EXPANSION OF LIQUIDS

1. A block of wood is floating on water at $0^{0} \mathrm{C}$ with a certain volume V above water level. The temperature of water is slowly raised from $0^{0} \mathrm{C}$ to $\mathbf{2 0}^{0} \mathrm{C}$. How the volume V change with the rise of temperature
1) V will remain unchanged
2) V will go decreasing from beginning to the end
3) V will decrease till the temperature of water reaches at $4^{0} \mathrm{C}$ and then it will go on decreasing.
4) V will increase till the temperature of water reaches to $4^{0} \mathrm{C}$ and then it will go on decreasing
2. A liquid with coefficient of volume expansion γ is filled in a container of a material having the coefficient of linear expansion α. If the liquid overflows on heating
1) $\gamma=3 \alpha$
2) $\gamma>3 \alpha$
3) $\gamma<3 \alpha$
4) $\gamma>3 \alpha^{3}$
3. When a liquid, taken in a long cylindrical vessel of material with linear coefficient of expansion ' α ', is heated; the level of liquid did not change. The volume coefficient of expansion of liquid is
1) 3α
2) 2α
3) α
4) 4α
4. The surface water in a lake is going to freeze. Now the temperature of water at the bottom is
1) 274 K
2) 277 K
3) 100 K
4) 0 K
5. Apparent expansion of a liquid depends
upon
(a) Nature of liquid
(b) nature of vessel
(c) Temperature rise
(d) scale of temperature
1) Only (a) is true
2) (a) \& (b) are true
3) (a), (b) \& (c) are true
4) (a), (b), (c) \& (d) are true
6. List - I

List - II

a. Apparent expansion e. Nature of vessel \& Liquid
b. Real expansion
f. Nature of liquid
c. γ_{a} g. Vessel, Liquid \& temperature
d. γ_{r}
h. liquid \& temperature

1) $a-e, b-f, c-g, d-h$
2) $a-f, b-g, c-h, d-e$
3) $a-g, b-h, c-e, d-f$
4) $a-h, b-e, c-f, d-g$
7. List - I
a. mass of liquid expelled on heating
b. corrected Barometric height
c. coefficient of real expansion of a liquid
d. mass of liquid remaining on heating

List - II

e. $\frac{m_{1}}{1+\gamma_{a} \Delta t}$
f. $\frac{d_{1}-d_{2}}{d_{2}\left(t_{2}-t_{1}\right)}$
g. $\frac{\gamma_{a} m_{1} \Delta t}{1+\gamma_{a} \Delta t}$
h. $h_{0}\left[1-\left(\gamma_{r}-\alpha\right) \Delta t\right]$

1) $a-g, b-h, c-f, d-e$
2) $a-h, b-e, c-g, d-h$
3) $a-e, b-f, c-g, d-h$
4) $a-f, b-g, c-h, d-e$
8. List - I

List - II

a. γ_{g} is + ve $\&<\gamma_{r} \quad$ e. liquid level does not change
b. γ_{g} is -ve
c. $\gamma_{g}=\gamma_{r}$
f. liquid level increases continuously
g. liquid level decreases
d. $\gamma_{g}>\gamma_{r}$
h. liquid level first decreases and then increases

1) $a-g, b-e, c-f, d-h$
2) $a-h, b-f, c-e, d-g$
3) $a-e, b-f, c-g, d-h$
4) $a-f, b-g, c-h, d-e$
9. List - I
a. Temperature of water at the bottom of a lake
b. γ_{r} of water is -ve between
c. γ_{r} of water is positive
d. Temperature of water just below ice layer in a Lake

