EXPANSION OF GASES

1. It is decided to verify Boyle's law over a wide range of temperature and pressures. The most suitable gas to be selected for this purpose is
1) Carbon dioxide
2) Helium
3) Oxygen
4) Hydrogen
2. When the volume of a saturated vapour is decreased, its pressure
1) increases according to Boyle's law
2) decreases according to Boyle's law
3) changes but not according to Boyle's law
4) remains constant
3. Under which of the following conditions $P V=R T$ is obeyed most closely by a real gas?
1) high pressure and high temperature
2) low pressure and low temperature
3) low pressure and high temperature
4) high pressure and low temperature
4. Equation of gas in terms of pressure (p), absolute temperature (T) and density (d) is
1) $\frac{P_{1}}{T_{1} d_{1}}=\frac{P_{2}}{T_{2} d_{2}}$
2) $\frac{P_{1} T_{1}}{d_{1}}=\frac{P_{2} T_{2}}{d_{2}}$
3) $\frac{P_{1} d_{2}}{T_{2}}=\frac{P_{2} d_{1}}{T_{1}}$
4) $\frac{P_{1} d_{1}}{T_{1}}=\frac{P_{2} d_{2}}{T_{2}}$
5. A sample of an ideal gas occupies a volume ' V ' at pressure ' P ' and absolute temperature ' T '. The mass of each molecule is m. The expression for the density of gas is
1) mKT
2) $P / K T$
3) $\mathrm{P} / \mathrm{KTV}$
4) $\mathrm{Pm} / \mathrm{KT}$
6. The ratio of the volume expansivity of Helium to pressure expansivity of Hydrogen is
1) 1
2) 2
3) 273
4) $\frac{1}{273}$
7. The difference between volume and pressure coefficient of an ideal gas is
1) $1 / 273$
2) 273
3) $2 / 273$
4) zero
8. The graph between temperature in ${ }^{\circ} \mathrm{C}$ and pressure of a perfect gas is
1) hyperbola
2) a straight line passing though the origin
3) A straight line parallel to pressure axis intercepting temperature axis as $-273^{0} \mathrm{C}$
4) a straight line with +ve intercept on pressure axis and intercepting the temperature axis as $273{ }^{0} \mathrm{C}$
9. A real gas can be approximated to an ideal gas at
1) low density
2) high pressure
3) high density
4) low temperature
10. The increase in volume of the bubble as it rises from the bottom of the beaker with water at constant temperature is due to
1) Charles's law
2) Boyle's law
3) Avogadro's law
4) Dalton's law
11. LIST - I
a) $\mathrm{P}-\mathrm{V}$ graph (T is constant)
b) P - T graph (V is constant)
c) V-t graph (P is constant $)$
d) $\mathrm{PV}-\mathrm{P}$ graph (T is constant)
1) $a-g, b-e, c-h, d-f$
2) $a-e, b-g, c-f, d-h$

LIST - II

e) St.line cutting emp. axis at $-273^{\circ} \mathrm{C}$
f) Rectangular Hyperbola
g) A St line parallel to pressure axis
h) st.line passing thorugh orgin
2) $a-h, b-f, c-g, d-e$
4) $a-f, b-h, c-e, d-g$
12. If a given mass of a gas occupies a volume 100 cc at one atmospheric pressure and a temperature of $100^{0} \mathrm{C}$. What will be its volume at 4 atmospheric pressure the temperature being the same?

1) $100 \mathrm{~cm}^{3}$
2) $400 \mathrm{~cm}^{3}$
3) $25 \mathrm{~cm}^{3}$
4) $200 \mathrm{~cm}^{3}$
13. A gas at $27^{\circ} \mathrm{C}$ and pressure of 30 atm is allowed to expand to atmosphere pressure and volume 15 times larger. The final temperature of the gas is.....
1) $-123^{0} \mathrm{C}$
2) $123{ }^{\circ} \mathrm{C}$
3) $-132^{0} \mathrm{C}$
4) $132^{0} \mathrm{C}$
14. If the pressure of an ideal gas contains in a closed vessel is increased by $\mathbf{0 . 5 \%}$, the increase in temperature is $2^{\circ} \mathrm{C}$. The initial temperature of the gas is
1) $27^{\circ} \mathrm{C}$
2) $127^{0} \mathrm{C}$
3) $300^{\circ} \mathrm{C}$
4) $400^{\circ} \mathrm{C}$
15. At constant pressure, the ratio of increase in volume of an ideal gas per degree rise in Kelvin temperature to its original volume is
1) $\sqrt{3}$
2) $\sqrt{273}$
3) $\frac{1}{273}$
4) $\frac{1}{\sqrt{3}}$
16. For an ideal gas V-T curves as constant pressures $P_{1} \& P_{2}$ are shown in figure - from the figure

