MINERAL NUTRITION

1.	Important features of mycorrhizal roots i	is / are										
	1) Parasitic association 2) Abs	ence of root hairs										
	3) Fungi enters into cortex 4) Nitrogen fixing											
2.	Best biofertilizer for the paddy field is											
	1) Azolla 2) Rhizobium	3) Glomus 4) Azospirillum										
3.	Mr. Venkataraman is associated with											
	1) Discovery of Spirogyra lateral conjugation	on 2) C4 cycle of photosynthesis										
	3) Algelization	(1) Criteria of essentiality of nutrients										
1	A zolla a symbiotic forn can be used as	4) Chieffa of essentiality of nutrients										
7.	1) Riofortilizar & graan manura	2) pollution indicator										
	2) Diometri 2) Diometri	(1) Pioinsocticido										
5	J) Diolilass In Woodword's experiment plants connec	4) Diomsecucide										
5.	1) Doin water contains toxing	2) Doin water contains loss aware										
	1) Kalli water contains toxins 2) Kalli water contains less oxygen 3) Nutrients are less in rein water 4) Dein water shows mere CO2											
(3) Nutrients are less in rain water	4) Kain water snows more CO2.										
6.	True statement regarding criteria of essen	ntiality										
	A: Without essential element plant can not complete only vegetative stage.											
	B: It may be replaced by another element.											
	C: Essential element participates in metabol	ic reaction directly.										
	D: It should be available from soil.											
	1) A & B 2) B & C	3. A & D 4) Only C										
7.	Element that can be absorbed both in ani	onic and cationic forms										
	1) K 2) N	3) S 4) C										
8.	Elements that crosses membrane passivel	y v										
	1) C, H, O 2) N, S, P	3) C, H, K 4) K, Ca, N										
9.	Total essential mineral elements are											
	1) 16 2) 13	3) 6 4) 7										
10.	True statement regarding uniporters											
	1) Uniporters utilizes proton motive force 🐘 🔳											
	2) Uniporters are responsible for proton more	tive force										
	3) Uniporters can transfer both sides											
	4) They can carry two different solutes.											
11.	Secondary active transporters are											
	1) Utilize ATP	2) Coporters & Uniporters										
	3) Antiporters & Uniporters	4) Coporters										
12.	Accumulation of solutes in plants depend	son										
120	1) Only availability of solutes	2) Membrane structure										
	3) Membrane structure availability & Energy	A Cell wall energy and availability										
13	Protection against salt water in plants is	due to										
13.	1) Antiporters 2) Conorters	3) Uniporters (1) All symporters										
1/	Flomont required in minute emounts and	bearbod as anion is										
14.	1) Dhognhoroug 2) Doron	$\begin{array}{c} \textbf{absolute as all of is} \\ \textbf{2) Sulphur} \\ \textbf{4) Tipe} \end{array}$										
15	1) Phospholous 2) Bolon Number of eccential micronutrients	5) Sulphul 4) Zinc										
15.	Number of essential micronutrients $1 > 7$	2) 12 () 16										
16		3) 13 4) 10										
16.	Rhizobium as a biofertilizer used on											
4 -	1) All Dicots 2) Monocots	3) Fabaceae plants 4) Any plants										
17.	True statement regarding Azolla											
	1) It can fix atmospheric nitrogen	2) It is an angiosperm										
	3) It can be used only in paddy fields	4) It is a mesophyte										
4												
18.	Glomus is											
	1) Bacteria 2) Fungus 3) Ang	giosperm 4) Cyanophyceae										
19.	Azospirillum is a/an											
	1) Independent bacteria	2) Endosymbiont										
	3) Ectoparasite	4) Symbiotic associate										
20.	Protection against pathogens is imparted	bv										
	1) Rhyzobium 2) Azospirillum	3) Cyanophyceae 4) VAM										
	=,=,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											

- **21.** Application of bacteria on seeds as a fertilizer is called as 1) Inoculation 2) Infection
- 3) Bacterization 4) Algalization
 22. Azospirillum can be used effectively on
 - 1) Pulsus 2) Millets 3) Tubers

