ATOMS AND NUCLEI

- 1. The radioactivity of a sample is 'X' at a time 't₁' and 'Y' at a time 't₂'. If the mean life time of the specimen is τ , the number of atoms that have disintegrated in the time interval (t₁-t₂) is :
 - 1) $Xt_1 Yt_2$ 2) X-Y 3) $\frac{X Y}{\tau}$ 4) $(X Y)\tau$
- 2. Let F_{pp} , F_{pn} and F_{nn} denote the magnitudes of the nuclear force by a proton on a proton , by a proton on a neutron and by a neutron on a neutron respectively when the separation is less than one fermi, then

1) $F_{pp} > F_{pn} = F_{nn}$ 2) $F_{pp} = F_{pn} = F_{nn}$ 3) $F_{pp} > F_{pn} > F_{nn}$ 4) $F_{pp} < F_{pn} = F_{nn}$

- 3. In sun, the important source of energy is
 - 1) proton-proton cycle

- 2) carbon-nitrogen cycle
- 3) carbon-carbon cycle 4) nitrogen-nitrogen cycle

4. A free neutron decays spontaneously into:

- 1) a proton, an electron and an anti-neutrino
- 2) a proton, an electron and a neutrino
- 3) a proton and electron
- 4) a proton, an electron, a neutrino and an anti-neutrino

5. Particles and their anti-particles have:

- 1) the same masses but opposite spins
- 2) the same masses but opposite magnetic moments.
- 3) the same masses and same magnetic moments
- 4) opposite spins and same magnetic moments

6. Consider the following two statements A and B and identify the correct answer given below:

- A: Nuclear density is same for all nuclei
- B: Radius of the nucleus (R) and its mass number (A) are related as $\sqrt{A} \propto R^{1/6}$
- 1) Both A and B are true 2) Both A and B are false
- 3) A is true and B is false 4) A is false B is true

7.	The mass defect in a particular nuclear reaction is 0.3grams. The amount of energy									
	liberated in kilowatt hours is : (C=3x10 ⁸ m/s)									
	1) $7.5 \times 10^5 KWH$	2) $7.5 \times 10^4 KWH$	3) $7.5 \times 10^3 KWH$	4) $7.5 \times 10^6 KWH$						
8.	Consider the follo	wing statements A and	l B.							
	Identify the correct	choice in the given ans	wer.							
	(A) p-p, p-n, n-n fo	orces between nucleons	are not equal and charge	e dependent						
	(B) In nuclear read	ctor the fission reaction	will be in accelerating	g state if the value of neutron						
	reproduction factor	: k >1								
	1) Both A and B are correct2) Both A and B are wrong									
	3) A is wrong and 1	B is correct	4) A is correct and B i	s wrong.						
9.	True masses of n	eutron, proton and d	euteron in a.m.u are	1.00893,1.00813 and 2.01473						
	respectively. The packing fraction of the deuteron in a.m.u is									
	1) 11.65 x 10–4	2) 23.5 x 10 ⁻⁴ 3) 7	3.6 x10 ⁻⁴	4) 47.15 x 10 ⁻⁴						
10.	A heavy nucleus a	t rest breaks into two	fragments which fly of	f with velocities 8:1. The						
	ratio of radii of fr	agments is								
	1) 1:2	2) 1:4	3) 4:1	4) 2:1						
11.	Atomic mass of ${}^{13}_6$	C is 13.00335 amu and	l its mass number is 13	3.0. If 1amu=931 MeV,						
	binding energy o	of the neutrons present	in the nucleus is:							
	1) 0.24 MeV	2) 1.44 MeV	3) 1.68 MeV	4) 3.12 MeV						
12.	The following par	ticles are Baryons:								
	1) Nucleons and hy	perons	2) Nucleons and lepto	ns						
	3) Hyperons and le	ptons	4) Hyperons and Bosc	ons						
13.	Electron belongs (to the following class of	f elementary particles							
	1) Hardon	2) Lepton	3) Boson	4) Baryon						
14.	Assertion (A): Nu	iclear forces arise fro	m strong Columbic i	nteractions between protons						
	and neutrons.									
	Reason (R): Nuclea	ar forces are independen	t of the charge of the nu	acleons.						
	1) Both A and R ar	e true and R is the corre	ect explanation of A							
2	2) Both A and R ar	e true but R is the not co	orrect explanation of A							
	3) A is true, but R i	is false 4) A is false, but	R is true							
15		possesses half integral	-							
	1) Photon	2) Pion	3) Proton	4) K-meson						

