
ELECTRONIC DEVICES

1. Current flowing in each of the following circuits A and B respectively are:

- 2. Among the following one statement is not correct when a junction diode is in forward bias
 - 1) the width of depletion region decreases
 - 2) free electron on n- side will move towards the junction
 - 3) holes on p -side move towards the junction
 - 4) electron on n- side and holes on p-side will move away from junction

3. In a n - type semiconductor, the fermi energy level lies

- 1) in the forbidden energy gap nearer to the conduction band.
- 2) in the forbidden energy gap nearer to the valence band.
- 3) in the middle of forbidden energy gap
- 4) outside the forbidden energy gap
- 4. Consider a.p-n junction as a capacitor, formed with p and n material acting as thin metal electrodes and depletion layer width acting as separation between them. Basing on this assume that a n-p-n transistor is working as a amplifier in CE configuration. If C_1 and C_2 are the base-emitter and collector emitter junction capacitances, then :

1) $C_1 > C_2$ 2) $C_1 < C_2$ 3) $C_1 = C_2$ 4) $C_1 = C_2 = 0$

- 5. An n-pn transistor power amplifier in C-E configuration gives
 - 1) Voltage amplification only2) Current amplification only
 - 3) Both current and voltage amplification 4) Only power gain of unity

6.	In n-p-n transisto	or, in CE configuration	:						
	(1) The emitter is	heavily doped than the c	collector						
	(2) Emitter and co	llector can be interchang	ged						
	(3) The base regio	n is very thin but is heav	vily doped						
	(4) The convention	nal current flows from b	ase to emitter						
	1. (1) and (2) are o	correct	2. (1) and (3) are con	rrect					
	3. (1) and (4) are a	correct	4. (2) and (3) are correct						
7.	When n - p - n tr	ansistor is used as an a	mplifier:						
	1. electrons move	from base to collector	2. holes moves from	emitter to base					
	3. holes move from	n collector to base	4. holes move from b	base to emitter					
8.	In a transistor ci	rcuit, when the base cu	rrent is increased by	50micro-amperes keeping the					
	collector voltage	fixed at 2 volts, the co	llector current increa	ses by 1mA. The current gain					
	of the transistor i	is							
	1) 20	2) 40	3) 60	4) 80					
9.	A common emitt	er transistor amplifier	has a current gain o	of 50. If the load resistance is					
	4kilo ohm, and ir	put resistance is 500 of	hms, the voltage gain	of amplifier is					
	1) 100	2) 200	3) 300	4) 400					
10.	Consider the folle	owing statements A and	d B identify the correc	ct of the give answer.					
	1) The width of t	he depletion layer in a	p-n junction diode inc	reases in forward bias.					
	2) In an intrinsic	semiconductor the fer	mi energy level is exac	tly in the middle of the					
	forbidden gap								
	1) A is true and B	is false	2) Both A and B are	false					
	3) A is false and E	B is true	4) Both A and B are	true					
11.	A full-wave p-n	diode rectifier uses a l	oad resistor of 1500Ω	. No filter is used. The					
	forward bias re	sistance of the diode is	$10 \boldsymbol{\Omega}$. The efficiency of	f the rectifier is					
	1) 81.2%	2) 40.6%	3) 80.4%	4) 40.2%					
12.	If an intrinsic ser	niconductor is heated,	the ratio of free electr	ons to holes is					
	1) greater than one	2	2) less than one						
	3) equal to one		4) decrease and beco	mes zero					
13.	In a transistor ci	rcuit the base current o	changes from 30 to 90.	If the current gain of the					
	transistor is 30, t	he change in the collect	tor current is						
	1) 4 mA	2) 2 m A	3) 3.6 mA	4) 1.8 mA					

14. A p-n-p transistor is said to be in active region of operation, When:

- 1) Both emitter junction and collector junction are forward biased
- 2) Both emitter junction and collector junction are reverse biased
- 3) Emitter junction is forward biased and collector junction is reverse biased
- 4) Emitter junction is reverse biased and collector junction is forward biased

15. Consider the following statements A and B and identify the correct answer

- 1): Germanium is preferred over silicon in the construction of zener diode.
- 2): Germanium has high thermal stability than silicon in the construction of Zener diode
- 1) Both (1) and (2) are true 2) Both (1) and (2) are false
- 3) (1) is true but (2) is false 4) (1) is false but (2) is true

