PHOTOSYNTHESIS

1.	Appressed region of thylak										
	Surface of the thylakoid that is exposed to stroma. Surface of the thylakoid membrane exposed to lumen										
		B.Any surface of the thylakoid membrane exposed to stroma									
	4.Only the margins of the gra										
2	Lumen of the thylakoid is associated with										
4.	1.ATP formation 2. O ₂ evolution										
		4. CO ₂ reduction.									
3.		igments in a plant cell is/are									
•		B. carotenoids									
	C. phycobilins	D. phytochromes									
	E. riboflavin	F. anthocyanins									
	1. A & B	2. A B C & D									
	3. A B & C	4.A B D E & F									
4.	True statements regarding										
	A. chlorophylls are photosynthetic pigments B. molecular weight of chl b is more										
	C. chl a is blue green in color										
_	1. A B & C 2. B C		3 C & D								
5.	Assertion (A): Radiant energy	rgy can be trapped only by chl a									
	Reason (R): All the pigments transfer energy to chl a Both A & R are true R is the correct explanation of A										
		not the correct explanation of A									
	3.A is true but R is wrong										
6	Pentose sugars formed in C										
υ.	A. glyceraldehyde phosphate										
	C. Erythrose	D. ribulose E. ribose									
	F. sedoheptulose	E. House									
		C D & F 3. B D & E	4. D & E								
7.	Reaction centre of PS II is										
	1. chl a 680 2. Chl	a 700 3. Chl b 630 4. C	hl a 630								
8.	'Red drop ' is										
	1. low efficiency of red light in photosynthesis										
		is in higher wavelengths of red light									
	3. Non evolution of oxygen in red light										
Λ	4. Presence of two photosyst										
9.	Dark reactions in photosyn										
	1. Reactions that takes place										
	 Reactions taking place during night Reactions that do not require light directly. 										
	4. Unknown reactions of pho										
10.	Assertion (A): Dark reaction										
-0.		ons are biochemical reactions									
	1. Both A & R are true R is t										
		not the correct explanation of A									
	3.A is true but R is wrong										
11.	Number of water molecules	s required to reduce 2 CO ₂ molecules									
4	1. six 2. One	3. Four 4. Two									
12.	The enzyme used in CO ₂ fix	xation in mesophyll cells of C ₄ plants									
	1.RUBISCO	2. Malate dehydrogenase									
	3. Pyruvate kinase	4. PEP corboxylase									

www.sakshieducation.com

13. True s											
			performe re reduce		1 1SOL	ated chlorophylls					
					r pro	ved beyond doubt.					
		on of wa	ter as a p				C 0- D				
1. only 14. Prim a		rotein t	2. Onl hat acce			3. A B & C 4. B ron from PS II is	C & D				
1. phe	ophy	/tin	2. Pla				4. Ferrodoxin				
15. Match	the		ig List I			I ict II					
			List i			List II					
	A	Blackm	ian		I	Two pigment system					
	В	Hill			II	'Z' scheme of electron movement					
	С	Emerso			III	Two phases in photosynthesis					
	D	Hill &	Bendall		IV	Red drop					
					V	Reduction of CO ₂ in photosynthesis					
1. 3.	A III III	B II V	C IV I	D V II		A B C 2. I V III 4. III IV II	D II I				
 2. ATP and NADPH₂ will form 3. Oxygen and NADPH₂ will form 4. only ATP forms. 17. Driving force directly involved in ATP formation is 1. Light 2. Proton motive force 3. Electron movement 4. Photolysis of water 18. Calvin performed his experiments on 1. Chemoautotrophs 2. Rhodospirillum 3. Chlorella 4. Porphyridium 19. True statement regarding RUBISCO is /are A. Substrate for RUBISCO can be CO₂ or O₂ B. It involves in carboxylation of four carbon compounds C. It is the most abundant protein in the plant kingdom D. RUBISCO is present in C₃ plants. 											
1. A &	B		2.A &	: Ĉ		3. A & D	4. B & C				
				er (of tri	ose sugars that participate in reg	eneration of				
1. one	II ac	ceptor is	2. Thi	ee		3. Four	4. Five				
						have photolysed in light reaction reduce only 3 CO ₂ molecules	if just sufficient amount of				
1. six 22. Assert	tion	(A): Hig	2. 12 h concer	ıtra	tions	3. Three 4. O s of both CO ₂ and O ₂ inhibits pho					
2. Both 3. A is 23. In ligh produ 1. Cyc	h A true true ced lic e	& R are t & R are t but R is	true R is the true R is the true R is the true R is the true to the true ransport	the onot 4. not	corre the control A is ecule	h as carboxylase and oxygenase. ct explanation of A orrect explanation of A wrong but R is true can help in the formation of 2 A 2. Respiration of green pigment 4. Presence of more CF particles	ΓP. Any additional ATP				

