VISCOSITY

1.	The property of viscosity in gas is due to:			
	1) Cohesive forces between the molecules	2) Collisions between the molecules		
	3) Not having a definite volume	4) Not having a definite size		
2.	When temperature is increased			
	a) Viscosity of the gas increases			
	b) Viscosity of the gas decreases			
	c) Viscosity of the liquid decreases			
	d) Viscosity of the liquid increases	+		
	1) (a) and (c) are true	2) (b) and (c) are true		
	3) (b) and (d) are true	4) (a) and (d) are true		
3.	The Reynolds's number for fluid flow in a pip	e does not depend on		
	(a) the length of the pipe	(b) the diameter of the pipe		
	(c) the viscosity of the fluid	(d) the density of the fluid		
	(1) a, b (2) a, c	(3) b, d (4) a, d		
4.	[A]: Heavy machineries require high visco	ous oil while light machineries require lov		
	viscousoil.			
	[R]: The internal friction developed in the r	elative motion depends upon viscosity.		
1. If both Assertion and Reason are true and Reason is correct explanation of Asser				
	2. If both Assertion and Reason are true but Reason is not the correct explanation of			
	3. If Assertion is true but Reason is false.			
	4. If both Assertion and Reason are false.			

- 5. [A]: The blood pressure in humans is greater at the feet than at the brain.
 - [R]: Pressure of liquid at any point is proportional to height, density of liquid and acceleration due to gravity.
 - 1. If both Assertion and Reason are true and Reason is correct explanation of Assertion.
 - 2. If both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
 - 3. If Assertion is true but Reason is false.
 - 4. If both Assertion and Reason are false.
- 6. [A]: During takeoff of an aero plane, velocity of air above the wing is greater than bellow the wing.
 - [R]: Bernoulli's principle is based on law of conservation of energy.
 - 1. If both Assertion and Reason are true and Reason is correct explanation of Assertion.
 - 2. If both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
 - 3. If Assertion is true but Reason is false.
 - 4. If both Assertion and Reason are false.
- 7. Which of the following are/is not practical example of capillarity action?
 - 1) If one end of a towel is dipped in water filled vessel, then after some time the entire towel is wet.
 - 2) Writing nib is split in the middle.
 - 3) The designing of the aero plane wings such that the curvature of its upper surface is greater than that of the lower.
 - 4) Ploughing of fields helps retain moisture in them.
- 8. When an air bubble moves up from the bottom of a deep is lake,
 - a) its acceleration is constant
 - b) its acceleration decreases and becomes zero
 - c) its velocity decreases and becomes constant
 - d) its velocity increases and becomes constant
 - 1) a, c 2) a, d 3) b, c 4) b, d

9.	Match the followin	g in List – I and List –	П	
	List – I		List – II	
	a) Pascal's law		e) Venturimeter	•
	b) Archimedes's pr	inciple		f) Efflux velocity
	c) Bernoulli's equa	tion	g) Hydraulic pr	ess
	d) Torcille's theore	m	h) Hygrometer	
	1) $a - h$, $b - e$, $c - f$,	d - g 2) a - h, b - g, c -	- e, d – f	
	3) $a - g$, $b - h$, $c - e$,	d - f 4) a - g, b - e, c -	-f, d-h	
10.	10. A): The shape of an automobile is so designed that its front resembles the stream line			
	pattern of the fluid th	rough which it moves.		
	R): The resistance off	ered by the fluid is ma	ximum.	
	1) Both 'A' and 'R' are	e true and 'R' is the corn	rect explanation of 'A	,
	2) Both 'A' and 'R' are	e true and 'R' is not the	correct explanation or	f 'A'
	3)'A' is true and 'R' is	false	4)'A' is false and	'R' is true
11.	A) : Machine parts ar	e jammed in winter.		
	R): The viscosity of lo	abricant used in mach	ine parts increase at	low temperature.
	1) Both 'A' and 'R' are true and 'R' is the correct explanation of 'A'			,
2) Both 'A' and 'R' are true and 'R' is not the correct explanation of 'A'			f 'A'	
3)'A' is true and 'R' is false 4)'A' is false and 'R' is true		'R' is true		
12.	2. Arrange the following liquids in the increasing order of their viscosity.			viscosity.
	a) Castor oil	b) Mercury	c) Benzene	d) Glycerin
	1) a, b, c, d	2) b, a, d, c	3) d, a, c, b	4) c, b, a, d
13.	The tangential force	(or) viscous force on a	any layer of the liqui	id is directly proportional to
	velocity gradient. Th	en the direction of vel	ocity gradient is :	
4	1. Perpendicular to the direction of flow of liquid			
	2. Parallel to the direc	tion of flow of liquid		
	3. Opposite to the dire	ection of flow of the liqu	uid	

