CALORIMETRY AND JOULE'S LAW

1.	H_2O is at its triple point. Keeping the pressure constant if its temperature is increased then it							
	becomes							
	1) Steam	2) ice	3) water	4) water + ice				
2.	Arrange the specific heats of the given substance in the increasing order							
	a) Copper	b) Ice	c) Water	d) Lead				
	1) a, d, b, c	2) d, a, b, c	3) a, d, c, b	4) d, a, c, b				
3.	Arrange the latent heats of fusion of the given substances in the decreasing order							
	a) Oxygen	b) Tungsten	c) Water	d) Lead				
	1) a, b, d, c	2) b, a, d, c	3) d, a, b, c	4) c, b, d, a				
4.	Substance which	sublimate are						
	a) Camphor	b) Dry ice	c) Tungsten	d) Iodine				
	1) a, b, d	2) a, b, c	3) a, c, d	4) b, c, d				
5.	Arrange the melting points of the following substances in the decreasing order							
	a) Water	b) Nitrogen	c) Tungsten	d) Copper				
	1) d, c, a, b	2) c, d, a, b	3) d, c, b, a	4) c, d, b, a				
6.	The melting point of the following substances decreases with increasing pressure							
	a) ice	b) wax	c) gallium	d) bismuth				
	1) a, b, c	2) a, b, d	3) b, c, d	4) a, c, d				
7.	Difference in temperature between the top and the bottom of a water fall is							
6.	a) Independent of	a) Independent of the specific heat of water.						
	b) directly proportional to the height.							
	c) inversely proportional to the specific heat of water.							
	d) directly proportional to the mechanical equivalent of heat.							
	1) b, c	2) a, b	3) a, d	4) b, d				
8.	Assertion (A): The apparent weight of a metal ball in a liquid decreases with the decrease							
	of temperature of the liquid.							
4	Reason (R): The density of the liquid decreases with the fall in temperature.							
	1) Both A and R are true and R is the correct explanation of A							
	2) Both A and R are true but R is not the correct explanation of A							
	3) A is true but R is false 4) A is false but R is true							

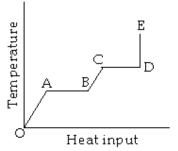
9. Assertion (A): The heat of vaporization of a substance is much greater than its heat of fusion.

Reason (R): This follows from the structures of the various states of matter.

- 1) Both A and R are true and R is the correct explanation of A
- 2) Both A and R are true but R is not the correct explanation of A
- 3) A is true but R is false 4) A is false but R is true
- 10. The heat capacity of a body depends on
 - a) the range of temperature

b) the material of the body

c) the heat intake


d) the mass of the body

1) a, b

- 2) a, c
- 3) c, d
- 4) b, d
- 11. When heat is supplied to a solid body temperature
 - a) may increase b) may decrease
- c) may remain constant
- d)must increase

1) a, c

- 2) a, d
- 3) a, b
- 4) c, d
- 12. A solid body is supplied heat at a constant rate. The temperature of the body is changing with the heat input as shown in the diagram.
 - a) The horizontal region CD shows the change of state, solid to liquid.
 - b) The slope DE gives the inverse of water equivalent of the substance in the gaseous state.

- c) If CD = 2.AB then the heat of fusion of the substance is twice the latent heat of condensation.
- d) The fact that the slope of OA is greater than the slope of BC shows that the specific heat of the substance in the solid phase is smaller than that in the liquid phase.
- 1) a, c

- 2) a, d
- 3) b, c
- 4) b, d
- 13. a) At a temperature below that of its triple point, no substance can exist as a liquid.
 - b) The slope of the Hoarfrost line is negative.
 - c) The slope of the ice line is negative.
 - d) The slope of the steam line is negative.