23. Root hairs cannot develop due to association of 1) Rhizobium 2) Nostoc 3) VAM

4) Fruit crops

4) Azatobacter

Mineral Nutrition

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
2	1	3	4	3	4	2	1	2	2	4	3	1	2	2	3	3	2	4	4	P.
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	
3	2	3																		÷

Nitrogen metabolism

1. Metabolism means

- 1) Nitrogen fixation into NH₃
- 2) Conversion of NH₃ into amino acids
- 3) Metabolic conversion of ionic nitrogen into simple organic constituents
- 4) Protein synthesis from amino acids

2. Role of IF2 in protein synthesis is

- 1. It transfers an acylated tRNA into 'P' site
- 2. It transfers an acylated tRNA into 'A' site
- 3. It transfers an formyl methionated tRNA into 'P' site
- 4. It transfers an formyl methionated tRNA into 'A' site

3. Nitrogen fixation means

- 1) Formation of NH_3 from NO_3
- 2) Formation of ammonia from NO₂
- 3) Formation of NH₃ from NO₂
- 4) Chemical reaction of N_2 with other elements
- 4. Enzyme required in biological nitrogen fixation is
 - 1) Nitrate reductase 2) Nitrogenase
 - 3) Nitrite reductase 4) Transaminase
- 5. Assertion (A) : All prokaryotes do not have ability to fix atmospheric dinitrogen

Reason (R) : All prokaryotes do not have ability to produce nitrogenase enzyme

- 1) Both A and R are true, R explains A
- 2) Both A and R are true but R does not explain A
- 3) A is true, R is false 4) A is false, R is true.
- 6. Co-factors required for activity of the nitrogenase enzyme is
- 1) Fe & Mo 2) Fe & S 3) S & Mo 4) Zn & Mo
- 7.Protein that carries oxygen for the bacterioids
1) Fe-Mo protein2) Leghaemoglobin
 - 3) Cytochrome 4) Protein can't carry O_2
- 8.Example for non-symbiotic bacteria that can fix N2 is
1) Rhizobium2) Nostoc3) Clostridium4) Klebsiella
- 9. Oxygenic prokaryote which can live independently and symbiotically
 - 1) Rhodospirillum 2) Rhizobium 3) Azatobacter 4) Anabaena
- **10.** Assertion (A) : Sequence of amino acids in protein cannot be a sequence of nucleotides in mRNA
 - Reason (R) : A single amino acid may be coded by many codons
 - 1) Both A and R are true, R explains A
 - 2) Both A and R are true but R does not explain A
 - 3) A is true, R is false 4) A is false, R is true.
- **Micro organism that shows association with** Casuarina is
1) Actinomycetes2) Rhizobium3) Klebsiella4) Anabaena