\

www.sakshieducation.com

24. In photo 1. Cata 3. RUB	lase	2. Glycoli	c aci	oxide formation takes place in the place in	presence of
25. Match			IOOA	yluse	
		List I		List II	
	A	Sugarcane	Ι	C ₄ plants	
	В	PEP carboxylase	II	Mesophyll cells of C ₃	
ļ	С	Kranz	III	CO ₂ fixation	
	D	RUBISCO	IV	Dimorphic chloroplasts	
			V	Bundle sheath	
3.	A I IV	B C D V IV II III I V	•	A B C 2. IV III I 4. III I V	D II IV
26. First st 1.PEP	tabl	e substance formed a 2. OAA	ın m	esophyll cells of C ₄ plants is 3. Malate 4. OAA or A	Aspartic acid
test for 1. Zea n 3. Sorg 28. DCMU 1. Oxyg 3. Only 29. Asserti Reason 1. Both 2. Both 3. A is 30. β carbo 1. Hatch 3. Photo 31. True st 1. pH in 2. NAD 3. Stard	state humay humay humay humay jagen oxy ion A cores tate nores tate	rch. The leaf can be as 2. a vulgare 4. fects the formation of and ATP 2. ygen 4. (A): CO ₂ compensat (R): Peroxysomes as R are true R is the as R are true R is not a but R is wrong 4. lation pathway is spiration 4. ment regarding C ₄ peases during day time	long Oryz Man f ATP Onl ion pare a corre the co A is Oxio Calv oath in m ce in n gran	a sativa gifera P and NADPH2 y NADPH2 point is less in C4 plants bsent in C4 plants ct explanation of A orrect explanation of A wrong but R is true dation of lipids vin's cycle way esophyll chloroplast bundle sheath cell and utilization in nal chloroplast	
plasto 1. 30 ti 33. Reactiv 1. Fe 34. At lower rate of 1. photo 2. Light 3. Both 4. Incre 35. Efficient 1. 20% 36. The co 1. chlore	mes mes er le f ph osyn nt ha ccc ease ncy	entre of plastocyania 2. 20 times entre of plastocyania 2. Cu evels of CO ₂ concente totosynthesis. This shathesis is light saturate as become limiting factorial of the concentration of photosynthesis do 2. tion of the seedlings,	e red es n con cratic cratic cone d. ctor. ome l doe uring 50% grov cespo	3. Mg on, the increase in light intensity d imiting factors. s not increase rate of photosynthesis g photorespiration is 3. 75% wn in the absence of light is called onse 3. Necrosis 4 .etic	4. Mn oes not increase

www.sakshieducation.com

www.sakshieducation.com

1.PGA 2. Ribulose 5 phosphate

3. Ribulose 1,5 bisphosphate 4. PGA and Ribulose 5 phosphate

38. During sun light starch formation takes place in

1. cytosol 2. Chloroplast

3. Both in cytosol and chloroplast 4. In the phloem

39. in Calvin's cycle transketolase mediates reaction between

1. aldehyde and ketones 2. Two aldehydes 3. Two ketones 4. Any two sugars

40. Difference between chl a and chl b is

1. colour 2. Colour and mol wt

3. Absorption of radiant energy 4. Colour, mol wt and radiant energy

Photosynthesis-I

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2	2	3	1	4	3	1	2	3	1	3	4	2	1	3	4	2	3	2	4
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
1	2	1	2	2	4	1	2	3	1	1	1	2	1	3	4	4	2	1	4