16. A Zener diode when used as a voltage regulator is connected

(1) in forward bias
(2) in reverse bias
(3) in parallel to the load
(4) in series to the load
(1) and (2) are correct
(2) (2) and (3) are correct
(3) (1) only is correct
(4) only is correct

17. Consider the following statements A and B and identify the correct answer

- (1) A Zener diode is always connected in reverse bias to use it as voltage
- (2) The potential barrier of a p n junction lies between 0.1 to 0.3V, approximately
- 1. A and B are correct 2. A and B are wrong
- 3. A is correct but B is wrong 4. A is wrong but B is correct
- 18. The current gain of transistor in a common emitter circuit is 40. The ratio of emitter current to base current
 - 1) 40 2) 41 3) 42 4) 43

The current gain (B) of a transistor in common emitter mode is 40. To change the collector current by 160mA, the necessary change in the base current is (at constant V_{CE})

1) 0.25A 2) 4 A 3) 4mA 4) 40mA

20. An n-type and p-type silicon can be obtained by doping pure silicon with

- 1) Arsenic and phosphorus2) Indium and aluminium
- 3) Phosphorous and indium 4) aluminium and boron

2) OR gate

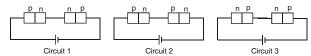
21. The circuit is equivalent to

NOR NOT NAND

1) NOR gate

3) AND gate

4) NAND gate


22. A p-n photodiode is made of a material with a band gap of 2.0 eV. The minimum frequency of the radiation that can be absorbed by the material is nearly 3) 10 x 10^{14} Hz 1) 1 x 10^{14} Hz 2) 20 x 10^{14} Hz 4) 5 x 10^{14} Hz If the lattice parameter for a crystalline structure is 3.6 A, then the atomic radius in fcc 23. crystal is 1) 2.92 Å 3) 1.81 Å 2) 1.27 Å 4) 2.10 A 24. The voltage gain of an amplifier with 9% negative feedback is 10. The voltage gain without feedback will be 1) 1.25 3) 90 4) 10 2) 100 A p-n photodiode is fabricated from a semiconductor with a band gap of 2.5eV. It can 25. detect a signal of wavelength 4) 6000 A 1) 4000 nm 2) 6000 nm 3) 4000 A 26. The symbolic representation of four logic gates are given below (i) . (ii) • (iii) (iv) The logic symbols for OR, NOT and NAND gates the respectively 1) (iv), (i), (iii) 2) (iv), (ii), (i) 3) (i), (iii), (iv) 4) (iii), (iv), (ii) A transistor is operated in common-emitter configuration at $V_{\rm C} = 2$ V such that a change 27. in the base current from 100 μ A to 200 μ A produces a change in the collector current from 5mA to 10mA. The current gain is 1) 100 2) 150 3) 50 4) 75 Sodium has body centered packing. Distance between two nearest atoms is 3.7 A. The 28. lattice parameter is 2) 3.0 A 3) 8.6Å 1) 4.3 A4) 6.8*A* Let n_p and n_e be the number of holes and conduction electrons in an intrinsic 29. semiconductor 1) $n_{p} > n_{e}$ 2) $n_p = n_e$ 3) $n_p < n_e$ 4) $n_p \neq n_e$ 30. A p-type semiconductor is 1) positively charged 2) negatively charged 3) uncharged 4) uncharged at 0 K but charged at higher temperatures

31. If the two ends of a p-n junction are joined by a wire,

1) there will not be a steady current in the circuit

- 2) there will be a steady current from the n-side to the p-side
- 3) there will a steady current from the p-side to the n-side
- 4) there may or may not be a current depending upon the resistance of the connecting wire

32. Two identical p-n junction may be connected in series with a battery in three ways. The

potential difference across the two p-n junctions are equal in

1) circuit 1 and circuit 2

- 2) circuit 2 and circuit 3
- 3) circuit 3 and circuit 1 4) circuit 1 only

33. Two identical capacitors A and B are charged to the same potential V and are connected in two circuits at t=0 as shown in figure. The charges on the capacitors at a time t=CR are, respectively,