16 Matching pairs in the two lists given below are

	I tat I			T tot II							
				-							
	· •		,								
	C) Pions		G) Pa	rticles wi	th zero mass ar	nd with aspin of unity					
	D) Leptons		H) De	ecay to –	mesons						
			I) Ma	I) Mass less particles with probable spin of two units.							
	1) A-E,B-H,C-G	6,D-I 2) A-I,I	1 2) A-I,B-E,C-H,D-F 3) A-H,B-F,C-I,D-E 4) A-F,B-G,C-E,D-H								
17.	A nucleus splits	s into two nu	clear parts h	aving ra	dii in the ratio	o 1:2. Their velocities are in	1				
	the ratio										
	1) 8:1	2) 6:1		3) 4:1		4) 2:1					
18.	A: Density of n	ucleus is inde	ependent of i	ts mass i	number						
	B: Beryllium is used as a moderator in nuclear reactors										
	1) Both A and B	are correct		2) Both	A and B are wi	rong					
	A) GravitonsE) HyperonsB) BaryonsF) PositronsC) PionsG) Particles with zero mass and with aspin of unityD) LeptonsH) Decay to -mesons1) Mass less particles with probable spin of two units.1) A-E,B-H,C-G,D-I2) A-I,B-E,C-H,D-F3) A-H,B-F,C-I,D-E4) A-F,B-G,C-E,D-HA nucleus splits into two nuclear parts having radii in the ratio1) 8:12) 6:13) 4:14) 2:1A: Density of nucleus is independent of its mass numberB: Beryllium is used as a moderator in nuclear reactors1) Both A and B are correct2) Both A and B are wrong3) A is correct, B is wrong4) A is wrong, B is correctIn Carbon-Nitrogen fusion cycle, protons are fused to form a helium nucleus, positrand release some energy. The number of protons fused and the number of positrrelease in this process respectively are1) 4.42) 4.23) 4:54) 3:511:52) 2:53) 4:54) 3:5In a nuclear reactor using U ²³⁵ as a fuel, the power output is 4.8MW. The numberrissions per second is										
19.	In Carbon-Nitr	ogen fusion	cycle, proto	ns are fi	used to form a	a helium nucleus, positrons	5				
	A) GravitonsE) HyperonsB) BaryonsF) PositronsC) PionsG) Particles with zero mass and with aspin of unityD) LeptonsH) Decay to -mesons1) Acs.B-H.C-G.D-I2) A-I.B-E.C-H.D-F3) A-H.B-F.C-I.D-E4) A-F.B-G.C-E.D-HA nucleus splits into two nuclear parts having radii in the ratio 1:2. Their velocities are in the ratio1) 8:12) 6:13) 4:14) 2:1A: Beryllium is used as a moderator in nuclear reactors1) Both A and B are correct2) Both A and B are wrong3) A is correct, B is wrong4) A is wrong, B is correctIn Carbon-Nitrogen fusion cycle, protons fused and the number of positrons and release some energy. The number of protons fused and the number of positronsceleased in this process respectively are1) 1:52) 2; 53) 4:54) 3:5In a nuclear reactor using U ²³⁵ as a fuel , the power output is 4.8MW. The number of fissions per second is										