14.	Identify the correct statements							
	A: The negative slope of ice line for water shows that melting point of ice decreases with the increase of pressure.							
	B: Liquids with low latent heat of vaporization are called volatile liquids.							
	C: Ether and petrol are examples of volatile liquids							
	1) all are true	2) all are false						
	3) A & B are true	4) A&B are wrong						
15.	A: One cannot change	water into steam by sen	nding steam at 100 ⁰ C					
	R: At thermal equilibr	ium heat exchange can	not take place between	two systems				
	1) Both (A) and (R) are true and (R) is the correct explanation of (A)							
	2) Both (A) and (R) are true and (R) is not the correct explanation of (A)							
	3) (A) is true but (R) is false							
	4) (A) is false but (R) is	true						
16.	. The quantity of heat which can rise the temperature of x gm of a substance through $t_1^{\circ} C$							
	can rise the temperature of y gm of water through $t_2^{\circ}\mathrm{C}$ is same. The ratio of specific heats							
	of the substances is							
	1) yt ₁ /xt ₂	2) xt ₂ /yt ₁	3) yt ₂ /xt ₁	4) xt ₁ /yt ₂				
17.	Two liquids at temper	atures 60°C and 20°C 1	respectively have masse	es in the ratio 3:4 and				
	their specific heats in the ratio 4 : 5. If the two liquids are mixed, the resultant temperature							
	is							
	1) 70°C	2) 50°C	3) 40°C	4) 35°C				
18.	10 grams of steam at 1	00°C is mixed with 50 g	m of ice at 0°C then fin	al temperature is				
	1) 20°C	2) 50°C	3) 40°C	4) 100°C				

19.	from the ground. If the dissipated energy in this process is absorbed by the ball, the rise in								
	its temperature is (specific heat of steel =460 $JKg^{-1}K^{-1}$) (g=10ms ⁻²).								
	1) 0.01 ⁰ C	2) 0.1 ⁰ C	3) 1 ⁰ C	4) 1.1 ⁰ C					
20.	Two spheres A and B	with masses in the rati	o 2:3 and specific heat	2:3 fall freely from					
	rest. If the rise in their temperatures on reaching the ground are in the ratio 1:2 the ratio								
	of their heights of fall is								
	1) 3:1	2) 1 : 3	3) 4:3	1) 3 : 4					
21.	50 g of copper is heate	d to increase its tempera	ature by 10°C. If the sam	e quantity of heat is					
	given to 10 gm of wate	r, the rise in temperatur	re is (specific heat of copp	$er = 420 \text{ JKg}^{-1}\text{K}^{-1},$					
	specific heat of water =	= 4200 Jkg ⁻¹ K ⁻¹)							
	1) 5°C	2) 6 ^o C	3) 7 °C	4) 8°C					
22.	A lead bullet of 10g tr	eavelling at 300m/s strik	es against a block of woo	od and comes to rest.					
	Assuming 50% of heat is absorbed by the bullet, the increase in its temperature is(sp-heat of								
	lead is 150J/Kg-K)								
	1)	2) 1250	3) 150C ⁰	4) 200C ⁰					
23.	The temperature of e	qual masses of three di	fferent liquids A,B and C	C are 12° C, 19°c and					
	28°C respectively. The	e temperature when A a	nd B are mixed is 16°C a	nd when B and C are					
	mixed it is 23°C. What should be the temperature when A and C are mixed?								
	1) 20.26 ℃	2) 15.87 °C	3) 25 °C	4) 30 °C					
24.	The fraction of ice that	t melts by mixing equal	masses of ice at -10°C and	d water at 60°C is					
	1) $\frac{6}{11}$	2) $\frac{11}{16}$	3) $\frac{5}{16}$	4) $\frac{11}{15}$					
25.	'n' number of liquids o	of masses m,2m,3m, 4m,	, having specific heat	ts s, 2s,3s,4s, are at					
	temperatures t, 2t, 3t, 4t are mixed. The resultant temperature of mixture is								
	$1. \frac{3n}{(2n+1)} t$	2. $\frac{2n(n+1)}{3(2n+1)}$ t	3. $\frac{3n(n+1)}{2(2n+1)}$ t	$4. \frac{3n(n+1)}{(2n+1)} t$					