4. Independent of the direction of flow of liquid.

14. An ideal fluid is flowing through four tubes a, b, c, d of radii in the ratio 2:7:3:1 with

	velocities in the ratio $1:2:5:15$ when maintained at different pressures. The ascending			
	order of the amount of fluid flowing through the tubes per second is			
	1) a, d, c, b	2) b, c, d, a	3) c, p, b, a	4) b, c, d, a
15.	A square plate of 0	.1 m side moves parallel t	o a second plate with a	velocity of 0.1 m/s, both
	plates being immer	sed in water. If the viscou	s force is 0.002 N and tl	ne coefficient of viscosity
	is 0.01 poise, distance	ce between the plates in m	is	
	1) 0.1	2) 0.05	3) 0.005	4) 0.0005
16.	Water is allowed to	flow through a capillary	tube of length 10cm an	d diameter 2 mm under
	a constant pressure	e difference of 6.5 cm of	water level. If 0.16 lit	tres of water flows in 1
	minute, its coefficient of viscosity is,			
	1) 0.00937 poise	2) 0.0937 poise	3) 0.000937 poise	4) 0.937 poise
17.	A metal ball of rac	dius 'r' and density'd' tr	avels with a terminal v	elocity 'v' in a liquid of
	density d/4. The terminal velocity of another ball of radius '2r' and density '3d' in the same			
	liquid is			
	$1) \frac{44v}{3}$	2) $\frac{22v}{3}$	3) $\frac{11v}{3}$	4) $\frac{3v}{44}$
18.	Two metal spheres	of densities in the ratio 3	: 2 and diameter in the	ratio 1 : 2 are released
	from rest in two ver	rtical liquid columns of co	efficients of viscosity in	the ratio 4 : 3. If the
	viscous force on them is same, then the ratio of their instantaneous velocities is			elocities is
	1) 1 : 2	2) 3 : 2	3) 4 : 3	4) 8 : 3
19.	The terminal veloc	ity of a small ball falling i	n a viscous liquid deper	nds upon i) its mass m ii)
	its radius r iii) the coefficient of viscosity of the liquid and iv) acceleration due to gravity.			
	Which of the following relations is dimensionally true for the terminal velocity $V =$			
4	1) $\frac{Kmg}{\eta r}$	2) $\frac{Kmgr}{\eta}$	3) $\frac{Kmg\eta}{r}$	4) $\frac{Kr\eta}{mg}$
	·	•		-

20. The coefficients of viscosity of two liquids are in the ratio 2:3. What is the ratio of the

	volumes of liquid collected in the same time using the same vessel completely filled with			
	liquids of densities in the ratio $4:5$? (The capillary tubes used have the same length and			
	same bore diameter.)			
	1) 8 : 15	2) 6:5	3) 5 : 6	4) 15 : 8
21.	When water (h=0.02	1 poise) and benzene (h =	= 0.0065 poise) are allow	ed to flow through
	capillary tube, it wa	s found that the same an	mount of liquids are colle	ected in the same time.
	But the pressures that caused the flow are different. The pressure on water is 0.015			n water is 0.015
	atmosphere, the corresponding pressure for benzene in atmosphere is			is
	1) 0.0975	2) 0.00975	3) 0.975	4) 9.75
22.	Two rain drops rea	ach the earth with their	terminal velocities in the	ne ratio 4:9. The ratio of
	their radii is			
	1) 4:9	2) 2:3	3) 3:2	4) 9:4
23.	A solid rubber ba	ll of density d and rac	lius R falls through ai	r. Assume that the air
	resistance acting or	the ball is KRV, where	V is velocity of the ball	and K is a constant. The
	terminal velocity attained by the ball is			
	$1) 4\pi R^2 dg / 3K$		$3) 4\pi Rd^2g/3K$	
24.				1 ⁻² is driven at a velocity
	of $10^{-3} \mathrm{ms}^{-1}$ through xylem vessels of radius $2\mu\mathrm{m}$ and length $5\mu\mathrm{m}$. The hydrostatic			
pressure difference across the length of xylem vessels in $\mathrm{Nm^{-2}}$ is				
	1) 5	2) 8	3) 10	4) 15
25.	Two capillary tube	s of radius r but of lengt	ths ℓ_1 and ℓ_2 are fitted	in parallel to the bottom
	of a vessel. The pr	essure head is P. What	should be the length of	of a single tube that can
	replace the two tubes so that the rate of flow is same as before?			
	1) $\ell_1 + \ell_2$	2) $\frac{1}{\ell_1} + \frac{1}{\ell_2}$	$3) \frac{\ell_1 \ell_2}{\ell_1 + \ell_2}$	$4) \ \frac{1}{\ell_1 + \ell_2}$
26.	In the above if the l	engths are same and rad	lii are r ₁ and r ₂ then	
	1) $\left(r_1^2 + r_2^2\right)^{\frac{1}{2}}$	2) $\left(r_1^3 + r_2^3\right)^{\frac{1}{3}}$ 3) $\left(r_1^4\right)^{\frac{1}{3}}$	$(r_1 + r_2^4)^{\frac{1}{4}}$ 4) $(r_1 + r_2)^{\frac{1}{2}}$	