1) VC, VC	2) VC/e, VC		
3) VC, VC/e	4) VC/e, VC/e	T.M.J	

34. In a transistor,

1) the emitter has the least concentration of impurity

2) the collector has the least concentration of impurity

3) the base has the least concentration of impurity

4) all the three regions have equal concentrations of impurity

35. Transistor input characteristics curves are the graphs drawn with

1) collector current I_C on y-axis and the collector emitter voltage V_{CE} on x-axis for a constant base current

2) base current I_B on y-axis and the base-collector voltage V_{BE} on x-axis for a constant

collector emitter voltage

3) base current I_B on y-axis and the collector-emitter voltage V_{CE} on x-axis for a constant collector current

4) base current I_B on y-axis and collector current I_C on x-axis with constant base-emitter

voltage

36. Pure or intrinsic semiconductor at absolute zero is a

1) perfect insulator 2) super conductor 3) good conductor 4) semiconductor

37. A doped semiconductor is called

- 1) extrinsic semiconductor
 2) intrinsic semiconductor
- 3) perfect insulator4) perfect conductor

38.	A pure semiconductor	has								
	1) an infinite resistance									
	2) a finite resistance wh	ich does not depend upon	temperature							
	3) a finite resistance wh	ich decreases with temper	ature							
	4) a finite resistance wh	ich increases with tempera	ature							
39.	n-type semiconductor	is obtained by the addition	on of							
	1) pentavalent impurity		2) trivalent impurity							
	3) divalent impurity		4) monovalent impurity							
40.	p-type germanium cry	stal is								
	1) negatively charged		2) positively charged							
	3) electrically neutral		4) none of these							
41.	Temperature coefficient	nt of resistance of a semi	conductor is							
	1) positive	2) negative 3) cons	stant 4) positive or negative							
42.	Depletion region is									
	1) positively charged 2) negatively charged									
	3) completely neutral and has no charge									
	4) a charged region of p	ositive and negative ions a	at the junction							
43.	A p-n junction has		~							
	1) more p-type and less	n-type semiconductor								
	2) more n-type and less	p-type semiconductor								
	3) p and n-type semiconductor in equal quantity									
	4) p and n-type semicon	ductors with depletion lay	ver in between							
44.	Zener diode is used for									
	1) Rectification 2) amp	lification 3) stabilization	4) modulation							
45.	The minority carrier c	oncentration is largely a	function of							
4	1) the amount of doping	>	2) temperature							
	3) forward biasing volta	ge	4) reverse biasing voltage							
46.	Fermi energy is the an	ount of energy which								
	1) a valence electron car	n have at room temperatur	e							
	2) must be given to an e	electron to move it to the c	onduction band							
	3) must be given to a ho	ble to move it to the valence	e band							
	4) a hole can have at room temperature									

47. In the energy band diagram of a p-type semiconductor

- 1) the acceptor band is nearer to the conduction band
- 2) the acceptor band is nearer to the valence band
- 3) the donor band is nearer to the valence band
- 4) the donor band is nearer to the conduction band

48. In a depletion region of p-n junction

- 1) p-side is positively charged and n-side is negatively charged
- 2) n-side is positively charged and p-side is negatively charged
- 3) there is hole concentration on p-side and electron concentration on n-side
- 4) none of these

