is the incorrect match?

1) Consanguineous mating

- 2) Sex unspecified
- 3) Male


		\	
4)	7) —	Affected individuals

5. Complete the given table by selecting the correct option.

Genotypes	Blood groups
/ ^A / ^A , (i)	Α
JΒJΒ, (ii)	В
(iii)	AB
(iv)	0

	(i)	(ii)	(iii)	(iv)
1)	JAJA	IBIB	IAIB	ii
2)	JAJA	IBIB.	I ^A I ^B	J ^A j
3)	IAi .	I ^B i	I ^A I ^B	ii
4)	I ^A i	I [₿] i	IAIB	I ^B i

6. The given figure shows lac operon and its functioning. Select the option which correctly labels A, B, X, Y and Z.

A	В	X	Y	Z
1) Repressor	Inducer	β-Galacto-sidase	Permease	Trans acetylase
2) Repressor	Inducer	Permease	β-Galacto-sidase	Trans acetylase
3) Inducer	Repressor	β-Galacto-sidase	Permease	Trans acetylase
4) Inducer	Repressor	β-Galacto-sidase	Trans-acetylase	Permease

7. Match column I with column II and select the correct option from the codes given below.

Column I	Column II

- A) Sigma factor
- (i) 5' 3'
- B) Capping
- (ii) Initiation
- C) Tailing
- (iii) Termination
- D) Coding strand
- (iv) 5' end
- (v) 3' end
- 1) (A)-(iii), (B)-(v), (C)-(iv), (D)-(ii)
- 2) (A)-(ii), (B)-(iv), (C)-(v), (D)-(i)
- 3) (A)-(ii), (B)-(iv), (C)-(v), (D)-(iii)
- 4) (A)-(iii), (B)-(v), (C)-(iv), (D)-(i).

8. Match the scientists given in column I to their respective discoveries given in column II and select the correct option.

Column I

A) Alec Jeffreys

B) F. Sanger

C) Jacob and Monoth

D) Avery, Mc Leod and Mc Carty.

1) (A)-(ii), (B)-(iii), (C)-(iv), (D)-(i)

3) (A)-(iii), (B)-(ii), (C)-(iv), (D)-(i)

Column II

(i) Lac operon

(H) Automated DNA sequencers


(iii) DNA finger printing

(iv)Transforming principle

2) (A)-(iii), (B)-(ii), (C)-(i), (D)-(iv)

4) (A)-(i), (B)-(ii), (C)-(iii), (D)-(iv).

9. Following figure represents the process of transcription in bacteria.

Select the option which correctly labels A, B and C.

1) A = DNA, B = RNA, C = Promoter

2) A = RNA, B = RNA polymerase, C = Rho factor

3) A = RNA, B = RNA polymerase, C = Sigma factor

4) A = DNA, B = DNA polymerase, C = RNA.

10. Which process occurs in the regulation of gene expression in prokaryotes but does not occur in the regulation of gene expression in eukaryotes.

