Human Physiology-Digestion and Absorption

Introduction

- * Food is the basic requirement of all living organisms as it provides energy and organic materials for growth and repair of tissues.
- * Major components of food carbohydrates, proteins and fats.
- * Minor components of food vitamins and minerals.
- * Water plays an important role in metabolic processes and prevents dehydration of the body.

Important definitions and concepts

- * Thecodont dentition: Each tooth is embedded in a socket of the jawbone.
- * **Diphyodont dentition**: Teeth in humans are as two sets temporary teeth (Deciduous or lacteal teeth) and permanent teeth.
- * **Heterodont teeth**: Presence of different type teeth.
- * **Dental Formula**: Arrangement of teeth in each half of upper and lower jaws.
- * **Deglutition** means swallowing the food.
- * Mesothelium: Epithelium of visceral organs.
- * Payer's patches: Lymph nodules found in the wall of ileum.
- * **Epiploic appendages**: Small fat filled connective tissue pouches on the outer surface of colon along its length.
- * **Simple diffusion**: Passage of substances depending on concentration gradient.
- * **Active transport**: Transport of substances against the concentration gradient, hence requires energy.
- * Facilitated diffusion: Substances are absorbed using a carrier ion like Na+.

Digestive system

- * It consists of digestive tract or alimentary canal and associated glands.
- * Gastro intestinal tract or GI tract in man technically refers only to stomach and intestine.
- * Total length of alimentary canal in man is 30 feet.

Alimentary canal

- * Begins with mouth and opens out through anus
- * Mouth leads into the buccal cavity or oral cavity. It is followed by pharynx, oesophagus, stomach, small intestine and large intestine.

Oral Cavity or Mouth

- * It includes teeth, salivary glands and tonsils as accessory organs.
- * Oral cavity is bounded by lips anteriorly, fauces (openings) posteriorly, cheeks laterally, palate superiorly and tongue inferiorly.
- * It is lined by stratified squamous epithelium.
- * It has a number of teeth and a muscular tongue.

* Vestibule of the oral cavity is bounded externally by cheeks and lip and internally by gum and teeth

Teeth

- * In human beings dentition is the codont, heterodont and diphyodont.
- * Teeth are derived both from ectoderm and endoderm.
- * There are four types of teeth incisors (I) canines (C), premolars (PM) and molars(M).
- * Canines and wisdom teeth are vestigial in man.
- * There are no premolar teeth in milk dentition.
- * Dental formula in human adult is $\frac{2123}{2123} \times 2 = 32$ while milk dentition

is
$$\frac{2102}{2102} \times 2 = 20$$
.

- * Teeth are made mainly of dentine while the chewing surface of the teeth helps in mastication of food.
- * Enamel is the hardest substance of the body. (Teeth of armadillos and sloths lack enamel)
- * Enamel is made of calcium carbonate and calcium phosphate.
- * It is secreted by **ameloblasts** of pulp cavity.
- * Dentine is harder than bone and is secreted by odontoblasts which line the pulp cavity.

Type of teeth:

- * **Acrodont dentition:** When the teeth are not embedded in sockets but they are part of some bone as maxillary teeth and vomerine teeth of frog
- * Thecodont dention: When teeth are separate entities and are embedded in the teeth sockets as in mammals and crocodiles
- * **Diphyodont dentition:** When two sets of teeth are produced in the life time i.e. milk teeth and permanent teeth, as in Mammals
- * **Polyphyodont dentition:** When teeth can be replaced many times in life as in fromg
- * Homodont dentition (Isodont): When teeth are a like as in frog
- * **Heterodont dentition:** When there are different types of teeth present, like incisors canines, premolars and molars as in Mammals
- * **Pleurodont dentition:** When the sides of teeth are fixed over the lateral surface of jaws as in reptiles
- * **Bunodont dentition:** When there are low cusps present made by ridges of the teeth as in man
- * Solenodont: When the cusps are crescentic as in sheep, etc
- * **Secodont:** In carnivores such as cat, dog, lion, etc. Cusps are pointed and are used in cutting

DENTAL FORMULAE

Mouse
$$\frac{1003}{1003} = 16$$
 Man Temporary $\frac{2102}{2102} = 20$

Squirrel
$$\frac{1003}{1013} = 18$$
 Permanent $\frac{2123}{2123} = 32$

Rabbit
$$\frac{2033}{1023} = 28$$
 Bear $\frac{3142}{3142} = 40$

Cat
$$\frac{3133}{3120} = 32$$
 Horse $\frac{3143}{3143} = 44$

Opossum
$$\frac{5134}{4134} = 50$$

Dental diseases

- * **Pyorrhoea**: Inflammation of periodontal ligaments and gums.
- * **Dental caries**: Tooth decay due to acids produced by bacteria.
- * Lactobacillus acidophilus and streptococcus mutans are associated with tooth decay
- * **Periodontal disease**: Inflammation and degradation of periodontal ligaments, gingiva and alveolar tissue.
- * **Helitosis**: Bad breath due to pyorrhoes or periodontal disease.
- * Diet should contain vitamin D, calcium and phosphorus for the healthy teeth