49. If the reverse bias voltage of a p-n junction is increased within limits, the reverse

saturation current will

- 1) decreases 2) increase
- 3) remain unaffected 4) none of these

50. In the adjacent figure

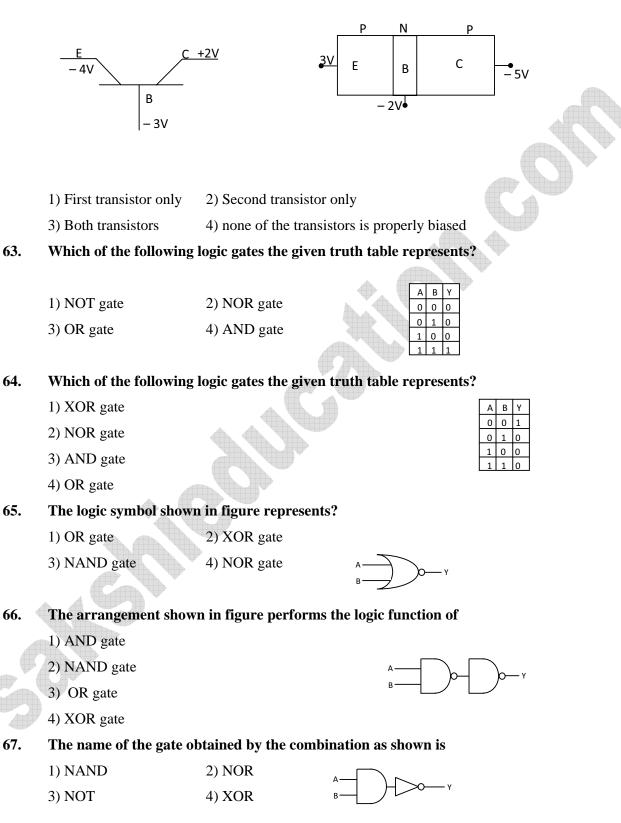
- 1) both (a) and (b) are forward biased
- 2) both (a) and (b) are reverse biased
- 3) (a) is forward biased and (b) is reverse biased
- 4) (a) is reverse biased and (b) is forward biased
- 51. The width of forbidden gap in silicon crystal is 1.2 eV. When the crystal is converted into a n-type semiconductor, the distance of fermi level from conduction band is
 - 1) greater than 0.55 eV 2) equal to 0.55 eV
 - 3) lesser than 0.55 eV 4) equal to 1.1 eV

52. A transistor has

- 1) two junctions 2) three
- 3) four junctions

- 2) three junctions
- 4) a single p-n junction
- 53. In common collector circuit, input resistance is
 - 1) very high 2) very low
 - 3) moderate 4) zero
- 54. In a transistor, if electrons flow into the emitter,
 - 1) holes flow out of the emitter2) electrons flow into the collector
 - 3) electrons flow out of the base 4)
- 4) holes flow out of the collector

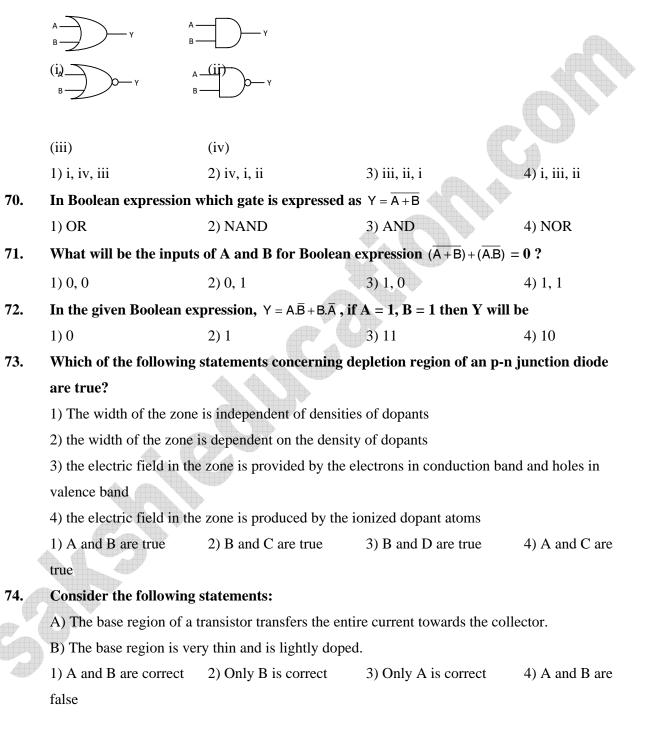
55.	In a p-n-p transistor, the saturation current is	due to the flow of
	1) electrons from the collector to the base	
	2) holes from the collector to the base	
	3) electrons from the emitter to the base	
	4) holes from the emitter to the base	
56.	The most heavily doped region in a transistor	is
	1) the base	2) the collector
	3) the emitter	4) both the emitter and the collector
57.	In a p-n-p transistor, the emitter current in th	e external circuit is
	1) Due to flow of electrons out of the emitter	2) Flow of electrons into the emitter
	3) Flow of holes into the emitter	4) Flow of holes out of the emitter
58.	In a heavily doped junction diode, the width o	f the depletion layer is
	1) very narrow	2) very wide
	3) always has the same width	4) changes with the physical size of the
	diode	
59.	In an unbiased diode, the electric field across t	the junction is directed from the
	1) n side to p side	2) p side to n side
	3) there is no field	4) can be in any direction
60.	In which of the following figures, the diode is f	forward biased ?
	A) ⁻⁴ V B) ³ V	
	C_{0}^{0} V D_{1}^{-2} V D_{1}^{-2} V	2 V
	1) A 2) B	3) C 4) D
61.	In which of the following figures, the diode is i	in reverse bias?
	A) $-7 VO$ $A) $ $-7 VO$	
5	$\begin{array}{c c} & & & & & & \\ \hline 14 \\ C \\ \hline \\ 7 \\ V \\ \end{array} \end{array} \xrightarrow{} D \\ \hline \\ \hline \\ 7 \\ V \\ \end{array} $	