1) RNA is formed from the transcription of base triplets on DNA

2) Translation of the mRNA starts as the 5' end

3) RNA polymerase synthesizes RNA nucleotides in a 5' to 3' direction

4) Ribosome helps to produce polypeptide during translation

11. Genes that are involved in turning off or on the transcription of set of structural genes are called

1) Operator genes

2) Promotor genes

3) Repressor genes 4) Regulatory genes

12. Which of following statements is correct?

1) Glucose acts as inducer for lac operon

2) Galactose acts as inducer for lac operon

3) Glucose or galactose acts as inducers for lac operon

4) Glucose or galactose canot as inducers for lac operon

13. Lactose is the substrate for the enzyme **\beta** - galactosidase, it regulates

1) Switching on and off of the operon

2) synthesis of polypeptide chain

3) Attachment RNA polymerase to promoter

4) expression of inhibitor gene

14. Which of the following binds to stop codon at the end of translation?

1) Sigma factor

2) rho factor

3) release factor

4) stop factor

15.	In	view o	f imp	ortano	re of g	eneti	ic research, the g	genome of the plant i	is analysed				
			_	eratas	o- 8		Pisum sativum	3) Arabidopsis	4) Mimosa				
16.	-	•			s in aı		erage gene	·,	.,				
		.5 mil		F			3000	3) 2416	4) 3 billion				
17.	,			Ps (sn	ips) in	,	genome	0 , <u> </u>	., • • • • • • • • • • • • • • • • • • •				
		2.2 mil		_ ~ (~	- F ~/		1.4 million	3) 1 billion	4) 3 billion				
18.	-			owing		,		-, -					
							List – II						
			– 7 m	illion	bps	i)		g genes of human					
	B)				1								
	C)		_			•							
	D)	_		nes		-							
	ĺ		Ü			v)	_		A				
		A	В	C	D			A B	C D				
	1	i	ii	iii	iv			2 iv iii	ii v				
	3	iv	i	ii	v			4 iv iii	ii iii				
19.		_	the f	ollowi	ng fr	om ı	up stream to do	own stream in the	following related to lac				
	_		ructur	al gene	2			B) Z – structural g	gene				
				_				D) Operator	D) Operator				
	C) Y – structural geneE) Repressor gene							F) Promoter					
	1) A	ABCD	EF			2) 1	ACBDFE	4) ADEFBC					
20.	Ass	ertion	ı (A):	Lac	peror	ı is a	n inducible oper	on					
	Rea	ason (l	R) :	The la	ac ope	ron	gets 'on' by the i	inducer					
	2) I	Both A	and I	R are c	orrect	and	R is not the corre	ct explanation of A					
	3) <i>A</i>	A is co	rrect l	but R i	s inco	rrect		4) A is incorrect b	out R is correct				
21.	Ass	ertion	(A):	: In p	oroka	ryoti	c cells polypep	tide begins to get	synthesized, before the				
	ter	minat	ion of	synth	esis o	f m I	RNA.						
		ásisisiy A		-	•	-		nd and begin transl	ation before polymerase				
	1) I	3oth A	and I	R are c	orrect	and	R is the correct ex	xplanation of A					
	2) I	C) 231 genes iii) Chromosome – I of human iv) Human genome v) X – chromosome of human A B C D A B C D i i ii iii iv 2 iv iii ii v 3 iv i iii v 4 iv iii iii iii Arrange the following from up stream to down stream in the following related to lace to be a coperon A) A – structural gene C) Y – structural gene D) Operator E) Repressor gene F) Promoter											
	3) <i>A</i>	A is co	rrect l	but R i	s inco	rrect		4) A is incorrect b	out R is correct				

22.	Assertion (A): In most cas	es the gene in eukaryo	tes is discontinuous										
	Reason (R): In eukaryo	tes, the genes are split	genes with coding	introns and noncoding									
	exons												
	1) Both A and R are correct and R is the correct explanation of A												
	2) Both A and R are correct and R is not the correct explanation of A												
	3) A is correct but R is inco	rrect	4) A is incorrect bu	nt R is correct									
23.	Which of the following act	ts as a catalyst in a bac	terial cell?										
	1) hn RNA	2) 23 sr RNA	3) 5sr RNA	4) sn RNA									
24.	Allelic sequence variation	with more than 0.01 fr	equencies in a popu	ılation is									
	1) SNP's	2) VNTR's	3) DNA polymorph	nism4) Incomplete									
	dominance												
25.	Select the correct statemen	nt											
	1) RNA polymerase I transc	cribes r RNAs	2) RNA polymeras	e II transcribes sn RNAs									
	3) RNA polymerase III tran	scribes hn RNAs	4) RNA polymeras	e II transcribes hn RNAs									
	1) a and d are correct correct	2) b and c are correct	3) a and c are corre	ect 4) a and b are									
26.	Automated DNA sequenci	ng is based on method	developed by										
	1) Alec jaffreys	2) Frederick Sanger	3) Erwin chargaff	4) Watson & crick									
27.	In eukaryotic cell transcri	ption, RNA splicing an	d RNA capping tak	xes place in									
	1) Nucleus	2) Cytoplasm	3) Ribosomes	4) Mitochondria									
28.	A unit of lac - operon wh	ich in the absence of l	lactose, suppresses	the activity of operator									
	gene is												
	1) Structural gene	2) Regulatory gene	3) Repressor gene	4) Promoter gene									
29.	Process used for amplifica	tion or multiplication	of DNA for finger p	rinting is									
	1) Polymerase chain reaction	n	2) Southern blottin	g technique									
	3) Autoradiography		4) Electrophoresis										
30.	Which of the following	technique helps us to	find out variatio	ns in individuals of a									
	population at DNA level?												
	1) Polymerase chain reaction	n	2) Southern blotting technique										
	3) DNA finger pointing		4) Gel electrophore	esis									
31.	DNA finger printing work	s on which principle ir	DNA sequence.										
	1) Transcription	2) Polymorphism	3) Translation	4) Transformation									
32.	Which of the following pro	ovide flatform for joini	ing of aminoacids ir	translation?									
	1) Mitochondria	2) Endoplasmic reticu	lum										
	3) Nucleus	4) Ribosomes											
33.	Identify the free living nor	n-pathogenic nematode	.										
	1) Arabidopsis		2) Drosophila mela	nogaster									
	3) Cenorhabditis elegans		4) Wchareria bancrofti										