List - II
e. 273 K
f. 277 K
g. above 277 K
h. 273 K and 277 K

1) $a-g, b-h, c-e, d-f$
2) $a-h, b-e, c-f, d-g$
3) $a-e, b-f, c-g, d-h$
4) $a-f, b-h, c-g, d-e$
10. A): Real expansion of liquid does not depend upon material of container
R): Liquids have no definite shape. They acquire the shape of their containers.
1) Both 'A' and 'R' are true and 'R' is the correct explanation of 'A'
2) Both 'A' and 'R' are true and 'R' is not the correct explanation of 'A'
3) 'A' is true and 'R' is false
4) 'A' is false and 'R' is true
11. A): A vessel is filled, with water, up to brim at $4^{0} \mathrm{C}$. It over flows when the system is cooled are heated
R): Water has minimum volume at $\mathbf{4}^{\mathbf{0}} \mathbf{C}$.
1) Both 'A' and 'R' are true and 'R' is the correct explanation of 'A'
2) Both 'A' and 'R' are true and 'R' is not the correct explanation of 'A'
3) 'A' is true and 'R' is false
4) 'A' is false and 'R' is true
12. A vessel is half filled with a liquid at $0^{\circ} \mathrm{C}$. When the vessel is heated to $100^{\circ} \mathrm{C}$, the liquid occupies $\mathbf{3 / 4}$ volume of the vessel. Coefficient of apparent expansion of the liquid is
1) $0.5 /{ }^{\circ} \mathrm{C}$
2) $0.05 /{ }^{\circ} \mathrm{C}$
3) $0.005 /{ }^{\circ} \mathrm{C}$
4) $0.0005 /{ }^{\circ} \mathrm{C}$
13. γ_{A} of liquid is $7 / 8$ of γ_{R} of liquid. α_{g} of vessel is
1) $\frac{\gamma_{R}}{8}$
2) $\frac{\gamma_{R}}{12}$
3) $\frac{\gamma_{R}}{24}$
4) $\frac{\gamma_{R}}{36}$
14. Co-efficient of apparent expansions of a liquid in Gold vessel is G and when heated in a silver vessel is S. If coefficient of linear expansion of Gold is A, coefficient of linear expansion of Silver is
1) $\frac{G+S-3 A}{3}$
2) $\frac{G-S+3 A}{3}$
3) $\frac{G+S+3 A}{3}$
4) $\frac{G-S+A}{3}$
15. A liquid occupies half of a vessel at a particular temperature. The volume of the unoccupied part remains constant at all temperatures. If α and γ are the coefficients of linear and real expansions of a vessel and liquid, then $\gamma=$
1) 3α
2) $3 \alpha / 2$
3) 6α
4) 9α
16. If on heating a liquid through $80^{0} \mathrm{C}$, the mass expelled is $\frac{1}{100}$ th of mass still remaining, the coefficient of apparent expansion of the liquid is
1) $12.6 \times 10^{-4} /{ }^{0} \mathrm{C}$
2) $0.8 \times 10^{-4} /{ }^{0} \mathrm{C}$
3) $1.25 \times 10^{-5} /{ }^{0} \mathrm{C}$
4) $1.25 \times 10^{-4} /{ }^{0} \mathrm{C}$
17. A glass vessel just holds 50 gm of a liquid at $0^{\mathbf{0}} \mathrm{C}$. If the coefficient of linear expansion of glass is $8 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ The mass of the liquid it holds at $80^{\mathbf{0}} \mathrm{C}$ is [coefficient of absolute expansion of liquid $=5 \times 10^{-4} /{ }^{0} \mathrm{C}$]
1) 46 gm
2) 48 gm
3) 51 gm
4) 42 gm
18. For a liquid when heated in a vessel it is found that $\gamma_{A}=\frac{6}{7} \gamma_{R}$. Coefficient of linear expansion of the vessel is
1) $\frac{\gamma_{R}}{21}$
2) $\frac{\gamma_{R}}{11}$
3) $\frac{\gamma_{R}}{12}$
4) $\frac{\gamma_{R}}{14}$
