WATER RELATIONS IN PLANTS

1.	Water movement is fast in											
	1) Living cells	2) Int	2) Intercellular spaces									
	3) Xylem vessels	4) De	4) Dead cells									
2.	The upward movement of	water against	gravitation force in pla	ents is								
	1) Capillary rise 2) Tra	anslocation	3) Absorption	4) Ascent of sap								
3.	Ascent of sap is movement	of water from	ı									
	1) Soil into Xylem	2) Xy	lem into leaves									
1. 2. 3. 4. 5. 6.	3) Xylem into atmosphere 4) Leaves into atmosphere											
 3. 4. 5. 6. 7. 	Cohesion - Tension theory	based on										
	I : Decrease in water potenti	al in mesophyl	l cells									
	II : Transpiration pull											
	III: Water potential gradient between soil solution and xylem											
	IV : Unbroken water column											
	1) I & II 2) II d	& III	3) III & IV	4) II & IV								
5.	Difference between water	potential of so	il water solution and ro	ot xylem is								
	1) 10 times 2) 100 times	3) 100	00 times 4) 50 times	mes								
6.	According to cohesion - tension theory efficient structures in conducting water.											
υ.	1) Vessels	2) Tra	2) Tracheids									
	3) Membranes	4) Int	ercellular spaces.									
7.	A leafless twig placed in a beaker of water											
	1) Cannot transpire	2) Tra	anspires very fast									
	3) Can only absorb	4) Tra	anspires very slowly									
8.	Pressure potential is said to be negative during											
A	1) Night	2) High trans	piration									
8.	3) Low transpiration	4) Water mov	vement in vessel with lar	ge diameter								
9.	Maximum transpiration is	by .										
	1) Stomata 2) Cuticle	3) Le	nticels 4) Cutio	cle & Lenticels								
10.	Scotoactive stomata											
	1) Opens during day time	2) Op	2) Opens during night time									
	3) Opens during Day & Nig	ht 4) Ne	ver opens									
11.	Dumbbell shaped guard cells are seen in											
	1) All monocots	2) Liliaceae	3) Graminaceae	4) Dicotyledons								

12.	Source of protons during sto	matal opening is								
	1) Water 2) Suga	rs 3) Light		4) Malate						
13.	During opening of stomata									
13. 14. 15. 16.	I: Entry of K+ is active	II: Entry of	II: Entry of Cl is active							
	III: Export of H+ is active	IV: Entry of	H ₂ O is active							
14. 15. 16. 17. 18.	Correct statements are									
	1) I & II 2) II &	III 3) I & III	4) I & IV							
14.	Transpiration can be demon	strated by								
	1) Ganong's potometer	2) Bell jar e	xperiment							
	3) Hydrilla experiment	4) Baromete	r							
15.	The factors that show invers	ely proportional re	elationship with	transpiration						
	1) Temperature & Humidity	2) Availability of wa	ater & Very high	velocity of wind						
	3) Light & Temperature	4) Humidity	& Very high velo	ocity of wind						
16.	Assertion: Embolism stops transpiration									
	Reason(R): Embolism stops	the movement of wa	nter in xylem ves	sels						
	1) Both A and R are true and I	R is the correct explanation	anation of A.							
17	2) Both A and R are true but R is not the correct explanation of A.									
	3) A is true, R is false 4) A is false, R is true									
17.	Natural anti transpirant in p	olants is								
	1) Auxin 2) Malate	3) Proton	4) ABA	A						
18.	Transpiration plays an indir	ect role in								
	1) Uptake & Transport of minerals 2) Absorption of water									
	3) Translocation of solutes 4) Distribution of water									
19.	Transpiration is a 'necessary	evil '- stated by								
	1) Slatyer 2) Arnon	3) Knop		4) Curtis						
20.	Phenyl mercuric acetate (PN	IA) is								
	1) An antibiotic used as an ant	itranspirant								
	2) A fungicide used to increase transpiration									
	3) A fungicide used as an anti-	ranspirant								
	4) A growth harmone used as an anti transpirant.									
21.	True statement among the fo	ollowing								
	1) Water potential is inversely proportional to pressure potential.									
	2) Water potential is inversely proportional to osmotic potential.									
	3) Water potential is directly proportional to osmotic potential.									
	4) Osmotic potential and solut	e potential are not e	qual.							

