EQUATIONS

1.	A body executing simple harmonic motion has maximum acceleration				
	1) At the mean positions		2) At the two extreme position		
	3) At any position		4) The question is i	4) The question is irrelevant	
2.	A particle mov	es on the x-axis accord	ling to the equation $x = A +$	B sin ω t. The motion is	
	simple harmor	nic with amplitude			
	1) A	2) B	3) A + B	$4) \sqrt{A^2 + B^2}$	
3.	If the maximum acceleration of a S.H.M. is a and the maximum velocity is b, then				
	amplitude of vibration is given by				
	1) b^2a	2) a^{2} b	3) $\frac{b^2}{a}$	4) $\frac{a^2}{b}$	
4.	For a particle executing S.H.M, which of the following statements is not correct?				
	1) The total energy of a particle always remains the same				
	2) The restoring force is always directed towards a fixed point				
	3) The restoring force is maximum at the extreme positions				
	4) The acceleration of the particle is maximum at the equilibrium position				
5.	Choose the con	rrect statement.			
	a) Any motion that repeats itself in equal intervals of time along the same path is called				
	periodic motio	n.			
	b) The displacement of a particle in periodic motion can always be expressed in terms of				
	sine and cosine functions of time.				
	c) A body in periodic motion moves back and forth over the same path is called oscillatory				
	or vibrating m		were the form over the sum.	putil is cuited oscillatory	
	d) Simple harr	nonic motion is a parti	cular case of periodic motio	n.	
	1) Only a, b, d	are true	2) Only b, c, d are	rue	
	3) Only a, c, d a	are true	4) All are true		

www.sakshieducation.com

- 6. In a periodic motion when a body moves to and fro about a fixed mean position its acceleration.
 - 1) Proportional to displacement of body from mean position and is always directed towards the mean position.
 - 2) Inversely proportional to displacement of body from mean position and is always directed away from mean position.
 - 3) Proportional to displacement of body from mean position and is always directed away from mean position
 - 4) May be proportional to displacement but unspecified direction.

7. In S.H.M.

- 1) The acceleration and displacement of a body are proportional to each other and opposite in direction.
- 2) The accelerations and displacement of body are proportional to each other and same in direction.
- 3) The acceleration and displacement of body are inversely proportional to each other and opposite in direction
- 4) The acceleration and displacement are inversely proportional to each other and same in direction.
- 8. The uniform circular motion in general can be described as a combination of two simple harmonic motions.
 - 1) Acting perpendicular to each other 2) Acting parallel to each other
 - 3) Acting anti parallel to each other 4) Acting inclines to each other with less than 90°
- 9. Statement (a): The velocity of simple harmonic oscillator is maximum at mean position

 Statement (b): At extreme position the acceleration of simple harmonic oscillator is maximum.

Statement (c): The velocity of simple harmonic oscillator is minimum at extreme position

1) a, b are true 2) Only a is true 3) b, c are true 4) All are true www.sakshieducation.com

10.	For a simple harmonic oscillator the frequency of oscillation is independent of					
	1) Time period	2) Acceleration	3) Angular velocity	4) Amplitude		
11.	The phase difference between velocity and acceleration of simple harmonic oscillator.					
	1) π	$2) \frac{\pi}{2}$	3) $\frac{\pi}{4}$	4) $\frac{\pi}{3}$		
12.	The phase difference between acceleration and displacement of simple harmonic oscillator					
	1) π	$2) \frac{\pi}{2}$	3) $\frac{\pi}{4}$	4) $\frac{\pi}{3}$		
13.	Statement (a): During simple harmonic oscillation kinetic energy converted in potential					
	energy and vice - versa					
	Statement (b): Total mechanical energy of simple harmonic oscillator is directly					
	proportional to square of the frequency of oscillation					
	Statement (c): Simple harmonic oscillator obeys the law of conservation of energy.					
	Statement (d): Total mechanical energy of oscillator is directly proportional to a square of					
	the amplitude of the oscillation					
	1) a, b are true	2) c , d are true 3) a	, b , d are true 4) a , b , c	, d are true		
14.	Total energy of particle performing S.H.M. depends on					
	1) Amplitude, time period 2) Amplitude, Time period and displac			od and displacement		
	3) Amplitude, displacement 4) Time period, displacement		ment			
15.	The work done by the body which is in S.H.M, against the restoring force is stored in the form of					
	1) K.E.	2) P.E.	3) Both P.E. & K.E.	4) Total energy		
	TOTAL STATE OF THE PARTY OF THE	6. The phase of simple harmonic motion at $t = 0$ is called				
16.	The phase of simpl	le harmonic motion at t	=0 is called			