1) $\mathrm{P}_{1}>\mathrm{P}_{2}$
2) $\mathrm{P}_{1}<\mathrm{P}_{2}$
3) $P_{1}=P_{2}$
4) $P_{1} \geq P_{2}$
17. Two different curves at const temperature. The relationship between volume V and the pressure P at a given temp of same ideal gas are shown for masses m_{1} and m_{2} of the gas respectively. Then

1) $m_{1}>m_{2}$
2) $\mathrm{m}_{1}=\mathrm{m}_{2}$
3) $m_{1}<m_{2}$
4) $m_{1}=2 m_{2}$
18. A gas at a temperature 300 K and pressure 30 atm is allowed to expand to atmospheric pressure. If the volume becomes $\mathbf{1 0}$ times its initial volume, the final temperature becomes
1) $100^{0} \mathrm{C}$
2) 373 K
3) $373^{0} \mathrm{C}$
4) 100 K
19. To decrease the pressure of the gas by 10% at constant temperature then change in volume should be
1) 10% decrease
2) 10% increase
3) 11.11% increase
4) 9.1% increase
20. A gas is heated through $1^{0} \mathrm{C}$ in a closed vessel. Its pressure is increased by 0.4%. The initial temperature of the gas is
1) $250^{\circ} \mathrm{C}$
2) $100^{\circ} \mathrm{C}$
3) $-75^{\circ} \mathrm{C}$
4) $-23^{\circ} \mathrm{C}$
21. The variation of pressure with volume for a given mass of a gas at two different temperatures \mathbf{T}_{1} and \mathbf{T}_{2} are represented as shown in the graph, then

1) $T_{1}>T_{2}$
2) $T_{2}>T_{1}$
3) $T_{1}=T_{2}$
4) $T_{1} \frac{\geq}{<} T_{2}$
22. From the following \mathbf{P} - \mathbf{T} diagram, the inference drawn is

1) $V_{2}>V_{1}$
2) $V_{2}<V_{1}$
3) $V_{1}=V_{2}$
4) none of these
23. When an air bubble of radius ' r ' rises from the bottom to the surface of a lake, its radius becomes $5 \mathrm{r} / 4$ (the pressure of the atmosphere is equal to the 10 m height of water column). If the temperature is constant and the surface tension is neglected, the depth of the lake is
1) 3.53 m
2) 6.53 m
3) 9.53 m
4) 12.53 m
24. An ideal gas is trapped between mercury thread of 12 cm and the closed lower end of a narrow vertical tube of uniform cross section. Length of the air column is 20.5 cm , when the open end is kept upward. If the tube is making 30° with the horizontal then the length of the air column is (assuming temperature to be constant and atmospheric pressure $=\mathbf{7 6} \mathrm{cm}$ of $\mathbf{H g}$)
1) 22 cm
2) 18 cm
3) 24 cm
4) 20.2 cm
25. Two thermally insulated vessels 1 and 2 are filled with air at temperature ($\mathbf{T}_{\mathbf{1}}, \mathrm{T}_{\mathbf{2}}$), volume $\left(\mathbf{V}_{1}, \mathbf{V}_{2}\right)$ and pressure ($\mathrm{P}_{1}, \mathrm{P}_{2}$) respectively. If the valve joining the two vessels is opened, the temperature inside the vessel at equilibrium will be
1) $T_{1}+T_{2}$
2) $\mathrm{T}_{\mathbf{1}} \mathrm{T}_{2}\left(\mathrm{P}_{\mathbf{1}} \mathrm{V}_{\mathbf{1}}+\mathrm{P}_{\mathbf{2}} \mathrm{V}_{2}\right) /\left(\mathrm{P}_{1} \mathrm{~V}_{1} \mathrm{~T}_{1}+\mathrm{P}_{\mathbf{2}} \mathrm{V}_{\mathbf{2}} \mathrm{T}_{\mathbf{2}}\right)$
3) $\mathrm{T}_{1} \mathrm{~T}_{2}\left(\mathrm{P}_{1} \mathrm{~V}_{1}+\mathrm{P}_{2} \mathrm{~V}_{2}\right) /\left(\mathrm{P}_{1} \mathrm{~V}_{1} \mathrm{~T}_{2}+\mathrm{P}_{2} \mathrm{~V}_{2} \mathrm{~T}_{1}\right)$
4) $\left(\mathrm{T}_{\mathbf{1}}+\mathrm{T}_{\mathbf{2}}\right) / 2$
26. During an experiment an ideal gas is found to obey an additional law $\mathrm{VP}^{2}=$ constant. The gas is initially at a temperature ' T ' and volume ' V '. When it expands to a volume 2 V , the temperature becomes
1) T
2) 2 T
3) $\sqrt{2} \mathrm{~T}$
4) $\frac{T}{\sqrt{2}}$
27. One liter of oxygen at a pressure of 1 atm and two liters of nitrogen at a pressure of 0.5 atm are introduced into a vessel of volume 1litre. If there is no change in temperature, the final pressure of the gas in atm is
1) 1.5
2) 2.5
3) 2
4) 4
28. Two identical vessels A and B with frictionless pistons contain the same ideal gas at the same temperature and the same volume V. The masses of gas in A and B are respectively. The gases are allowed to expand isothermally to the same final volume 3 V . The change in pressures of the gas in \mathbf{A} and \mathbf{B} are found to be ΔP and $1.5 \Delta P$ respectively. Then
1) $9 m_{A}=4 m_{B}$
2) $3 m_{A}=2 m_{B}$
3) $2 m_{A}=3 m_{B}$
4) $4 m_{A}=9 m_{B}$
29. A horizontal uniform glass tube of 100 cm length sealed at both ends contains 10 cm mercury column in the middle. The temperature and pressure of air on either side of mercury column are respectively $0^{0} \mathrm{C}$ and 80 cm of mercury. If the air column at one end is kept at $0^{\mathbf{0}} \mathrm{C}$ and the other end at $\mathbf{2 7 3}{ }^{\mathbf{0}} \mathrm{C}$, the pressure of air which is $0^{\mathbf{0}} \mathrm{C}$ is (in $\mathbf{~ c m ~ o f ~} \mathbf{~ H g}$)
1) 76
2) 88.2
3) 120
4) 132
30. A sample of an ideal gas occupies a volume \mathbf{V} at a pressure \mathbf{P} and absolute temperature \mathbf{T}. The mass of each molecule is m . If K is the Boltzmann constant, then the density of the gas is
1) $d=\frac{P m}{K T}$
2) $d=\frac{P m}{T}$
3) $d=\frac{P K}{m T}$
4) $d=\frac{P T}{K m}$