	A) GravitonsE) Hyperons3) BaryonsF) PositronsC) PionsG) Particles with zero mass and with aspin of unityD) LeptonsH) Decay to -mesons1) Mass less particles with probable spin of two units.1) A-E,B-H,C-G,D-I2) A-I,B-E,C-H,D-F3) A-H,B-F,C-L,D-E4) A-F,B-G,C-E,D-HA nucleus splits into two nuclear parts having radii in the ratio1:2. Their velocities are in(1) 8:12) 6:13) 4:14) 2:1A: Density of nucleus is independent of its mass number3) A is correct, B is wrong4) A is wrong, B is correct(1) 8:12) 6:13) 2.44) 4.6Beryllium is used as a moderator in nuclear reactors3) A is correct, B is wrong4) A is wrong, B is correct(1) 4.42) 4.23) 2.44) 4.6The ratio of radii of nuclei 13Al ²⁷ and 52Te ¹²⁵ is1) 1:52) 2:5(1) 1:52) 2:53) 4:54) 3:5(n a nuclear reactor using U ²³⁵ as a fuel, the power output is 4.8MW. The number of issions per second is										
	1) 4,4	2) 4,2		3) 2,4		4) 4,6					
20.	The ratio of rad	lii of nuclei ₁	3Al ²⁷ and 5	₂ Te ¹²⁵ i	s						
	1) 1 : 5	2) 2: 5		3) 4 : 5		4) 3 : 5					
21.	In a nuclear re	actor using U	1 ²³⁵ as a fu	iel, the	power output	is 4.8MW. The number of	f				
				, , .	I I						
	700		-200MoV 1	0x - 1.6x	10-19T)						
	A) GravitonsE) HyperonsB) BaryonsF) PositronsC) PionsG) Particles with zero mass and with aspin of unityD) LeptonsH) Decay to -mesonsJ) Mass less particles with probable spin of two units.1) A-E,B-H,C-G,D-I2) A-I,B-E,C-H,D-F3) A-H,B-F,C-L,D-E4) A-F,B-G,C-E,D-HA nucleus splits into two nuclear parts having radii in the ratio 1:2. Their velocities are in the ratio1) 8:12) 6:13) 4:14) 8:12) 6:13) 4:14) A is wrong, B is correct1) Both A and B are worng3) A is correct, B is wrong4) A is wrong, B is correctIn Carbon-Nitrogen fusion cycle, protons are fused to form a helium nucleus, positrons and release some energy. The number of protons fused and the number of positrons released in this process respectively are1) 1:52) 2:53) 4:54) 3:5I) 1:52) 2:53) 4:54) 3:5In a nuclear reactor using U ²³⁵ as a fuel, the power output is 4.8MW. The number of fissions per second is										
22.											
Ϋ́́Ω	respectively in	n units of U(1 u = 931.5	MeV/c ²)	and BE repre	esents its bonding energy in	1				
P	MeV, then										
	1) $M(A,Z) = Z$	$M_p + (A-Z)M$	n - BE	2) M($\mathbf{A},\mathbf{Z})=\mathbf{Z}\mathbf{M}_{\mathrm{p}}+0$	$(A-Z)M_n - BE/c^2$					
	3) M(A,Z) = Z	$M_p + (A-Z)M$	$n - BE/c^2$	4) M($\mathbf{A},\mathbf{Z})=\mathbf{Z}\mathbf{M}_{\mathrm{p}}+0$	$(A-Z)M_n + BE$					
23.	Two nuclei ha	ave mass nu	nbers in the	ratio of	1:3. The rati	o of their nuclear densities	5				
	would be										
	1) (3) ^{1/3} :1	2) 1:1		3) 1:3		4) 3:1					