17.	In S.H.M. at the equili	brium position		
	a) K.E is minimum		b) acceleration is zer	o
	c) Velocity is maximum		d) P.E is maximum	
	1) All true	2) b, c, d true	3) a, b, c true	4) a, b, d true
18.	3. (A): The motion of sewing needle is an example for SHM			
	(R): A liquid is taken in	n U-tube. Liquid in one	e limb is pressed and 1	released It executes SHM
1) A and R are true but R is not the explanation for A				
2) A and R are true R is the explanation for A				
	3) A is true R is false	4) A is false R is	correct	
19.	9. (A): The phase difference between displacement and velocity in SHM is 90°			M is 90 ⁰
(R): The displacement is represented by $y = A \sin wt$.				
	1) A and R true and R is correct explanation for A			
	2) A and R are true and R is not correct explanation for A			
	3) A is true R is false		4) A is false R is true	
20.	When a body in SHM match the items in column A with that in column B.			umn B.
	Item - I	7	Item - II	
	a) Velocity is maximum	ı	e) At half of the	amplitude
	b) Kinetic energy is 3/4 ^t	th of total energy	f) At the mean p	osition
	c) P.E. is 3/4 th of total e	energy	g) At extreme po	osition
	d) Acceleration is maxim	num	h) At $\frac{\sqrt{3}}{2}$ times	amplitude

4) a - h, b - e, c - f, d - ewww.sakshieducation.com

2) a - e, b - f, c - g, d - h

1) a - f, b - e, c - h, d - g

3) a - g, b - h, c - e, d - f

21. When a body in SHM match the statements in column A with that in column B.

Column - I

- a) Velocity is maximum
- b) Kinetic energy is 3/4th of total energy
 c) P.E. is 3/4th of total energy
- d) Acceleration is maximum
- 1) a f, b e, c h, d g
- 3) a g, b h, c e, d f

Column II

- e) At half of the amplitude
- f) At the mean position
- g) At extreme position
- h) At $\frac{\sqrt{3}}{2}$ times amplitude
- 2) a e, b f, c g, d h
- 4) a h, b -e, c f, d e

22. The time period of oscillation of the particle in SHM is 'T'. Then match the following

Column - I

- a) $\frac{3}{8}$ th of oscillation from extreme position
- b) $\frac{3}{8}$ th of oscillation from mean position
- c) $\frac{5}{8}$ th of oscillation from extreme position
- d) $\frac{5}{8}$ th of oscillation from mean position
- 1) a e; b- g; c f; d h
- 3) a f; b e; c h; d g

- Column II
- e) $\frac{2T}{3}$
- f) $\frac{T}{3}$
- g) $\frac{7T}{12}$
- **h**) $\frac{5T}{12}$
- 2) a f; b h; c e; d g
- 4) a e; b f; c g; d h

23.	A): The displacement time graph for a particle in SHM is sine curve, when the motion begins from mean position.			
	R): The displacement of a particle in SHM is given by $y = A \sin \omega t$			
	1) A and R true and R is correct explanation for	·A		
	2) A and R are true and R is not correct explan	ation for A		
	3) A is true R is false	4) A is false R is true		
24.	A): In damped vibrations, Amplitude of oscil	lation decreases.		
	R): Damped vibrations indicate loss of energy due to air resistance1) A and R true and R is correct explanation for A			
	2) A and R are true and R is not correct explan	ation for A	•	
	3) A is true R is false	4) A is false R is true		
25.	A): SHM is an example of varying velocity at	nd varying acceleratio	n.	
	R): For a particle performing SHM in non-viscous medium its total energy is constant			
	1) A and R true and R is correct explanation for A			
	2) A and R are true and R is not correct explanation for A			
	3) A is true R is false	4) A is false R is true		
26.	The time period of a particle performing line	ear SHM is 12s. What	is the time taken by it to	
	make a displacement equal to half its amplitude?			
	1) 1sec 2) 2sec	3) 3sec	4) 4sec	
27.	27. The equation motion of a particle in S.H.M is $a + 16\pi^2 x = 0$. In the equation 'a' is the line			
	acceleration (in m/sec ²) of the particle at a di	splacement 'x' in met	er. The time period of S	
4	H M in seconds is			
	1) $\frac{1}{4}$ 2) $\frac{1}{2}$	3) 1	4) 2	