KEY

1) 4
2) 3
3) 3
4) 1
5) 4
6) 1
7) 4
8) 4
9) 1
10) 2
11) $4 \quad 12) 3$
12) 1
13) 2
14) 3
15) 2
16) 1
17) 4
18) 3
19) 4
20) $2 \quad$ 22) 2
21) 3
22) 1
23) 3
24) 2
25) 3
26) 2
27) 3
28) 1

HINTS

12. $\mathrm{p}_{1} \mathrm{~V}_{1}=\mathrm{p}_{2} \mathrm{~V}_{2}$

$$
V_{2}=\frac{p_{1} v_{1}}{p_{2}}=\frac{1 \times 100}{4}=25 c c
$$

13. $\frac{p_{1} V_{1}}{T_{1}}=\frac{p_{2} V_{2}}{T_{2}}=\frac{30 \times V}{300}=\frac{1 \times 15 \mathrm{~V}}{T_{2}}$

$$
\mathrm{T}_{2}=150 \mathrm{~K}=-123^{0} \mathrm{C}
$$

14. $\%$ Change in pressure $=\frac{T_{2}-T_{1}}{T_{1}} \times 100$
$\therefore 0.5=\frac{T+2-T}{T} \times 100$
$\therefore T=\frac{200}{0.5}=400 \mathrm{k}=127^{\circ} \mathrm{C}$
15. $\frac{V_{t}-V_{0}}{V_{0} t}=\alpha=\frac{1}{273}\left({ }^{0} C\right)^{-1}$
16. $\frac{P V}{T}=$ const
$\mathrm{P}($ slope $)=$ const $\quad P(\tan \theta)=$ const
$P \propto \frac{1}{\tan \theta} \quad \theta_{1}<\theta_{2}$
$\therefore P_{1}<P_{2} \Rightarrow P_{2}>P_{1}$
17. $\frac{P V}{m T}=$ const

$$
\therefore \frac{P V}{m}=\text { const }[\therefore \text { Tisconst }]
$$

If we consider V const in fig, then
$m \propto p$
P is more for upper curve $\mathrm{m}_{1}>\mathrm{m}_{2}$
18. $\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}} \quad \frac{30 \mathrm{~V}}{300}=\frac{1 \times 10 \mathrm{~V}}{\mathrm{~T}_{2}}$
$\mathrm{T}_{2}=100 \mathrm{~K}$
19. $\%$ change in vol $=-\frac{100 n}{100+n}=11.11 \%$
\therefore Volume increase by 11.11%
$20 \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}}=\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}$
$\frac{100+0.4}{100}=\frac{T+1}{T}$
$\mathrm{T}==250 \mathrm{~K}=-23^{\circ} \mathrm{C}$
21. $\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}}$
$\therefore \frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}$
Here $\mathrm{P}_{2}>\mathrm{P}_{1}$
$\therefore \frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}<1$
$\therefore \mathrm{T}_{1}<\mathrm{T}_{2}(o r) T_{2}>T_{1}$
22. $\frac{P V}{T}=$ const
$\therefore V($ slope $)=$ const $\therefore V \alpha \frac{1}{\text { slope }}$

$$
\therefore V_{2}<V_{1}
$$

23. $P_{1} V_{1}=P_{2} V_{2}$

$$
\begin{aligned}
& (H+h) r_{1}^{3}=H r_{2}^{3} \\
& (10+h) r^{3}=10 \times \frac{125}{64} r^{3} \\
& h=\frac{1250}{64}-10=9.53 m
\end{aligned}
$$