1) A

2) B

4) D

3) C


62. Which one of the following transistors is properly biased in the active region of transistor functioning?

68. Identify the gate represented by the block diagram

1) AND	2) NOT	
3) NAND	4) NOR	

69. Given below are four logic gate symbols. Those for OR, NOR and AND respectively

75. Match the following:

	List – I	List – II						
	a) Arsenic	e) donor impurity						
	b) Emitter	f) highly doped						
	c) Base	g) poorly doped						
	d) Indium	h) acceptor impurity						
	1) a – e, b – g, c – f, d – l	1	2) a – f, b – e, c – g, d – h					
	3) a – f, b – g, c – h, d – e	2	4) $a - e, b - f, c - g, d - h$					
76.	Match the following:							
	List – I	List – II						
	a) Forbidden energy gap semiconductor	of a	e) 10^{-6} m					
	b) Knee voltage of germa	anium diode	f) 1 MeV					
	c) Width of depletion lay	rer	g) 0.7 V					
	d) Forward voltage of sil	icon diode	h) 1 Ev					
			i) 0.3 V					
	1) a–i, b–h, c–e, d–g	2) a–h, b–i, c–e, d–g	3) a–h, b–i, c–f, d–e					
	4) a–f, b–i, c–e, d–g		~					
77.	Match the following:							
	List – I	List – II						
	a) hole	e) negative temperature of	coefficient of resistance					
	b) copper	f) electron gap						
	c) doping	g) positive temperature c						
	d) germanium		o increase the conductivity					
		-e, b-f, c-g, d-h 3) a-f, b-	g, c-h, d-e 4) a-g, b-h, c-e, d-f					
78.	Match the following:							
	List – I		List - II					
	a) Intrinsic semiconducto		e) prepared by adding antimony					
(A)	b) N-type semiconductor		f) immobile ions					
	c) P-type semiconductor		g) silicon					
	d) Depletion layer		h) prepared by adding indium					
	1) a-g, b-e, c-h, d-f	2) a-h, b-f, c-e, d-g 3) a-	e, b-g, c-f, d-h 4) a-f, b-h, c-g, d-e					
79.	Match the following:							
	List – I	List – II						
	a) Emitter	e) transistor						
		www.sakshieducat	ion.com					

	www.sakshieducation.com
b) base	f) moderately doped
c) collector	g) lightly doped
d) transfer of resistance	h) heavily doped
1) a-f, b-e, c-h, d-g	2) a-g, b-f, c-e, d-h 3) a-h, b-g, c-f, d-e 4) a-e, b-h, c-g, d-f
Match the following:	
List – I	List – II
a) conductor	f) 5 eV
b) semiconductor	g) 0 eV
c) insulator	h) no. of holes>no. of electrons
d) n-type semiconductor	i) 1 eV
e) p-type semiconductor	j) no. of electrons>no. of holes
1) a-i, b-g, c-h, d-f, e-j	2) a-f, b-g, c-h, d-e, e-I 3) a-h, b-j, c-i, d-j, e-h
4) a-g, b-i, c-f, d-j, e-h	
Match the following:	
List – I	List – II
a) emitter	f) current conduction by electrons
b) base	g) lightly doped
c) collector	h) current conduction by holes
d) p-n-p transistor	i) highly doned

d) p-n-p transistor i) highly doped

e) n-p-n transistor j) moderately doped

1) a – j, b – g, c – i, d – f, e – h 3) a – g, b – i, c – j, d – h, e – f

2) $a - g$, $b - j$, $c - i$, $d - f$, $e - h$
4) a – i, b – g, c – j, d – h, e – f

82. Match the following:

80.