24. The ground state energy of hydrogen atom is -13.6 eV. When its electron is in the first excited state, its excitation energy is

1) 10.2 eV 2) 0 3) 3.4 eV 4) 6.8 eV

25. Two radioactive materials X_1 and X_2 have decay constants 5λ and λ respectively. If initially they have the same number of nuclei, then the ratio of the number of nuclei of X_1 to that X_2 will be 1/e after a time

1) $1/4\lambda$ 2) e/λ 3) λ 4) $\frac{1}{2}\lambda$

- 26. In the nuclear decay given below ${}^{A}_{Z}X \rightarrow {}^{A}_{z+1}Y \rightarrow {}^{A-4}_{Z-1}B^* \rightarrow {}^{A-4}_{Z-1}B$ the particles emitted in the sequence are
 - 1) γ, β, α 2) β, γ, α 3) α, β, γ 4) β, α, γ

27. The number of beta particles emitted by a radioactive substance is twice the number of alpha particles emitted by it. The resulting daughter is an
1) Isomer of parent 2) isotone of parent 3) isotope of parent 4) isobar of parent

28. In a Rutherford scattering experiment when a projectile of charge z₁ and mass M₁, approaches a target nucleus of charge z₂ and mass M₂, the distance of closes approach is r0. The energy of the projectile is

1) directly proportional to $z_1 z_2$	2) inversely proportional to z_1
---------------------------------------	------------------------------------

3) directly proportional to mass M_1 4) directly proportional to $M_1 \times M_2$

29. Which of the following can be detected by a magnet?

1) Gamma rays2) beta rays3) radio waves4) ultra-violet rays

- **30.** The ratio of the radii of the nuclei of ${}_{13}\text{Al}^{27}$ and ${}_{52}\text{Te}^{125}$ is approximately 1) 6:10 2) 13:52 3) 40:177 4) 14:73
- **31.** The number of neutrons in an atom X of atomic number Z and mass number A is 1) Z-A 2) Z 3) A-Z 4) A

32. The radius of a nucleus changes with the mass number A of the nucleus as 1) $r \propto A^{2/3}$ 2) $r \propto A^{1/3}$ 3) $r \propto A^0$ 4) $r \propto A$

33.The density of a nuclear matter varies with mass number A as1) $d \propto A^3$ 2) $d \propto A^2$ 3) $d \propto A$ 4) $d \propto A^0$ 34.The average binding energy of nucleus is

- 1) 8 eV 2) 8 keV 3) 8 MeV 4) 8 BeV
- 35. In a fusion process, a proton and a neutron combine to form a deuterium nucleus. If m_p and m_n denote the mass of a proton and the mass of a neutron respectively, the mass of the deuterium nucleus is

	1) Equal to (m _p +	-m _n)	2) greater than (m	m_p+m_n)					
	3) less than (m _p -	+m _n)	4) it has no relation	on with the given masses					
36.	The nuclei ${}_{6}C^{12}$	³ and ₇ N ¹⁴ can be descri	bed as						
	1) Isotones	2) isobars	3) isomers	4) isotopes					
37.	Slow neutrons	are sometimes referred t	o as thermal neutro	ons because					
	1) they are a sor	t heat radiations							
	2) they are in the	ermal equilibrium							
	3) they are capa	ble of generating heat							
	4) their energies	are of the same order as t	hat of molecular energy	rgies at ambient temperatures					
38.	In a stable nuc	lei, the number of neutro	ons (N) is related to	the number of protons Z in					
	neutral atom as	5							
	1) N <z< th=""><th>2) N+Z</th><th>3) N>Z</th><th>4) N ≥Z</th></z<>	2) N+Z	3) N>Z	4) N ≥Z					
39.	In the reaction	represented by ${}_ZX^A \to {}_Z$	$_{Z-2}Y^{A-4} \rightarrow _{Z-2}Y^{A-4} \rightarrow$	$_{Z-1}K^{A-4}$ the decays in the					
	sequence are								
	1) α,β, γ	2) β, γ,α	3) γ,α,β	4) α,γ, β					
40.	The number of	neutrons in a chain read	tion increases in	i increases in					
	1) arithmetic pro	ogression	2) geometric progression						
	3) Harmonic pro	ogression	4) none of these						
41.	Hydrogen bom	b is based on the princip	le of						
	1) fission	2) fusion	3) electrolysis	4) ionization					
42.	A good modera	tor should							
	1) be a gas		2) have appetite f	or neutrons					
	3) be light in ma	ass number	4) all of these						
43.	The main sour	ce of energy in the sun is	due to						
	1) the burning o	f hydrogen in oxygen							
•	2) fusion of uran	nium present in the sun							
	3) the energy lib	perated in the fusion proton	ns during the synthes	is of heavier nuclei					
	4) gravitational	contraction							
44.	In the nuclear	decay, $_7N^{13} \rightarrow _6C^{13}+()+($) the particles repre	esented by the two parentheses					
	are								
	1) neutron and γ	- ray	2) positron and ne	eutrino					
	3) positron and a	antineutrino	4) positron and el	ectron					

45. During a nuclear fusion reaction

- 1) a heavy nucleus breaks into two fragments by itself
- 2) a light nucleus bombarded by thermal neutrons brakes up
- 3) a heavy nucleus bombarded by thermal neutrons breaks up
- 4) two light nuclei combine to give a heavier nucleus and possibly other products