www.sakshieducation.com

12.	A free floating cryptogan 1) Anabaena	nic hydrophyte t 2) Azolla	hat associates syn 3) Jussiae	nbiotically a	with prokaryotic algae 4) <i>Cvcas</i>								
13.	Rhizobium is	, .	,		, ,								
	1) Gram +ve, anaerobe	2) Grame +ve	, aerobe										
	3) Gram- ve, aerobe	4) Gram -ve, a	inaeobe										
14.	In a mutually beneficial i	elationship of R	<i>hizobium</i> and a lea	guminous	plant,								
	<i>Rhizobium</i> will not be ben	efited in											
	1) Carbohydrates from leg	uminous plants											
	2) Shelter from leguminou	s plants											
	4) Enzymes and proteins from the host plant												
15	4) Enzymes and proteins in Assortion (A): Phizobium	ontors the best	noccivaly										
13.	Reason (R). Rhizobium	annot produce a	Passively. Ny Anzyma										
	1) Both A and R are true. R explains A												
	2) Both A and R are true but R does not explain A												
	3) A is true, R is false	4) A is false, I	R is true.										
16.	In reducing dinitrogen in	to two molecules	ammonia the nu	mber of A	TP required are								
. –	1) 8	2) 4	3) 16		4) 3								
17.	'Bacteroids' are			~									
	1) Bacteria without cell wa		2) Aggregations of	of bacteria									
10	3) Daughter bacteria from	Rhizobium	4) Globose <i>Rhizol</i>	bium prese	nt in nodules								
18.	1) Tubules	2) Infection th	read 3) Nodule	n ol <i>Knizol</i>	A) Bacterial colony								
19	Interaction between <i>Rhiz</i>	<i>obium</i> and host i	result in		4) Bacterial colony								
17.	1) Nodule formation	ootumi and nost i	2) Production of I	naemoglobi	in								
	3) IAA production by host	plant	4) All the above										
20.	For a single molecule of I	N_2 reduction how	many electrons a	are require	ed								
•	1) 16 2) 8	•• /•	3) 2	4) 6	10								
21.	If the genetic code is a do	ublet how many	amino acids cann	ot be code	ed?								
	1) 16 2) 2	0	3) 4	4) 6									
	, - ,			/ -									
22.	The amino acid with max	imum number o	f codons is										
23	1) Serine 2) C	DNA with civ nu	(a) Tryptophane	A has 2 aa	4) Glycine								
23.	This character can be dee	scribed as	Lieoliues AUGUU	A lias 2 cu									
	1) Code is a triplet	2) Code is cor	nmaless										
	3) Code is non-over lappin	g 4) All the abo	ve										
24.	ĆGU codes for arginine i	n virus, bacteria	, fungus and all o	ther eukar	yotes. This is								
	1) Degeneration of code	2) Code is nor	n-ambiguous										
	3) Code is universal	4) All the abor	ve										
25.	Wrong statement regard	ing termination	codons										
	1) UAA, UUA & UAU are terminating codons 2) tPNA for anticodon UAA, UGA, UAG are present												
	2) IKINA IOF anticodon UAA, UGA, UAG are present 3) In normal condition a game ands with a terminating codon												
	4) Terminating codons are	not seen on DNA	strand										
26.	True statement regarding	g transcription	Strund										
	1) Two stands of DNA act as templates												
	2) Enzyme involved is DNA polymerase												
	3) In prokryotes transcripti	on takes place wi	thin nucleus and ir	n Eukaryote	es outside nucleus								
27	4) Sequence of mRNA is e	xactly like that of	the strand other th	an templat	te								
27.	AUG codes for methonin	e whether as firs	t codon or within	the gene.									
	1) Mothylation 2) E	on is by a proces	8 3) Activist	ion	1) Aculation								
28	1 intermediation 2 Γ	ormyration	3) Activat	1011	4) Acylation								
20.	1) 'A' site		2) 'P' site										
	3) 'F' site		4) Any site witho	ut discrimi	nation								
	,		<i>, , , , , , , , , ,</i>										