81.

	List – I	List – II
4	a) current gain	e) $\frac{\beta^2 R_L}{R_i}$
	2) voltage gain	f) i _b +i _c
	3) power gain	g) $\frac{\Delta V_{CE}}{\Delta V_{BE}}$
	4) emitter current, i _e	h) $\frac{\Delta i_{C}}{\Delta i_{B}}$
	1) a-f, b-e, c-f, d-h	2) a-h, b-g, c-e, d-f
	3) a-g, b-e, c-h, d-f	4) a-e, b-h, c-g, d-f

Assertion & Reason: In each of the following questions, a statement is given and a corresponding statement or reason is given just below it. In the statements, marks the correct answer as

- 1) If both Assertion and Reason are true and Reason is correct explanation of Assertion.
- 2) If both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
- 3) If Assertion is true but Reason is false.

4) If both Assertion and Reason are false.

- 83. [A]: Transistor in CE mode can be used as amplifier.
 - [R]: A small change in base current produces a relatively large change in collector current.
- 84. [A]: An unbiased p-n junction diode has a depletion layer.
 - [R]: The depletion layer is formed due to diffusion of electrons and holes.
- 85. [A]: Current gain in a common-emitter transistor circuit is more than unity.

[R]: Base current is a few milliamperes and the collector current is a few micro amperes.

- 86. [A]: In a n-type semiconductor fermi level shifts towards conduction band.[R]: The donor energy levels will be very near to conduction band.
- 87. [A]: In forward bias, width of depletion layer decreases.[R]: In forward bias, barrier potential decreases
- 88. [A]: In forward bias, p-side of junction must be connected to positive potential.[R]: In reverse bias, n-side of junction must be connected to positive potential.
- 89. [A]: A half wave rectifier circuit is operating at n Hz mains frequency. The fundamental frequency in the ripple would be n/2 Hz.

[R]: Zener diode will function only in reverse bias

90. [A]: Diffusion current in a p-n is greater than the drift current in magnitude if the junction is forward biased.

[R]: In steady state, in p-n junction diffusion current equals to the drift current in magnitude

- 91. Assertion: In a transistor the base is made thin Reason: A thin base makes the transistor stable.
- 92. Assertion: A transistor amplifier in common emitter configuration has a low input impedance.Reason: The base to emitter region is forward biased.
- 93 Assertion: The logic gate NOT can be built using diode.
 Reason: The output voltage and the input voltage of the diode have 180⁰ phase difference.
- 94. Assertion: The number of electrons in a p-type silicon semiconductor is less than the output current

Reason: It is due to law of mass action

95. Assertion: In a common emitter transistor amplifier the input current is much less than the output current.

Reason: The common emitter transistor amplifier has very high input impedance.

- 96. Assertion: In common base configuration, the current gain of the transistor is less than unity Reason: The collector terminal is reverse biased for amplification
- 97. Assertion: A p-n junction with reverse bias can be used as a photo-diode to measure light intensity.

Reason: In a reverse bias condition the current is small but is more sensitive to changes in incident light intensity

- 98. Assertion: NAND is universal gateReason: It can be used to describe all other logic gates
- 99. Assertion : In a common-emitter amplifier, the load resistance of the output circuit is 1000 times the load resistance of the input circuit. If $\alpha = 0.98$, then voltage gain is 49×10^3 .