46. Fusion reactions take place at high temperature because

- 1) atoms are ionised at high temperature
- 2) molecules break up at high temperature
- 3) nuclei break up at high temperature
- 4) kinetic energy is high enough to overcome repulsion between nuclei
- 47. If the nuclear force between two protons, two neutrons and between proton and neutron is denoted by F_{pp}, F_{nn} and F_{pn} respectively, then

1) $F_{pp} = F_{nn} = F_{pn}$ 2) $F_{pp} \neq F_{nn}$ but $F_{pp} = F_{pn}$ 3) $F_6 = F_6 = F_6$ 4) $F_{pp} \neq F_{nn} \neq F_{pn}$

48. Nuclear force is a

1) short range repulsive force	2) long range repulsive force
--------------------------------	-------------------------------

- 3) short range attractive force 4) long range attractive force
- 49. The age of pottery is determined by archeologists using a radio isotope of

1) carbon	2) cobalt		3) iodine	4) phosphorus
-----------	-----------	--	-----------	---------------

50. The equation, $4_1H^1 \rightarrow {}_2He^4 + 2_{+1}e^0 + 26$ MeV represents

1) β -decay 2) γ -decay 3) fusion 4) fission

- 51. Of the following atoms ${}_{6}C^{14}$, ${}_{7}N^{13}$, ${}_{88}Ra^{236}$, ${}_{7}N^{14}$, ${}_{8}O^{16}$ and Rn a pair of isobars is 1) ${}_{6}C^{14}$, ${}_{7}N^{13}$ 2) ${}_{7}N^{13}$, ${}_{7}N^{14}$ 3) ${}_{6}C^{14}$, ${}_{7}N^{14}$ 4) ${}_{6}C^{14}$, ${}_{8}O^{16}$
- 52. In the above question a pair of isodiapheres is 1) ${}_{88}\text{Ra}^{236}$, ${}_{88}\text{Ra}^{232}$ 2) ${}_{7}\text{N}^{13}$, ${}_{7}\text{N}^{14}$ 3) ${}_{6}\text{C}^{14}$, ${}_{7}\text{N}^{14}$ 4) ${}_{7}\text{N}^{14}$, ${}_{8}\text{O}^{16}$

53. Mass defect of an atom refers to

1) inaccurate measurement of mass of neutrons

- 2) mass annihilated to produce energy to bind the nucleus
- 3) packing fraction
- 4) difference in the number of neutrons and protons in the nucleus

54. For the fission of heavy nucleus, neutron is more effective than proton or alpha particle because

- 1) neutron is heavier than alpha particle
- 2) neutron is lighter than alpha particle
- 3) neutron is uncharged4) neutron moves with a small velocity

55.	A deuterium nucleus 2_1H combines with a tritium nucleus 3_1H to form a heavier helium									
	nucleus ⁴ ₂ He with the	e release of a neutron	$n \left(\begin{smallmatrix} 1 \\ 0 \end{smallmatrix} \right)$. The fusion real	action is represented by the						
	equation $^{2}_{1}H+^{3}_{1}H\rightarrow^{4}_{2}H$	$e + {}_0^1 n$. In this reaction	n, the mass of ${}^{4}_{2}$ He + n	nass of ¹ ₀ n is						
	1) less than the mass of	of $^{2}_{1}H$ +mass of $^{3}_{1}H$								
	2) greater than the ma	ss of $^{2}_{1}H$ +mass of $^{3}_{1}H$								
	3) the same as the mas	ss of $^{2}_{1}H$ +mass of $^{3}_{1}H$								
	4) twice the mass of ${}_{1}^{2}H$ +mass of ${}_{1}^{3}H$									
56.	Which of the following are conserved in nuclear reactions?									
	1) mass number and e	nergy	2) mass number and	charge number						
	3) charge number and	mass 4) mass	number, charge numbe	er and energy						
57.	In carbon-nitrogen	nuclear fusion cycle	e, protons are fused	to form a helium nucleus,						
	positrons and releas	se some energy. The	e number of protons	s fused and the number of						
	positrons released in	this process respect	ively are							
	1) 4, 4	2) 4, 2	3) 2, 4 4) 4, 6							
58.	Nuclear forces are									
	a) charge dependent	b) spin dependent	c) short ranged	d) neutral						
	1) only a and b are tru	le	2) only a and c are tr	ue						
	3) only b and d are tru	ie	4) only b and c are true							
59.	In the fission of U ²³⁵									
	a) slow neutron is abs	orbed by U ²³⁵								
				umber varies from 34 to 58						
	c) about 200 MeV ene		sion							
	d) the product are alw	•								
4	1) only a, b & c are tru		2) only b and d are tr							
	3) only a and c are true		4) only b and c are tr	ue						
60.	Which of the following									
	-		e stars is carbon nitroge	en cycle						
Ø	b) it is generally obser									
	-	-	stars is proton-proton	cycle						
	d) it takes place at a te	-								
	1) only a and b are tru		2) only b and d are tr							
	3) only a and c are true	e	4) only c and d are tr	ue						