19. When a liquid in a glass vessel is heated, its apparent expansion is $10.3 \times 10^{-4} /{ }^{0} \mathrm{C}$. Same liquid when heated in a metal, its apparent expansion is $10.06 \times 10^{-4} /{ }^{0} \mathrm{C}$. The coefficient of linear expansion of the metal is (α of glass $=9 \times 10^{-6} /^{0} \mathrm{C}$)
1) $51 \times 10^{-6} /{ }^{0} \mathrm{C}$
2) $43 \times 10^{-6} /{ }^{0} \mathrm{C}$
3) $25 \times 10^{-6} /{ }^{0} \mathrm{C}$
4) $17 \times 10^{-6} /{ }^{0} \mathrm{C}$
20. Two liter glass flask contains some mercury. It is found that at all temperatures the volume of the air inside the flask remains the same. The volume of the mercury inside the flask is (α for glass $=9 \times 10^{-6} /{ }^{\circ} \mathrm{C}$, for mercury $=1.8 \times 10^{-4} /{ }^{o} \mathrm{C}$)
1) 1500 cc
2) 150 cc
3) 3000 cc
4) 300 cc
21. The co-efficient of real expansion of $\mathbf{H g}$ is $0.18 \times 10^{-3} /^{0} \mathrm{C}$. If the density of $\mathbf{H g}$ at $\mathbf{0}^{\mathbf{0}} \mathbf{C}$ is $\mathbf{1 3 . 6}$ $\mathrm{gm} / \mathrm{c} . \mathrm{c}$ its density at $200^{\circ} \mathrm{C}$ will be
1) $13.3 \mathrm{gm} / \mathrm{c} . \mathrm{c}$
2) $13.13 \mathrm{gm} / \mathrm{c} . \mathrm{c}$
3) $13.6 \mathrm{gm} / \mathrm{c} . \mathrm{c}$
4) $13 \mathrm{gm} / \mathrm{c} . \mathrm{c}$
22. A mercury thermometer contains 2 c.c. of Hg . at $0^{\circ} \mathrm{C}$. Distance between $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ marks on the stem is 35 cm and diameter of the bore is 0.02 cm . γ_{A} of liquid is
1) $0.000055 /{ }^{\circ} \mathrm{C}$
2) $0.000066 /{ }^{\circ} \mathrm{C}$
3) $0.00055 /{ }^{\circ} \mathrm{C}$
4) $0.000058 /{ }^{\circ} \mathrm{C}$
23. Coefficient of real expansion of mercury is $0.18 \times 10^{-3} /{ }^{0} \mathrm{C}$. If the density of mercury at $0^{\mathbf{0}} \mathrm{C}$ is $13.6 \mathrm{gm} /$ c.c., its density at 573 K will be
1) $12.90 \mathrm{gm} / \mathrm{c} . \mathrm{c}$
2) $13.10 \mathrm{gm} / \mathrm{c} . \mathrm{c}$
3) $12.95 \mathrm{gm} / \mathrm{c} . \mathrm{c}$
4) $12.75 \mathrm{gm} / \mathrm{c} . \mathrm{c}$
24. A Pycnometer weights 40 gm when empty and 1040 gm when filled with mercury at $0^{0} \mathrm{C}$. On heating to $100^{0} \mathrm{C} 10 \mathrm{gm}$ of mercury over flows if the coefficient of real expansion of mercury is $0.0002 /{ }^{0} \mathrm{C}$ The coefficient of cubical expansion of glass is
1) $0.00001 /{ }^{0} \mathrm{C}$
2) $0.0003 /{ }^{\circ} \mathrm{C}$
3) $0.0002 /{ }^{\circ} \mathrm{C}$
4) $0.0001 /{ }^{\circ} \mathrm{C}$
25. When a block of iron floats in mercury at $0^{\circ} \mathrm{C}$, a fraction K_{1} of its volume is submerged, while at the temperature $60^{\circ} \mathrm{C}$, a fraction K_{2} is seen to be submerged. If the coefficient of volume expansion of iron is $\gamma_{F e}$ and that of mercury is $\gamma_{H_{g}}$ then the ratio $\frac{K_{1}}{K_{2}}$ can be expressed as
1) $\frac{1+60 \gamma_{F e}}{1+60 \gamma_{H_{g}}}$
2) $\frac{1-60 \gamma_{\mathrm{Fe}}}{1+60 \gamma_{\mathrm{Hg}}}$
3) $\frac{1+60 \gamma_{F e}}{1-60 \gamma_{H_{g}}}$
4) $\frac{1+60 \gamma_{\mathrm{Hg}}}{1+60 \gamma_{\mathrm{Fe}}}$