27.	The rate of steady volume flow of water through a capillary tube of length $'l'$ and radius $'r'$
	under a pressure difference of P is V. This tube is connected with another tube of the same
	length but half the radius in series. Then the rate of steady volume flow through them is
	(The pressure difference across the combination is P)

- 1) $\frac{V}{16}$
- 2) $\frac{V}{17}$

- 3) $\frac{16V}{17}$

28. In the above if the tubes are parallel; the rate of flow is given by

- 1) $\frac{V}{16}$ 2) $\frac{V}{17}$
- 3) $\frac{16V}{17}$

29. A cylindrical vessel of height 'h is kept maintained with full of water. The capillary tube of equal length I and radii r is arranged at $\frac{h_1}{2}$, $\frac{3h}{4}$, h from the top. The length of the equivalent tube of same radius which can replace these three tubes, that is arranged at $\frac{3h}{4}$ from the top.

- 1) $L = \frac{l}{3}$ 2) $L = \frac{2l}{3}$ 3) $L = \frac{l}{6}$
- 4) $L = \frac{5l}{3}$

30. We have two (narrow) capillary tubes T_1 and T_2 . Their lengths are l_1 and l_2 and radii of cross-section are r_1 and r_2 respectively. The rate of flow of water under a pressure difference P through tube T_1 is $8cm^3/sec$. If $l_1 = 2l_2$ and $r_1 = r_2$, what will be the rate of flow when the two tubes are connected in series and pressure difference across the combination is same as before (=P)

- 1) $4 cm^3/sec$
- 2) $(16/3) cm^3/sec$
- 3) $(8/17) cm^3/sec$
- 4) None of these

KEY

HINTS

15.
$$F = \eta A \frac{dv}{dx}$$

$$0.002 = 0.01 \times 10^{-1} \times 0.01 \times \frac{0.1}{dx}$$

$$dx = \frac{10^{-6}}{2 \times 10^{-3}}$$

$$= 0.5 \times 10^{-3} \text{m} = 0.0005 \text{ m}$$

16.
$$Q = \frac{\pi}{8} \frac{\Pr^4}{l\eta}$$

$$Q = \frac{\pi}{8} \frac{(h \rho g) r^4}{l \eta}$$

$$\frac{160}{60} = \frac{3.14}{8} \times \frac{6.5 \times 1 \times 980 \times (0.1)^4}{10 \times \eta}$$

$$\therefore \eta = \frac{3.14 \times 6.5 \times 98 \times 10^{-4} \times 6}{16 \times 8} = 93.7 \text{ x } 10^{-4} = 0.00937 \text{ Poise}$$

17.
$$v_t = \frac{2}{9} \frac{r^2 (d - \rho) g}{n}$$

$$v_t \propto r^2 (\rho - \sigma)$$

$$\frac{v}{v_{t_2}} = \frac{1}{4} \frac{\frac{3d}{4}}{\frac{11d}{4}}$$

$$\therefore v_{t_2} = \frac{44v}{3}$$

18.
$$6\pi\eta_1 r_1 v_1 = 6\pi \eta_2 r_2 v_2$$

$$\frac{v_1}{v_2} = \frac{\eta_2}{\eta_1} \cdot \frac{r_2}{r_1}$$

$$=\frac{3}{4}\times\frac{2}{1}=3:2$$

19. i)
$$\frac{kmg}{\eta r} = \frac{M(LT^{-2})}{(ML^{-1}T^{-1})(L)} = LT^{-1}$$

ii)
$$\frac{kmgr}{\eta} = \frac{M(LT^{-2})(L)}{(ML^{-1}T^{-1})} = L^3T^{-1}$$

iii)
$$\frac{kmg\eta}{r} = \frac{(M)(LT^{-2})}{L}(ML^{-1}T^{-1}) = M^2L^{-1}T^{-3}$$