Reason: $\alpha = \frac{\beta}{1-\beta}$ (symbols have their usual meaning)

100. Assertion: Most amplifiers use common emitter circuit configuration Reason: Its input resistance is comparatively higher

1)	3	2)	4	3)	1	4)	1	5)	3	6)	3	7)	1	8)	1	9)	4	10)	3
11)	1	12)	3	13)	4	14)	3	15)	2	16)	2	17)	1	18)	2	19)	3	20)	3
21)	1	22)	4	23)	2	24)	2	25)	3	26)	2	27)	3	28)	1	29)	2	30)	3
31)	1	32)	2	33)	2	34)	3	35)	3	36)	1	37)	1	38)	3	39)	1	40)	3
41)	2	42)	4	43)	4	44)	3	45)	2	46)	2	47)	2	48)	2	49)	3	50)	3
51)	3	52)	1	53)	1	54)	2	55)	1	56)	3	57)	1	58)	1	59)	1	60)	3
61)	2	62)	3	63)	4	64)	2	65)	4	66)	1	67)	1	68)	4	69)	4	70)	4
71)	4	72)	1	73)	3	74)	2	75)	4	76)	2	77)	3	78)	1	79)	3	80)	4
81)	4	82)	2	83)	1	84)	1	85)	3	86)	1	87)	2	88)	4	89)	4	90)	2
91)	3	92)	2	93)	4	94)	1	95)	3	96)	3	97)	1	98)	1	99)	3	100)	1

KEY:

Solutions

1. Ans:3

Sol: In circuit 'A'

$$i = \frac{V}{R} = \frac{8}{2} = 4A$$

[both the 4Ω , resistors are in parallel and both the p-n junction diodes are forward biased] in circuit 'B'

$$i = \frac{V}{R} = \frac{8}{2} = 2A$$

[one p-n junction diode is in reverse bias, hence no current flows through this diode]

- 2. Ans: 4
- Sol. Electrons on n-side and holes on p-side will move towards junction
- 3. Ans: 1
- 4. Ans: 1
- 5. Ans: 3
- 6. Ans: 3
- Sol. a) In transistor emitter is heavily doped than collector.

2) Conventional current is opposite to the direction of flow of electrons.

- 7. Ans: 1
- 8. Ans: 1

Sol: Current gain of transistor
$$\beta = \frac{\Delta I_C}{\Delta I_R} = \frac{1 \times 10^{-3}}{50 \times 10^{-6}} = 20$$

9. Ans :4

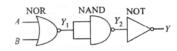
Voltage gain = $50 \times \frac{4000}{500} = 400$

10. Ans: 3

- 12. Ans: 3
- Sol. In an intrinsic semiconductor number of free electron and holes are equal when they are hated because it is a pure semi conductor

13. Ans :4

Sol:
$$\Rightarrow \beta = \frac{\Delta I_{C}}{\Delta I_{B}} \Rightarrow 30 = \frac{\Delta I_{C}}{(90 - 30)\mu A}$$
$$\Delta I_{C} = 30 \times 60 \times 10^{-6} = 1800 \times 10^{-6}$$
$$= 1.8 \text{mA}$$


- 14. Ans: 3
- Sol. In an active region emitter junction is forward biased and collector junction is reverse biased.
- 15. Ans: 2
- 16. Ans: 2
- Sol. To use Zener diode as a voltage regulator it is connected in reverse bias and parallel to the load.
- 17. Ans: 1
- Sol. To use Zener diode as a voltage regulator it is connected in reverse bias and parallel to the load.
- 18. Ans :2
- Sol: $I_E = I_C + I_B$
 - $$\begin{split} \Delta I_{E} &= \Delta I_{C} + \Delta I_{B} \\ \Rightarrow \frac{\Delta I_{E}}{\Delta I_{B}} &= \frac{\Delta I_{C}}{\Delta I_{B}} + 1 = 40 + 1 = 41 \end{split}$$
- 19. Ans : 3

$$\beta = \frac{\Delta I_c}{\Delta I_B} \Longrightarrow \Delta I_B = \frac{\Delta I_c}{\beta} = 4mA$$

- 20. Ans: 3
- Sol. For obtaining 'n' type semi conductor V group element is doped with silicon. Ex: Phosphorus
 - For obtaining 'p' type semiconductor III group element is doped with silicon.