KEY

1) 4
2) 2
3) 1
4) 2
5) 4
6) 3
7) 1
8) 2
9) 4
10) 2
11) 1
12) 3
13) 3
14) 2
15) 3
16) 4
17) 2
18) 1
19) 4
20) 4
21) 2
22) 1
23) 1
24) 4
25) 1

HINTS

12. $\gamma_{A}=\frac{V_{2}-V_{1}}{V_{1}\left(t_{2}-t_{1}\right)}$

$$
\gamma_{A}=\frac{\frac{3}{4} V-\frac{V}{2}}{\frac{V}{2} \times 100}=0.005 / 0 \mathrm{C}
$$

13. $r_{R}=r_{a}+3 \alpha_{g}$

$$
3 \alpha_{g}=\frac{1}{8} r_{R}
$$

$$
\alpha_{g}=\frac{1}{24} r_{R}
$$

14. $r_{R}=r_{A}+3 \alpha_{g}=$ cons $\tan t$
$G+3 A=S+3 \alpha^{1}$
$\alpha^{1}=\frac{G+3 A-S}{3}$
15. $\gamma_{g} V_{g}=\gamma_{L} V_{L} \Rightarrow 3 \alpha V=\gamma \cdot \frac{V}{2} \Rightarrow \gamma=6 \alpha$
16. $\gamma_{A}=\frac{M_{1}-M_{2}}{M_{2}\left(t_{2}-t_{1}\right)}=\frac{\frac{1}{100} M_{2}}{M_{2}(80)}=1.25 \times 10^{-4} /{ }^{0} \mathrm{C}$
17. $r_{A}=\frac{m_{1}-m_{2}}{m_{2} \times 80}$

$$
\begin{aligned}
& 5 \times 10^{-4}-24 \times 10^{-6}=\frac{50-x}{x \times 80} \\
& \mathrm{x}=48 \mathrm{gm}
\end{aligned}
$$

18. $\gamma_{\mathrm{R}}=\gamma_{\mathrm{a}}+3 \alpha g \Rightarrow \gamma_{R}=\frac{6}{7} \gamma_{R}+3 \alpha_{g} \Rightarrow \alpha_{g}=\frac{1}{21} \gamma_{R}$
19. $\gamma_{\mathrm{R}}=\gamma_{\mathrm{a}}+3 \alpha$

$$
\gamma_{\mathrm{a}_{g}}+3 \alpha_{g}=\gamma_{\mathrm{a}_{\mathrm{m}}}+3 \alpha_{m}
$$

$10.3 \times 10^{-4}+27 \times 10^{-6}=10.06 \times 10^{-4}+3 \alpha_{m}$
$\therefore \alpha_{m}=\frac{0.51 \times 10^{-4}}{3}=17 \times 10^{-6} /{ }^{0} \mathrm{C}$
20. $\gamma_{\mathrm{g}} \mathrm{V}_{\mathrm{g}}=\gamma_{\mathrm{L}} \mathrm{V}_{\mathrm{L}}$
$27 \times 10^{-6} \times 2=1.8 \times 10^{-4} \mathrm{~V}_{\mathrm{L}}$
$\therefore \mathrm{V}_{\mathrm{L}}=\frac{27 \times 10^{-6} \mathrm{x} 2}{1.8 \times 10^{-4}}=300 c c$
21. $d_{2}=\frac{d_{1}}{1+\gamma_{\mathrm{R}}\left(t_{2}-t_{1}\right)}$

$$
\therefore d_{2}=\frac{13.6}{1+0.18 \times 10^{-3} \times 200}=\frac{13.6}{1.036}=13.13 \mathrm{gs} / \mathrm{cc}
$$

22. $\gamma_{A}=\frac{\Delta V}{V \Delta t}=\frac{\pi \rho^{2} h}{V \Delta t}$

$$
=\frac{22}{7} \times \frac{10^{-4} \times 35}{2 \times 100}=55 \times 10^{-6} / 0^{0} \mathrm{C}
$$

23. $d=\frac{d_{0}}{1+r t}=\frac{13.6}{1+18 \times 10^{-5} \times 300}=13.13 \mathrm{gm}$
24. $\gamma_{R}=\gamma_{a}+\gamma_{g}$

But $\gamma_{a}=\frac{x}{\left(M_{1}-x\right)\left(t_{2}-t_{1}\right)}$

$$
\begin{aligned}
& \gamma_{a}=\frac{x}{(1000-10)(100)} \\
& \therefore \gamma_{a}=\frac{10}{(1000-10)(100)} \Rightarrow \gamma_{g}=0.0001 /{ }^{\circ} \mathrm{C}
\end{aligned}
$$

25. Weight of body $=$ wt of liquid displaced. $V d_{B} g=V_{m} d_{l} g$

Fraction $(\mathrm{F})=\frac{V_{i n}}{V}=\frac{d_{B}}{d_{t}}$

$$
\begin{aligned}
& a_{1}=\left(\frac{d_{B}}{d_{t}}\right)_{0} \& a_{2}=\left(\frac{d_{B}}{d_{t}}\right)_{t} \\
& \frac{a_{1}}{a_{2}}=\left(\frac{d_{B}}{d_{t}}\right)_{0}\left(\frac{d_{t}}{d_{B}}\right)_{t}=\left(\frac{1+\gamma_{\mathrm{Fe}} t}{1+\gamma_{H g} t}\right)=\left(\frac{1+60 \gamma_{\mathrm{Fe}}}{1+60 \gamma_{H_{g}}}\right)
\end{aligned}
$$