iv)
$$\frac{kr\eta}{mg} = \frac{(L)(ML^{-1}T^{-1})}{M(LT^{-2})} = L^{-1}T$$

$$20. \quad V = \frac{\pi}{8} \cdot \frac{\Pr^4}{l \, \eta} t$$

$$V = \frac{\pi}{8} \cdot \frac{(hdg) \, r^4}{l \, \eta} t$$

$$\therefore \frac{V_1}{V_2} = \frac{d_1}{d_2} \cdot \frac{\eta_2}{\eta_1}$$

$$\therefore \frac{V_1}{V_2} = \frac{4}{5} \times \frac{3}{2} = 6:5 \text{ s}$$

21.
$$V = \frac{\pi}{8} \cdot \frac{\Pr^4}{l \eta} t$$

$$\therefore \frac{P}{\eta} = \cos nst$$

$$\therefore \frac{P_1}{P_2} = \frac{\eta_1}{\eta_2} \Rightarrow \frac{0.015}{P_2} = \frac{0.01}{0.0065} = 0.00975 \text{ atm}$$

22.
$$v_i \propto r^2$$

$$\frac{v_{t_1}}{v_{t_2}} = \frac{r_1^2}{r_2^2}$$

$$\frac{4}{9} = \frac{r_1^2}{r_2^2}$$

$$\therefore \frac{r_1}{r_2} = \frac{2}{3}$$

23.
$$F = KRV$$

$$Mg = KRV_t$$

$$\frac{4}{3}\pi R^3 dg = KRV_t$$

$$\therefore v_{t} = \frac{4\pi R^{2} dg}{3K}$$

$$24. \quad Q = \frac{\pi \operatorname{Pr}^4}{8\eta l}$$

$$\therefore Av = \frac{\pi}{8} \cdot \frac{\Pr^4}{l\eta}$$

$$P = \frac{8 \times 10^{-3} 5 \times 10^{-6} \times 0.0015}{4 \times 10^{-12}} = 15 \text{ N/m}^2$$

25.
$$Q = Q_1 + Q_2$$

$$\therefore \frac{1}{l} = \frac{1}{l_1} + \frac{1}{l_2}$$

$$: l = \frac{l_1 l_2}{l_1 + l_2}$$

26.
$$r^4 = r_1^4 + r_2^4 \implies r = (r_1^4 + r_2^4)^{1/4}$$

$$27. \quad Q = \frac{\pi \operatorname{Pr}^4}{8\eta l}$$

$$Q^{1} = \frac{P}{\frac{8\eta}{\pi} \left[\frac{l_{1}}{r_{1}^{4}} + \frac{l_{2}}{r_{2}^{4}} \right]}$$

$$Q^{1} = \frac{P}{\frac{8\eta}{\pi} \left[\frac{l_{1}}{r^{4}} + \frac{16l}{r^{4}} \right]} = \frac{V}{17}$$

28.
$$V_1 = \frac{\pi Pr^4}{8\eta I}$$
; $V_2 = \frac{\pi Pr^4}{8\eta I \times 16} = \frac{V}{16}$

$$V = V_1 + V_2 = V + \frac{V}{16} = \frac{17V}{16}$$

$$29. V = V_1 + V_2 + V_3$$

$$\frac{P}{L} = \frac{P_1 + P_2 + P_3}{I} \Rightarrow \frac{3h}{4L} = \frac{\frac{h}{2} + \frac{3h}{4} + h}{I} \Rightarrow L = \frac{1}{3}$$

30.
$$V = \frac{\pi \, \text{Pr}^4}{8 \, \eta l} = \frac{8 \, cm^3}{\text{sec}}$$

For composite tube

$$V_{1} = \frac{P\pi r^{4}}{8\eta \left(l + \frac{l}{2}\right)} = \frac{2}{3} \frac{\pi P r^{4}}{8\eta l} = \frac{2}{3} \times 8 = \frac{16}{3} \frac{cm^{3}}{\text{sec}} \qquad \left[\because l_{1} = l = 2l_{2} \text{ or } l_{2} = \frac{l}{2}\right]$$