28. The displacement of a particle executing SHM is given by Y = 10 sin $(3t + \pi/3)$ m and 't' is

	in seconds. The initial displacement and maximum velocity of the particle are respectively			
	1) $5\sqrt{3}$ m and 30m/s	sec	2) 15m and $15\sqrt{3}$ m/se	ec
	3) $15\sqrt{3}$ m and 30 m	n/sec	4) $20\sqrt{3}$ m and 30 m/s	sec
29.	A particle is vibrat	ing in SHM with amplitud	de of 4cm. At what dis	placement from the
	equilibrium positio	n it has half potential and	l half kinetic	
	1) 1cm	2) $\sqrt{2}$ cm	3) 2 cm	4) $2\sqrt{2}$ cm
30.	A particle moves a	ccording to the law x = a c	$\cos \frac{\pi t}{2}$. The distance co	overed by it in the time
	interval between t	= 0 to t = 3 sec is		
	1) 2 a	2) 3a	3) 4 a	4) a
31.	For a body in S.H.M the velocity is given by the relation $\mathbf{v} = \sqrt{144 - 16x^2}$ m/sec. The			$16x^2$ m/sec. The
	maximum accelera	tion is		
	1) 12 m/sec^2	2) 16 m/sec ²	3) 36 m/sec^2	4) 48 m/sec^2
32.	Two SHMs are rep	resented by the equations	$y_1 = 10 \sin (3pt + \pi/4)$	and $y_2 = 5$
	[$\sin 3\pi t + \sqrt{3}\cos 3t$]. Their amplitudes are in the ratio			
	1) 1:2	2) 2:1	3) 1:3	4) 1:1
33.	A body executing SHM at a displacement 'x' its PE is \mathbf{E}_1 , at a displacement 'Y' its PE is			
	E_2 . The P.E at a displacement $(x + y)$ is			
	$1) \sqrt{E} = \sqrt{E_1} - \sqrt{E_2}$	$2) \sqrt{E} = \sqrt{E_1} + \sqrt{E_2}$	3) $E = E_1 + E_2$	4) $E = E_1 - E_2$
34.	An object is attached to the bottom of a light vertical spring and set vibrating. The			
	maximum speed of the object is 15 cm / sec and the period is 628 m sec. The amplitude of			
	the motion in centimeter is			
4	1) 3	2) 2	3) 1.5	4) 1.0

35. The angular velocities of three bodies in SHM are $\omega_1 \omega_2 \omega_3$ with their respective amplitudes as $\mathbf{A_1} \, \mathbf{A_2} \, \mathbf{A_3}$. If all three bodies have same mass and velocity then

1) $A_1 \omega_1 = A_2 \omega_2 = A_3 \omega_3$

2) $A_1 \omega_1^2 = A_2 \omega_2^2 = A_3 \omega_3^2$

3) $A_1^2 \omega_1 = A_2^2 \omega_2 = A_3^2 \omega_3$

4) $A_1^2 \omega_1^1 = A_2^2 \omega_2^2 = A_3^2 \omega_3^3$

36. Four simple harmonic vibrations $x_1 = 8 \sin \omega t$, $x_2 = 6 \sin (\omega t + \pi / 2)$, $x_3 = 4 \sin (\omega t + \pi)$ and $x_4 = 2 \sin \left(\omega t + \frac{3\pi}{2} \right)$ are superimposed on each other. The resulting amplitude is