26. A tap supplies water at 10°c and another tap at 100°c. How much hot water must be taken so that we get 20kg of water at 35°c.
1) 40/9 kg
2) 50/9 kg
3) 20/9 kg
4) 130/9 kg

27.		C		-	·			t torque of 5 N-m	ı. If it
			steel bloc	k of mass	600 gm, r	use in te	mperatur	e of the block is	
	(s = 0.1 cal/gm/	°C)							
	1) 2.6°C		2) 1.3°C		3) 5	.2°C		4) 3°C	
28.	A metal sphere	e of radi	us r and	specific h	eat S is r	otated a	bout an a	xis passing throu	gh its
	centre at a spe	ed of n	rotations	per secon	d. It is s	topped	and 50%	of its energy is u	sed in
	increasing its to	emperat	ure, then	the raise i	n temper	ature of	the spher	re is	
	$1) \; \frac{\pi^2 n^2 r^2}{S}$		$_{2}$ 1 π^{2}	i^2	3) 7	$\pi r^2 n^2 S$		$5(\pi rn)$	
	S		r^2 r^2	S	3) -	}		14S	
29.	A stationary o	bject at	$4^{\circ}C$ and	weighing	3.5 kg fa	alls fron	n a heigh	t of 2000 m on a	snow
	mountain at 0°	C. If the	tempera	ture of the	object ji	ıst befo	re hitting	the snow is $0^{\circ}C$ and	nd the
	object comes to rest immediately $(g = 10 \text{ m/s}^2)$ and (latent heat of ice = 3.5×10^5 joule / sec), then								
	the object will a	melt							
	1) 2 <i>kg</i> of ice		2) 200 gr	n of ice					
	3) 20 <i>gm</i> ice		4) 2 gm c	of ice					
30.	Water of volu	me 2 <i>liti</i>	re in a co	ntainer is	heated v	vith a co	oil of 1kW	at 27 °C. The lid	of the
	container is open and energy dissipates at rate of $160J/s$. In how much time temperature								
	will rise from $27 ^{\circ}C$ to $77 ^{\circ}C$ [Given specific heat of water is $4.2 kJ / kg$]								
	(a) 8 min 20 s	•	(b) 6 <i>min</i> :	2 <i>s</i>					
	(c) 7 min		(d) 14 min	ı					
				K	EY				
			,						
1) 1	2) 2 3) 4	4) 1	5) 2	6) 4	7) 1	8) 3	9) 1	10)4	
11)	1 12) 4 13) 1	14) 1	15) 1	16) 3	17) 4	18)3	19) 2	20) 3	

30) 1

21) 1 22) 3 23) 1 24) 2 25) 3 26) 2 27) 1 28) 1 29) 2

HINTS

16.
$$x S_1 t_1 = y s_2 t_2 \Rightarrow \frac{S_1}{S_2} = \frac{y t_2}{x t_1}$$

17.
$$m_1 s_1 (60 - t) = m_2 s_2 (t - 20)$$

$$\frac{3}{4} \cdot \frac{4}{5} (60 - t) = (t - 20)$$

$$t = 35^{\circ}C$$

18.
$$10 \times 540 + 10 \times 1 (100 - t) = 50 \times 80 + 50 \times 1(t - 0)$$

$$5400 + 1000 - 10t = 4000 + 50 t$$

$$t = 40^{\circ}C$$

19. mg
$$(h_1 - h_2) = J. m. s (\Delta t)$$

10 (10 - 5.4) = 1.460 x (
$$\Delta t$$
)