24. $P_{1} l_{1}=P_{2} l_{2}$
$(H+x) l_{1}=(H+x \sin \theta) l_{2}$
$(76+12) 20.5=(H+x \sin \theta) l_{2}$
$(78+12) 20.5=\left(76+12 \times \frac{1}{2}\right) l_{2}$
$88 \times 20.5=82 l_{2}$
$l_{2}=\frac{88 \times 20.5}{82}=22 \mathrm{~cm}$
25. $\frac{P_{1} V_{1}}{T_{1}}+\frac{P_{2} V_{2}}{T_{2}}=\frac{P_{1} V_{1}}{T}+\frac{P_{2} V_{2}}{T}$
$\therefore \frac{P_{1} V_{1} T_{2}+P_{2} V_{2} T_{1}}{T_{1} T_{2}}=\frac{P_{1} V_{1}+P_{2} V_{2}}{T}$
$\therefore T=\frac{T_{1} T_{2}\left(P_{1} V_{1}+P_{2} V_{2}\right)}{P_{1} V_{1} T_{2}+P_{2} V_{2} T_{1}}$
26. $\mathrm{PV}=\mathrm{RT}$ and $\quad \mathrm{VP}^{2}=\mathrm{const}$
$\frac{V_{1}}{V_{2}}=\frac{T_{1}^{2}}{T_{2}^{2}} \Rightarrow \frac{V}{2 V}=\frac{T^{2}}{T_{2}^{2}} T_{2}=\sqrt{2} T$
27. $\mathrm{P}_{1} \mathrm{~V}_{1}+\mathrm{P}_{2} \mathrm{~V}_{2}=\mathrm{PV}$
$\therefore 1 \times 1+0.5 \times 2=\mathrm{Px} 1$
$\therefore \mathrm{P}=2 \mathrm{~atm}$
28. $\mathrm{PV}=\frac{\mathrm{m}}{\mathrm{M}} \mathrm{RTV}, \mathrm{m}, \mathrm{T} \rightarrow$ const
$\mathrm{P} \alpha \mathrm{m}$ or $\Delta \mathrm{P} \alpha \mathrm{m}$

$$
\begin{aligned}
& \frac{\Delta \mathrm{P}_{\mathrm{A}}}{\Delta \mathrm{P}_{\mathrm{B}}}=\frac{m_{\mathrm{A}}}{m_{\mathrm{B}}} \text { or } \frac{\Delta \mathrm{P}}{1.5 \Delta \mathrm{P}}=\frac{m_{\mathrm{A}}}{m_{\mathrm{B}}} \\
& \frac{2}{3}=\frac{\mathrm{m}_{\mathrm{A}}}{\mathrm{~m}_{\mathrm{B}}} \\
& \therefore 3 \mathrm{~m}_{\mathrm{A}}=2 \mathrm{~m}_{\mathrm{B}}
\end{aligned}
$$

29. i) $\frac{P_{1} l_{1}}{T_{1}}=\frac{P_{2} l_{2}}{T_{2}}$

$$
\begin{aligned}
& \frac{80 \times 45}{273}=\frac{P(45-x)}{273} \rightarrow 1 \\
& \text { ii) } \frac{80 \times 45}{273}=\frac{P^{\prime}(45+x)}{546} \rightarrow 2
\end{aligned}
$$

From (1) and (2)

$$
\begin{aligned}
& \frac{P(45-x)}{273}=\frac{P(45+x)}{546} \\
& 90-2 x=45+x \\
& 3 x=45 \text { or } x=15 \mathrm{~cm} \\
& \therefore \mathrm{P}^{\prime}=120 \mathrm{~cm} \text { of } \mathrm{Hg}
\end{aligned}
$$

30. $\mathrm{PV}=\mathrm{nRT} \Rightarrow \mathrm{P} \frac{m}{d}=\mathrm{nRT}$

Total mass $=\mathrm{n} \mathrm{N} \mathrm{m}$
$\therefore \frac{P}{d} n N m=n R T \Rightarrow d=\frac{P m}{K T} \quad\left(\because K=\frac{R}{N}\right)$