29.	Т	True statement regarding initiation of polypeptide chain																		
	1	1) tRNA with amino acid enter into 'P' site																		
	2	2) IF proteins & EP-TU proteins are essential																		
	3) Dire	ect ut	ilizati	ion of	f ÂTI	2													
	4) Inte	grate	d ribo	osom	e part	icipa	tes												
30.	Ć	Codon and anticodon join together by																		
	1	1) Weak ionic bonds 2) Hydrogen bonds																		
	3) Pho	snho	diest	er ho	nds				$\overline{4}$	Glyc	osidi	c hon	ds						
31	- J	n nen	tide	hond	forn	natin	n				Giye	USIUN	001	u.s						
51.	1	h pep) Carl	hovy	l grou	in of	amin	n o acio	d in '	A' cit	o hor	de w	ith N	H. of	amir		id in	D' ci	ta		
	2	2) Carboxyl group of amino acid in 'P' site bonds with NH ₂ of amino acid in 'A' site																		
	23	2) Carboxyi group of amino acid in P site bonds with NH_2 of amino acid in A site 2) NIL group of amino acid in 'D' site bonds with COOH group of amino acid in 'A' site																		
	3) NILI	2 grou	up or	annin	in in	, aita	r Sit		LUS W			grou	י נו ט ע הי יד			III F	1 510		
22	4 S) INE	2 01 a			III P	site) actu	III P	site	,				The second secon
32.	3	epara	ation	or p	roten	1 Iro		site	is rac	intal 2)		y Do) .	. TO			\mathbb{P}	
	1) IF		,	• 41	2) E	F-IU	mai	una	(5)	KIÅ	2 K2			5) EF	- 15			•	
33 .		DNA	stra	ind w	with s	eque	nce A	TG	UCG	CTa	cted	as tei	npla	te. w	hat i	s the	sequ	ence	10	m-
KN	A ?						•	TTAC	2000											
	1) \mathbf{IA}	CGG	iCGA	\		2)	UAU		CGA										
~	3) AG	CGA	CAU	.	1000	4)	AUC	JUUU	JCT			0							
34.	L	engt	h of i	n KN	A IS	1020	A °. '	W hat	t can	be th	le len	gth c	of pro	otein	after	tran	slatic)n		
~ -	1) 102	0 am	ino ac	cids	2) 30	10 an	nno a	icids	(3)	100 a	amino	o acid	S 4	1) 34(0 ami	no ac	ads _		
35.	1	he n	umbe	er of I	nucle	otide	es in :	a DN	A that	at cai	n cod	e for	a pr	otein	of 6	00 ai	nino	acids	5	
	1) 180	0		_		_2)	6120)	3)	2520		<u>т</u>			4) 3	3600			
36.	L	engt	h of l	DNA	that	can o	code	for a	prot	ein of	f 450	amir	10 ac	ids	7	C				
	1) 135	$0 A^0$			2) 12	260 A	V 0		3)	4590	A ⁰		4	4) 270	$00 \mathrm{A}^{\mathrm{c}}$				
37.	A	DN	A of 2	2040	nucle	eotid	es sta	rted	trans	scrib	ing a	nd tr	ansla	tion.	. For	ever	y one	e seco	nd 5	amino
	a	cids a	are sy	ynthe	esized	l . In]	how	much	n time	e pro	tein s	ynth	esis v	vill b	e cor	nplet	ed			
			1) 6	min 4	48 se	с	2)	1 mi	n 8 se	ec	Ψ	3) 3 r	nin 2	4 sec		4) 2	2 min	16 s	ec	
38.	I	n a D	NA (of len	gth 2	380	A0 le	ngth	301s	t, 302	2nd 8	k 303	rd n	ıcleo	tides	are '	Г,А,(C resj	pectiv	vely.
	V	Vhite	tran	scrib	ing t	he se	quen	ice in	m R	NA r	nutat	tion (occur	red o	on 30	3rd n	ucle	otide	and	'C'
	r	eplac	ed w	ith 'A	4'. W	'hat e	can b	e the	leng	th of	prot	ein a	fter t	ransl	latior	1				
	1) 100	amir	10 aci	ds	2) 70)0 an	nino a	acids	3)	233 8	amino	o acid	S 2	4) 76	0 ami	no ac	ids		
39.	Т	'he fi	rst ai	mino	acid	s in a	ll pro	otein	s imn	nedia	tely a	after	tran	slatio	n is					
	1) Dep	ends	on ty	pe of	prot	ein 🖌			2)	Valir	ne								
	3) Met	hioni	ine	-	-				4)	Glyc	ine								
40.	I	n a tr	iplet	code	e max	imu	n pos	ssible	e code	es is	•									
	1) 61	-			2) 64	1		3) 20)				2	4) 49					
							N	itrog	en m	etabo	olism									
1	2	2	4	5	6	7	0		10	11	12	12	14	15	16	17	10	10	20	
1	2	5	4	1	1	2	0	7	10	1	12	13	14	13	2	1/	10	19	20	
J	3	4	24	25	1	4	20	4	20	1 21	<u>4</u> 20	3	3	4 25	3	4	<u>4</u> 20	4	40	
21	1	23	24	25	20	21	28	29	30	31	32	33	34	35	30	3/	38	39	40	
3	I	4	3	2	4	2	1		2	2	3	2	3	4	3	2	I	3	2	

COX.

 \bigcirc