$$\Delta t = \frac{10 \times 4.6}{460} = 0.1^{\circ} c$$

20.
$$\frac{m_1}{m_2} = \frac{2}{3}$$
 $\frac{S_1}{S_2} = \frac{2}{3}$

$$\frac{\Delta t_1}{\Delta t_2} = \frac{1}{2}$$

$$mgh = J.m.s(\Delta t)$$

$$\frac{\Delta t_1}{\Delta t_2} = \frac{h_1}{h_2} \frac{s_2}{s_1}$$

$$\therefore \frac{h_1}{h_2} = \frac{1}{3}$$

21.
$$50 \times 420 \times 10 = 10 \times 4200 \times \Delta t$$

$$\Delta t = \frac{50 \times 420 \times 10}{10 \times 4200} = 5^{\circ} c$$

22.
$$\frac{1}{2} \left(\frac{1}{2} m v^2 \right) = J.m.S(\Delta t)$$

$$\frac{1}{2} \left(\frac{1}{2} \times 300 \times 300 \right) = 1 \times 150 \times \Delta t \qquad \Delta t = 150^{\circ} c$$

www.sakshieducation.com

23.
$$m.S_A.4 = m.S_B.3$$

$$\frac{S_A}{S_B} = \frac{3}{4} \Longrightarrow S_A = \frac{3.S_B}{4}$$

$$m.S_B.4=m.S_C.5$$

$$S_c = \frac{4}{5}.C_B$$

$$m.S_A(t-12) = m.S_C(28-t)$$

$$\frac{3.S_B}{4}(t-12) = \frac{4.S_B}{5}(28-t)$$

$$t = 20.26^{\circ}C$$

24.
$$x \times \frac{1}{2} \times 10 + y \times 80 = x \times 1 \times 60$$

$$5x + 80y = 60x$$

$$80y = 55x$$

$$\frac{y}{x} = \frac{55}{80} = \frac{11}{16}$$

25.
$$(m.s + (2m)(2s) + (3m) 3S....) t^{1}$$

$$= m.s.t + 2m (2s.2t)$$

$$(1^2 + 2^2 + 3^2 \dots m^2)$$
. $t^1 = (1^3 + 2^3 + 3^3 \dots)$

$$t^{1} = \frac{\frac{n^{2}(n+1)^{2}}{4}}{\frac{n(n+1)(2n+1)}{6}}$$

$$t^{1} = \frac{3n(n+1)}{2(2n+1)}$$

26.
$$m_c + m_H = 20kg$$

$$m_H(1) \times (100 - 35) = (20 - m_H) \times 1 \times 25$$

$$m_H \times 65 = (20 - m_H) \times 25$$

$$m_H = \frac{50}{9} kg$$

27.
$$P = \tau \omega$$

$$\frac{W}{t} = \tau \omega$$

mS
$$\Delta t = \tau .\omega .t$$

$$1 \times 600 \times 0.1 \times 4.2 \times \Delta t = 5 \times 180 \times \frac{2\pi}{60} \times 7$$

$$\Delta t = \frac{15 \times 44}{6 \times 4.2} \times 2.6^{\circ} C$$

28.
$$\frac{1}{2} \cdot \left(\frac{1}{2}IW^2\right) = (1) \ m.s(\Delta t)$$

$$\frac{1}{2} \frac{1}{2} \frac{2}{5} mr^2 . 4\pi^2 n^2 = n.s. \Delta t$$

$$\Delta t = \frac{2}{5} \frac{\pi^2 . n^2 r^2}{s}$$

29. Suppose m kg of ice melts then by using $W = H_{\text{(Joules)}} = H_{\text{(Joules)}}$

$$\implies Mgh = mL \implies 3.5 \times 10 \times 2000 = m \times 3.5 \times 10^5$$

$$\implies m = 0.2 \, kg = 200 \, gm$$

30. Heat gained by the water = (Heat supplied by the coil) – (Heat dissipated to environment)

$$\implies mc \ \Delta\theta = P_{Coil} \ t - P_{Loss} \ t$$

$$\Rightarrow 2 \times 4.2 \times 10^3 \times (77 - 27) = 1000 \ t - 160 \ t$$

$$\Rightarrow t = \frac{4.2 \times 10^5}{840} = 500 \text{ sec} = 8 \text{ min } 20 \text{ sec}$$