34.	Select the two correct stat	ements out of the fou	r given below about	lac operon
	i) Glucose or galactose may	bind with the represso	or and inactivate it	
	ii) In the absence of lactose	the repressor binds wi	th the operator region	1
	iii) The z-gene codes for pe	rmease		
	iv) This was elucidated by l	Francois Jacob and Jac	ques Monad	
	The correct statements are			
	1) II and III	2) I and III	3) II and IV	4) I and II
35.	According to the Lac of	- '		
	material is responsible fo lactose?	r suppressing the act	ivity of the operato	r gene in the absence of
	1) Regulator gene	2) Structural gene	3) Promoter gene	4) Repressor gene
36.	An m RNA has some addi	,	,	
	1) Before start codon at 5'es	-		
	2) Before start codon at 3' e	end and before stop cod	lon at 5' end	
	3) Before start codon at 5' e	•		
	4) After start codon at 5'end	d and before stop codo	n at 3' end	
37.	ABO blood groups in hu	mans are controlled l	ov the gene I. it has	three alleles $-I^A$, I^B and
	i. since there are three d			
	phenotypes can occur?			
	1) 3 2) 1 3)4 4) 2			
38.	Which of the following d	lisorders are caused d	ue to recessive auto	somal mutations?
	1) Tuner's syndrome and	sickle cell anaemia		
	2) Edward's syndrome an	d Down's syndrome		
	3) Cystic fibrosis and phe	nlketonuria		
	4) Alzheimer's disease an	d Huntington's chorea		
39.	A man with enlarged bro	easts, sparse body hai	r and XXY genotyp	e is suffering from
	1) Down's syndrome 2) T	uner's syndrome 3) Kl	inefelter syndrome 4) super male
40.	Which of the following is	s a symptom of Down	's syndrome?	
	1) Flat back of head	2) Many "loops" o	n finger tips	
	3) Big and wrinkled tongu			
41.	Genes with multiple phe	,	known as	
	1) Hypostatic genes 2) d			olementary genes
	1, 11, postado gonos 2) u	Spriedo Senes 5) 1 1010	a spie genes i) comp	Jones Solles

42. Which one of the following conditions correctly describes the manner of determining the sex?

- 1) Homozygous sex chromosomes (ZZ) determine female sex in birds
- 2) Xo type of sex chromosomes determine male sex in grasshopper
- 3) XO condition in humans as found in turners syndrome, determines female sex
- 4) Homozygous sex chromosomes (XX) produce male in Drosphila

43. Removal of introns and joining of exons in a defined order during transcription is called

1) Looping 2) inducing 3) Slicing 4) Splicing

44. The lac operon is turned on when allolactose molecules bind to

1) Promoter site 2) operator site 3) mRNA 4) Repressor protein

45. Identify the wrong statements

- 1) In male grasshoppers 50% of the sperms have no sex chromosome
- 2) In domesticated fowls the sex of the progeny depends on the type of sperm that fertilizes the egg.
- 3) The human males have one of their sex chromosomes much shorter than the other
- 4) The male fruit fly is heterogametic

1)	1		2)	2	3)	4		4):	3	5):	3	6)	1	[7]	2	: 8);	2	9)	2	: 10)	2
11)	1		12)	4	: 13)	1	: 1	14)	3	15)	3	16)	2	: 17	2	18)	4	19)	2	20)	1
21)	4		22)	3	23)	2	. 2	24)	3	25)	1	26)	2	27	1	28)	3	29)	1	30)	3
31)	2	:	32)	4	: 33):	3		34):	3	35)	4	36)	3	37	3	38)	3	39)	3	40)	2
41)	3	Ī	42)	2	43)	4	4	14)	4	45)	2										