Ex: Indium

21: (a)

Same as NOR Gate

NOR Gate

- 0 0 1 0 1 0
- 1 0 0

1 1 0

22. (4) Band gap = 2 eV

Wavelength of radiation corresponding to this energy,

$$\lambda = \frac{h_c}{E} = \frac{12400\,eV}{2\,eV} = 6200\,\overset{0}{A}$$

The frequency of this radiation

$$= \frac{c}{\lambda} = \frac{3 \times 10^8 \, m/s}{6200 \times 10^{-10} \, m}$$
$$\implies v = 5 \times 10^{14} \, \text{Hz}$$

23. (2) The atomic radius in a f.c.c. crystal is $\frac{a}{2\sqrt{2}}$

Where a is the length of the edge of the crystal.

$$\therefore \text{ Atomic radius} = \frac{3.6 \overset{\circ}{A}}{2\sqrt{2}} = 1.27 \overset{\circ}{A}$$

24. (2) One applies negative feed-back, which reduces the output but makes it very stable. For voltage amplification amplifiers the value of output voltage without the negative feed-back could be very high. The value max shown here is 100.

25. (3) Band
$$gap = 2.5 eV$$

$$= \frac{12400 eV A}{2.5 eV} = 4960 A$$

0

4000 A can excite this.

(2)

OR gate, NOT gat and NAND gates are (iv), (ii) and (i) respectively.

(iii) represents AND gate

27. (3) For common emitter, the current gain is $\beta = \left(\frac{\Delta I_C}{\Delta I_B}\right)_{V_{CE}}$

i.e., at a given potential difference of CE

$$\beta = \frac{\left(10 \times 10^{-3} - 5 \times 10^{-3}\right)A}{\left(200 \times 10^{-6} - 100 \times 10^{-6}\right)A} = \frac{5 \times 10^{-3}}{100 \times 10^{-6}} = 50$$

28. (1) Distance between nearest atoms in body centered cubic lattice (bc3), $d = \frac{\sqrt{3}}{2}a$

Given d = 3.7
$$\stackrel{0}{A}$$
, a = $\frac{3.7 \times 2}{\sqrt{3}}$ = 4.3 $\stackrel{0}{A}$

91. Sol:(3)

The base is lightly doped and very thin, this constructional feature is key of transistor action due to which only few holes (less than 5%) are able to combine with the electron in base region. Most of the holes coming from the emitter are able to diffuse through the base region to the collector region.

Input impedance of common emitter configuration = $\frac{\Delta V_{BE}}{\Delta i_{P}}\Big|_{V_{CE}=constant}$

Where ΔV_{BE} = voltage across base and emitter, Δi_B = base current which is order of few microampere.

Thus input impedance of common emitter is low.

93 Sol :(4)

In diode the output is in same phase with the input therefore it cannot be used to built NOT gate.

94. Sol :(1)

According to law of mass action, $n_1^2 = n_e n_h$.

In p-type semiconductor $n_h > n_e$.

A good amplifier stage is one which has high input resistance and low output resistance. A transistor in CB configuration has a very low resistance ($\approx 20\Omega$) and a very high output resistance ($\approx 1M\Omega$). It is just the reverse of what is required. The CE configuration is better, its input resistance is about 1 $k\Omega$ and output resistance about 10 $k\Omega$. Although input resistance of CE is not very high but it still prefers better amplifier.

96. Sol :(3)

The common base configuration of npn transistor is used for voltage amplification. The current amplification is very small. Assertion is true. The collector is reverse biased for voltage amplification. The reason given has not mentioned that is voltage amplification. The reason is therefore incomplete by itself. It is wrong

97. Sol :(1)

98. Sol :(a) Both assertion and reason are true and reason is the correct explanation of assertion. NAND and NOR gates are treated as universal gates because all other basic gates AND gate OR gate and NOT gate can be constructed using only NAND gate (or NOR gate)

99.. Sol:(3)

We know that

$$\alpha = \frac{\Delta i_C}{\Delta i_E}$$
 and $\beta = \frac{\Delta i_C}{\Delta i_B}$

Also
$$\beta = \frac{\alpha}{1 - \alpha} = \frac{0.98}{1 - 0.98} = 49$$

:. Voltage gain =
$$\beta = \frac{R_2}{R_1} = 49 \times 1000 = 49 \times 10^3$$

Most amplifiers use the common emitter circuit configuration because the circuit offers both current and voltage gains resulting in much higher power gain that can be obtained by a common-base amplifier. The other consideration for the use of the common-emitter amplifier is that its input resistance is higher and of the order of load resistance.