61. Identify the correct order of increasing order of B.E per nucleon of the following nuclei

a) Helium	b) Carbon	c) Oxygen	e) Iron
1) a-b-c-d	2) d-c-b-a	3) c-b-d-a	4) c-b-a-b

62. Match the following

List I	List II		
a) Artificial Radioact	tivity e) Bethe		
b) Carbon-Nitrogen	cycle f) Fermi		
c) Carbon dating	g) Rutherfo	ord	
d) Transmutation of	atomic		
nuclei by α -particles	h) Libby		
1) a-e, b-f, c-g, d-h	2) a-f, b-e, c-h, d-g	3) a-h, b-g, c-f, d-e	4) a-g, b-h, c-e, d-f

63. Match the following

List II
e) Moderation
f) Control rod
g) Fuel
h) Coolant

1) a-f, b-g, c-e, d-h 2) a-h, b-g, c-e, d-f 3) a-e, b-g, c-f, d-h 4) a-h, b-g, c-f, d-e Assertion & Reason: In each of the following questions, a statement is given and a corresponding statement or reason is given just below it. In the statements, marks the correct answer as

1) If both Assertion and Reason are true and Reason is correct explanation of Assertion.

2) If both Assertion and Reason are true but Reason is not the correct explanation of Assertion.

3) If Assertion is true but Reason is false.

4) If both Assertion and Reason are false.

64. [A]: At least one thermal neutron should be available to initiate the fission reaction.

[R]: The state of the chain reaction depends on the neutrons multiplication factor.

65. [A]: Neutron flux in the interior of a nuclear reactor can be increased using neutron reflector.

[R]: Fast neutrons can be changed into slow neutrons or thermal neutrons.

66 [A]: Cadmium or Boron rods are generally used as control rods.

[R]: Cadmium or Boron rods slow down fast moving neutrons.

[A]: In the fission of uranium nuclei on an average 2.5 neutrons are emitted per fission.[R]: In the fission of uranium, the number of prompt neutrons will change with the products.

68. [A]: The penetrating power of neutron is high.

[R]: Neutron is charge less.

69 [A]: The velocity of de-Broglie's wave associated with a moving particle is greater than the velocity of light.

[R]:de-Broglie waves are not electromagnetic waves.

- 70 [A]: Density of the nucleus is almost same for all nuclei.[R]: Nuclear density is independent of atomic number
- 71 A] : Nuclear density is same for all nuclei.
 - [R]: Radius of the nucleus (R) and its mass number (A) are related as $\sqrt{A} \alpha R^{1/6}$.
- 72 [A] : A fusion reaction is a powerful source of energy.
 - [R] : Fusion reaction takes place at a very high temperature (10^6 K) .
- 73 [A] : Electrons are not expected to be found inside the nucleus.
 - [R] : Electrons are much lighter than protons or neutrons.