22.	The pathway of water into the pl	ant								
	1) Root hairs→ xylem → Cortex → endodermis → pericycle									
	2) Root hairs → Cortex → pericyc	ele → endodermis → xyle	n							
	3) Root hairs → pericycle →Corte	ex → endodermis→ xylen	1							
	4) Root hairs → Cortex → endode	ermis → pericycle→ xyl	em							
23.	In a highly turgid cell									
	1) $\psi = \pi$ 2) $P = 0$	3) ψ is near to zero	4) π=0							
24.	Preservation of pickles from live bacteria by addition of salt involves									
	1) Diffusion of salt into bacteria									
	2) Hydration of bacteria									
	3) Plasmolysing the bacteria.									
	4) Starving the bacteria									
25.	Water potential is equal to osmotic potential during									
	1) High transpiration 2) Plasmolysis 3) Turgidity 4) Equilibrium									
26.	Water potential is influenced by									
	1) Temperature 2) Pr	ressure 3) Solute	4) All the above							
27.	If osmotic potential is -0.5Mpa ar	nd pressure potential is +0	.5Mpa water potential is							
	1) Zero 2) 0.1 Mpa	3) 1 Mpa 4)	-1Mpa							
28.	Cohesion –Tension theory propo	sed by								
	1) Taylor 2) Dixon	3) Hales	4) Web							
29.	Water potential is maximum in									
	1) -0.01 Mpa 2) -0.02 Mpa 3) -0	.1 Mpa 4) –0.03 Mpa								
30.	Stomatal Index is									
	1) Ratio between stomata and leaf surface area									
	2) Ratio between stomata per unit area and sum of epidermal cells and stomata of that unit									
4	area.									
	3) Ratio between epidermal cells a	nd stomata of that unit area								
	4) Ratio between sum of stomata a	nd epidermal cells of a unit	area and stomata of that area							
31.	Transpiration is described as an	"unavoidable evil" by								
	1) Curtis 2) Levitt	3) Bowling 4) Barnes								
32.	Water that is available to the pla	nt is								
	1) Gravitational water	2) Capillary water								
	3) Hygroscopic water	4) Run away water								

33. The tallest angiosperm plant ever recorded is

- 1) Eucalyptus amygdalina
- 2) Sequia sempervirens
- 3) Pseudotsuga menziesii
- 4) Bauhinia purpurea

34. Assetion A : Stomata opens when guard cells bulge

Reason R: Bulging is unequal due to unequal thickening of cell walls.

- 1) Both A and R are true and R is the correct explanation of A.
- 2) Both A and R are true but R is not the correct explanation of A.
- 3) A is true, R is false 4) A is false, R is true

35. A seed with water potential -60 Mpa sown in soil with water potential -100 Mpa

- 1) Seed germinates
- 2) Cannot germinate
- 3) Seed looses water
- 4) Water potential of seed decreases

36. In tall trees of 400 feet water potential difference observed is

- 1) 1.3 Mpa
- 2) 4.0 Mpa
- 3) 13 Mpa
- 4) 0.4 Mpa

37. Assertion A: Bean seeds can absorb water more quickly than paddy.

Reason R: Proteinacious seeds have very low potential.

- 1) Both A and R are true, R is the correct explanation of A.
- 2) Both A and R are true but R is not the correct explanation of A.
- 3) A is true, R is false
- 4) A is false, R is true

38. Process not spontaneous is

- 1) Diffusion of soil water crossing cell wall 2) Water crossing membrane
- 3) Water entering into seeds
- 4) Water movement against concentration gradient

39. If dry raisons soaked in water

- 1) Water becomes sweeter.
- 2) Raison absorbs water and looses sugars
- 3) Only endosmosis takes place
- 4) After complete bulging both exosmosis and endosmosis takes place.

40. Assertion (A): A dead piece of wood also absorbs water.

Reason (R): Water absorption is a passive process

- 1) Both A and R are true, R is the correct explanation of A.
- 2) Both A and R are true but R is not the correct explanation of A.
- 3) A is true, R is false
- 4) A is false, R is true

Key

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
3	4	2	4	1	2	4	2	1	2	3	4	3	2	4	4	4	1	4	3
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
3	4	3	3	2	4	1	2	1	2	4	2	1	2	2	1	1	4	4	1