1) 20

2) $8\sqrt{2}$

- 3) $4\sqrt{2}$
- 4) 4
- 37. The displacement of a particle executing S.H.M from its mean porition is given by $x = 0.5 \sin (10 \pi t + 1.5) \cos (10 \pi t + 1.5)$. The ratio of the maximum velocity to the maximum acceleration of the body is given by

1) 20π

2) $\frac{1}{20\pi}$

- 4) 10π
- 38. The total mechanical energy of a harmonic oscillator of amplitude 1m and force constant 200 N/m is 150J. Then

1) The minimum P E is Zero

2) The maximum P E is 100 J

3) The minimum PE is 50 J

- 4) The maximum P E is 50 J
- 39. A particle of mass 'm' is attached to a spring of spring constant $\,\omega_{0}.\,$ An external force F(t)proportional to $\cos \omega t$ ($\omega \neq \omega_0$) is applied to the oscillator. The time displacement of the oscillator will be proportional to

- 1) $\frac{m}{(\omega_0 \omega^2)}$ 2) $\frac{m}{(\omega_0^2 + \omega^2)}$ 3) $\frac{1}{m(\omega_0^2 + \omega^2)}$ 4) $\frac{1}{m(\omega_0^2 \omega^2)}$
- 40. A body executes SHM under the action of force 'F' with a time period 4/5 sec. If the force is changed to ' F_2 ' to execute SHM with time period (3/5) sec. If the both the forces F_1 and F_2 act simultaneously in the same direction on the body, its time period in seconds is (in see).

1) $\frac{12}{25}$

2) $\frac{12}{15}$

3) $\frac{25}{24}$

4) $\frac{25}{12}$

- 41. A particle is executing simple harmonic motion along a straight line 8cm long. While passing through mean position its velocity is 16cm/s. Its time period will be
 - (1) 0.157 sec
- (2) 1.57 sec
- (3) 15.7 sec
- (4) 0.0157 sec
- 42. A particle of mass 0.8 kg. is executes S.H.M. its amplitude is 1.0m and time period is $\frac{11}{7}$ sec.

The velocity of the particle, at the instant when its displacement is 0.6m will be

- (1) 32 m/s
- (2) 3.2 m/s
- (3) 0.32 m/s
- (4) zero

KEY

6) 1 1) 2 2) 4 3)3 4) 4 5) 4 7) 1 8) 1 9) 4 10) 4 11) 2 12) 1 13) 4 14) 1 15) 2 16) 4 17) 3 18) 1 19) 1 20) 1 21) 1 22) 2 23) 1 24) 1 25) 2 26) 2 27) 2 30) 2 31) 4 28) 1 29) 4 34) 3 36) 3 32) 4 33) 2 35) 1 38) 3 37) 2 39) 4 40) 1 41) 2 42) 2

HINTS

26.
$$Y = A \cos \omega t$$

$$\frac{A}{2} = A \cos wt$$

$$\cos(\omega t) = \frac{1}{2}$$

$$wt = \frac{\pi}{3}$$

$$\frac{2\pi}{T}t = \frac{\pi}{3}t = T/6$$

27.
$$a = -16\pi^2 x$$
 $\Rightarrow \omega^2 = 16\pi^2 \omega = 4\pi$

$$\frac{2\pi}{T} = 4\pi \Rightarrow T = \frac{2\pi}{4\pi} = \frac{1}{2}$$

28.
$$t = 0 \Rightarrow y = 10 \sin \frac{\pi}{3} = 5\sqrt{3}m$$

$$V_{\text{max}} = \omega A = 10 \times 3 = 30 \ m / \sec$$

$$\frac{1}{2}m\omega^2 (A^2 - x^2) = \frac{1}{2}m\omega^2 x^2$$

$$A^2 - x^2 = x^2$$

$$A^2 = 2x^2 = x^2 = A^2 / 2$$

$$A^{2} = 2x^{2} = x^{2} = A^{2} / 2$$
$$x = \frac{A}{\sqrt{2}} = \frac{4}{\sqrt{2}} = 2\sqrt{2}cm$$