KEY:

										07 001003000									
1)	4	2)	2	3)	1	4)	1	5)	2	6)	3	7)	4	8)	3	9)	3	10)	1
11)	3	12)	1	13)	2	14)	4	15)	3	16)	2	17)	1	18)	3	19)	2	20)	2
21)	1	22)	3	23)	2	24)	1	25)	1	26)	4	27)	3	28)	3	29)	2	30)	1
31)	3	32)	3	33)	4	34)	3	35)	3	36)	1	37)	4	38)	4	39)	4	40)	2
41)	2	42)	3	43)	3	44)	2	45)	4	46)	4	47)	1	48)	3	49)	1	50)	3
51)	3	52)	4	53)	2	54)	3	55)	1	56)	4	57)	2	58)	4	59)	1	60)	3
61)	1	62)	2	63)	2	64)	3	65)	1	66)	2	67)	3	68)	2	69)	1	70)	3
71)	2	72)	3	73)	3			1		<u>.</u>				. <u>i</u>					

Solutions

1.

Ans: 4

Sol: The relation between $t_{1/2}$ and λ is $t_{1/2} = \frac{0.693}{\lambda}$

 $\lambda t_1 = X \dots (1)$ $\lambda t_2 = Y \dots (2)$

from (1) and (2)

$$\lambda (t_1 - t_2) = X - Y \implies t_1 - t_2 = \frac{X - Y}{\lambda}$$

but
$$\tau = \frac{1}{\lambda}$$

 $\therefore t_1 - t_2 = (X - Y) \tau$

2.

Ans: 2

Sol. Nuclear forces are charge independent

3. Ans: 1

Sol. Because of nuclear fusion proton - proton cycle takes place

4.

Ans: 1

Sol.
$$_{o}n^{1} \longrightarrow_{_{-1}e^{0}} +_{_{1}}H^{1} +$$

5. Ans: 2

Sol. same masses but opposite electromagnetic properties like charge, magnetic moment etc

6.

Ans:3

Sol: Density remains constant

(A):
$$\rho$$
 = constant
(B): (B) $R \propto A^{1/3} \left[\sin ce \ R = R_0 A^{1/3} \right]$
 $\Rightarrow R^3 \propto A$
 $\Rightarrow R^{3/2} \propto \sqrt{A}$

7.

Ans: 4

Sol: From Einstein mass - energy equivalence

$$\Delta E = \Delta MC^{2}$$

= 0.3×10⁻³×(3×10⁸)²
= 2.7×10¹³ J = $\frac{2.7\times10^{3}}{3600\times10^{3}}$
= 0.75 × 10⁷ KWH
= 7.5×10⁶ KWH

8.

Ans :3

A: The p-n, p-p and n-n nuclear forces are equal and charge independent.

B: $K = \frac{Neutrons in one generation}{Neutrons in the previous generation}$

Where k is called neutron multiplication factor

If K > 1, the neutron population keeps on increasing after the completion of each neutron cycle which takes time of the order of a millisecond. Which is called as super critical state

9.

Ans :3

Sol: Packing fraction = $\frac{M-A}{A}$, where M is the atomic mass and A is the mass number.

$$P = \frac{M-A}{A} = \frac{2.01473 - 2}{2} = 73.6 \times 10^{-4}$$

10.

Ans:1

Sol Momentum conservation gives

$$m_1 v_1 = m_2 v_2$$

$$\Rightarrow \frac{v_1}{v_2} = \frac{8}{1} = \frac{m_2}{m_1}$$

$$\Rightarrow \frac{m_2}{m_1} = \frac{1}{8} \approx \frac{A_1}{A_2}$$

$$\frac{R_1}{R_2} = \left(\frac{A_1}{A_2}\right)^{1/3} = \left(\frac{1}{8}\right)^{1/3} = \frac{1}{2}$$

11.

Ans: 3

- Sol: Mass defect = 0.00335 amu
 - : binding energy of neutrons

$$= \left[\frac{(0.00335)(931)}{13}\right] 7$$
$$= 1.679 = 1.68 \, MeV$$

12.

Ans: 1

Sol. Nucleons and hyperons are called Baryons

13.

Ans: 2

Sol. As electrons have lighter mass. Therefore they belong to leptons

14.

Ans: 4

15

Ans: 3

Sol. Proton possesses half integral spin.

16

Ans: 2

17.

Ans: 1

Sol: $R = R_0 A^{1/3}$

$$\frac{A_1}{A_2} = \frac{M_1}{M_2} = \frac{R_1^3}{R_2^3} = \frac{1^3}{2^3} = \frac{1}{8}$$
 [Since mass = volume x density]

 $M_1V_1 = M_2V_2$ [From law of conservation of momentum]

$$\Rightarrow \frac{V_1}{V_2} = \frac{M_2}{M_1} = 8$$

18.

Ans:3

Sol: A:
$$\rho = \frac{mass \ of \ nucleus}{volume} = \frac{A \times M_p}{4\pi R^3 / 3}$$

= $\frac{3M_p}{4\pi} \frac{A}{(r_0 A^{1/3})^3} = \frac{3M_p}{4\pi r_0^3}$ = constant [since m_p and r₀ are constant]

B: A good moderator must be light (low atomic weight) must be capable of scattering neutrons with a high probability, but should not absorb neutrons. Therefore Beryllium is not suitable for moderator

19.

Ans :2

Sol: $4_1H^1 \rightarrow_2 He^4 + 2_1e^0 + 2\gamma$

4 protons fuses and 2 positrons are released

20.

Ans: 4

Sol:
$$R = r_0 A^{1/3}$$

$$\frac{R_1}{R_2} = \left(\frac{A_1}{A_2}\right)^{1/3} = \left(\frac{27}{125}\right)^{1/3} = \frac{3}{5}$$

21.

Ans: 1

Sol: Power of reactor P = $\frac{nE}{t}$

Where 'n' is number of fissions, 't' is time and 'E' is energy released per fission

22. (3):

$$ZM_p+(A-Z)M_n - M(A,Z)$$

= mass effect =
$$\frac{B.F}{c^2}$$

$$\Rightarrow M(A,Z) = ZM_p + (A-Z)M_n - \frac{B.E.}{c^2}$$

23. (2):
$$A_1: A_2 = 1:3$$

Their radii will be in the ratio

$$R_{0}A_{1}^{1/3}: R_{0}A_{2}^{1/3} = 1:3^{1/3}$$

Density $= \frac{A}{\frac{4}{3}\pi R^{3}}$
 $\therefore \rho_{A_{1}}: \rho_{A_{2}} = \frac{1}{\frac{4}{3}\pi R_{0}^{3}.1^{3}} = \frac{3}{\frac{4}{3}\pi R_{0}^{3}.(3^{1/3})^{3}}$

Their nuclear densities will be the same.

24. (1) Energy of electron in nth orbit = $\frac{-13.6}{n^2} eV$ When n = 1 $E_{n_1} = -13.6 eV$ When n = 2 $E_{n_2} = -3.4 eV$ $\frac{n=2}{E_2} = -\frac{13.6}{4}eV$ H atom

1st excitation energy $E_{n_2} - E_{n_1} = (-3.4 + 13.6) = 10.2 \text{ eV}$

25 (1)
$$X_1 = N_0 e^{-\lambda_1 t}; X_2 = N_0 e^{-\lambda_2 t}$$

$$\frac{X_1}{X_2} = e^{-1} = e^{(-\lambda_1 + \lambda_2)t}; e^{-1} = e^{-(\lambda_1 - \lambda_2)t}$$
$$\therefore t = \left|\frac{1}{\lambda_1 - \lambda_2}\right| = \frac{1}{(5\lambda - \lambda)} = \frac{1}{4\lambda}$$

26

(4)

Because of β emission atomic number increases by 1 unit, α - particle atomic number increases by 2 units & mass number by 4 units.

$${}^{A}_{Z}X \xrightarrow{\beta^{-}} {}^{A}_{Z+1}Y \xrightarrow{\alpha} {}^{A-4}_{Z-1}B^{*} \xrightarrow{\gamma} {}^{A-4}_{Z-1}B$$

First X decays by β^- emission emitting \overline{v} , antineutrino simultaneously. Y emits α resulting in the excited level of B which in turn emits a γ ray.

27 (3)
$${}^{A}_{Z}X \xrightarrow{2\beta^{-}} {}^{A}_{Z+2}Y_{1} \xrightarrow{\alpha} {}^{A-4}_{Z}Y_{2}$$

The result daughter is an isotope of the original parent nucleus.

28. (1): Energy of the projectile is the potential energy at closest approach, $\frac{1}{4\pi\varepsilon_0} \frac{z_1 z_2}{r}$

Therefore energy $\propto z_1 z_2$