$$30. \quad x = a\cos\frac{\pi}{2}t = a\cos\omega t$$

$$\omega = \pi/2$$
 and $\frac{2\pi}{T} = \frac{\pi}{2}$

$$T = 4 \text{ sec}$$

Distance covered will be = 3a

31.
$$V = \sqrt{144 - 16x^2}$$

$$=\sqrt{16(9-x^2)}$$

$$V = 4\sqrt{3^2 - x^2}$$

$$V = \omega \sqrt{A^2 - x^2}$$

$$a_{\text{max}} = \omega^2 A = (4^2) \times 3 = 48 \, m \, / \sec^2$$

32.
$$y_1 = 10\sin(3\pi t + \pi/4)$$

$$y_2 = 5 \times 2 \left[\sin 3\pi t \cdot \frac{1}{2} + \frac{\sqrt{3}}{2} \cos 3\pi t \right]$$

$$y_2 = 1D \left[\sin 3\pi t \cos \pi / 3 + \sin \pi / 2\cos 3\pi t \right]$$

$$y_2 = 1D\sin(3\pi t + \pi/3)$$

33.
$$PE E = \frac{1}{2}m\omega^2 x^2$$

$$E \propto x^2 \Rightarrow x \propto \sqrt{E_1} \\ y \propto \sqrt{E_2}$$
 $\rightarrow 1$

$$x + y \propto \sqrt{E} \rightarrow 2$$

From (1) and (2),
$$\sqrt{E} = \sqrt{E_1} + \sqrt{E_2}$$

34.
$$V_{max} = A$$

$$V_{\text{max}} = A. \frac{2\pi}{T}$$

$$1.5 = A \cdot \frac{2 \times 3.14}{628 \times 10^{-3}}$$
 A = 1.5 cm

35.
$$V = A \omega$$

$$A_1 \omega_1 = A_2 \omega_2 = A_3 \omega_3$$

36.
$$A^1 = \sqrt{4^2 + u^2} \implies A^1 = 4\sqrt{2}units$$

37.
$$x = \frac{0.5}{2} \times \frac{2\sin\theta\cos\theta}{2}$$

$$x = \frac{0.5}{2} \times \sin 2\theta$$

$$x = \frac{0.5}{2} \times \sin(20\pi t + 3)$$

$$x = A \sin(\omega t + \phi)$$
 $\frac{A_w}{Aw^2} = \frac{1}{w} = \frac{1}{20\pi}$

38. TE of the particle is SHM = $\frac{1}{2}kA^2$

$$=\frac{1}{2}\times200\times1=100J$$

Mechanical energy = 150J at mean position the minimum PE is 150 - 100 = 50J

39. Equation of displacement given by $x = A \sin(\omega t + \phi)$

Where
$$A = \frac{F_0}{m\sqrt{(\omega^2 - \omega_0^2)}} = \frac{F_0}{m(\omega^2 - \omega_0^2)}$$

Here damping effect is considered to be zero

$$A \propto \frac{1}{m(\omega^2 - \omega_0^2)}$$

40.
$$F = m\omega^2 A = m \frac{4\pi^2}{T^2} A$$

$$\left.\begin{array}{c}
F_1 \propto \frac{1}{T_1^2} \\
F_2 \propto \frac{1}{T_2^2}
\end{array}\right\} \to 1$$

$$F_1 + F_2 \propto \frac{1}{T_1^2} \to 2$$

$$\frac{1}{T_1^2} + \frac{1}{T_2^2} = \frac{1}{T^2}$$

$$T = \frac{T_1 T_2}{\sqrt{T_1^2 + T_2^2}}$$

$$T_2 = \frac{3}{5} \sec$$

$$T = \frac{12}{25} \sec$$

$$V_{m} = \omega a = \frac{2\pi}{T} a$$
41.
$$T = \frac{2\pi a}{V_{m}} = \frac{2 \times 3.14 \times 4}{16} = 1.57s$$

$$42. \quad V = \omega \sqrt{a^2 - x^2}$$

$$V = \frac{2\pi}{T} \sqrt{a^2 - x^2}$$
$$= \frac{2 \times 22 \times 7}{7 \times 11} \sqrt{1 - 0.36}$$
$$= 3.2 \text{ m/s}$$