Tongue

- * Tongue is freely movable, muscular organ attached to the floor of the oral cavity by freelym
- * Tongue has striated extrinsic and intrinsic muscles.
- * Terminal sulcus is the groove that divides the tongue into two parts.
- * The anterior two thirds is covered by lingual papillae, those are with taste receptors
- * Four types of papillae are found on human tongue circumvallate, fungiform (mushroom shaped), filliform (filament shaped) and foliate (leaf like)
- * Tongue possesses Nuhn's glands (glandular lingugles anteriores)

Pharynx

- * It is about 12cm long
- * It is a short passage for food and air.
- * Structures that open into the pharynx are oesophagus and trachea (wind pipe).
- * It is divided into naso, oro and laryngopharynx
- * During the swallowing, entry of food into the wind pipe is prevented by epiglottis
- * a cartilaginous flap.
- * Pharynx leads into oesophagus through aperture, gullet

Oesophagus

- * The part of alimentary canal which passes through neck, thorax and diaphragm is oesophagus.
- * It is 25cm, narrow muscular tube lined by stratified squamous epithelium contain mucus glands
- * Upper part of this is with striated muscle, middle part a mixture of striated and smooth and lower part purely smooth muscle
- * Opening of oesophagus into the stomach is regulated by gastro oesophageal sphincter also known as cardiac sphincter.
- * Oesophagus opens into the stomach.

Stomach

- * Stomach is located in the upper left portion of the abdominal cavity.
- * It is J shaped.
- * It is about 30cm long and 15cm wide
- * It has three parts cardiac, fundic and pyloric portions.
- * Stomach leads into small intestine.
- * Opening of stomach into duodenum is guarded by pyloric sphincter.

Compound stomach:

- * Ruminant animals such as cattle, buffalo, sheep, goat and camel have a compound stomach
- * Compound stomach consists of four chambers, viz, rumen, reticulum, omasum and abomasum
- * Some reminants like camel and deer do not have omasum
- * Rumen is the largest and first of the four chambers
- * Rumen and reticulum are the sites of **cellulose** digestion these harbour numerous bacteria and protozoa which carry out extensive fermentation of cellulose
- * Omasum concentrates the food by absorbing water and bicarbonates
- * Fourth chamber, abomasum is the **true stomach** as it secretes gastric juice and HCl

Small intestine

- * It is bout six meters in adults and it has three parts duodenum, jejunum and ileum.
- * Duodenum is 25cm inches long and is U-shaped.
- * Pancreas lies between the two limbs of duodenum.
- * It receives hepato-pancreatic duct formed by the union of bile duct and pancreatic duck
- * Jejunum is 2.4 meters long and is a coiled part.
- * Ileum is highly coiled and 3.6 meters long.
- * Wall of ileum has **Payer's patches** which produce lymphocytes.
- * The distal end of ileum has a small dilated spherical sac called **sacculus rotundus** in rabbit

- * Lining of small intestine bears a series of transfers folds called **plica circuris** or valves of kerkering
- * Their internal lining is with villi Small intestine leads into large intestine.

Large intestine

- * Large intestine consists of caecum, colon and rectum.
- * It is about 1.5mt long.
- * Caecum is a small blind sac, which has some symbiotic micro organisms.
- * A vistigeal organ arises from the caecum called vermiform appendix three inches in length.
- * Caecum opens into the colon.
- * Colon is 5 feet and is divided into three parts as **ascending**, **transverse** and **descending** part.
- * Constrictions on the wall of the colon form a series of pockets called **haustra**.
- * Three median longitudinal muscle cords on colon are called **Taeniae coli.**
- * Descending part of colon passes into the rectum.
- * Rectum is about 7-8 inches long, the terminal one inch is as anal canal.
- * Anal canal opens out through the anus

Histology of Alimentary canal

- * Wall of the alimentary canal has 4 layers.
 - 1. Serosa 2. Muscularis 3. Submucosa 4. Mucosa.
- * **Serosa** Outer most layer and is made up of mesothelium and some connective tissue.
- * **Muscularis** Smooth muscles consisting of outer longitudinal and circular muscles. In some regions oblique muscles are also present.
- * **Submucosa** Loose connective tissue and contains nerves, blood vessels and lymph vessels.
- * In duodenum submucosa has 'Brunner's' glands.
- * **Mucosa** It is the inner lining layer of alimentary canal. Forms '**rugae**' which are irregular folds in stomach.
- * It also forms villi which are small finger like foldings in small intestine.
- * Cells lining villi bear microvillus which is seen as a 'brush border'.
- * Microvilli increase surface area of absorption enormously.
- * Villi have capillaries and large lymph vessel called **lacteal**.
- * Goblet cells of mucosa secrete mucus for lubrication during food passage.
- * Digestive glands of stomach and crypts of Lieberkuhn of intestine are formed by mucosa.
- * Plexus of Aurebach: Network of nerve cells and parasympathetic nerve fibres between layers of longitudinal and circular muscles* Plexus of meissner: Nerve cells and parasympathetic nerve fibres between circular muscles and submucosa

Digestive glands

* The digestive glands associated with alimentary canal include salivary glands, liver, pancreas, and intestinal glands

Salivary glands

- * Human beings have three pairs of salivary glands. 1. **Parotids** (cheek), 2. **Submaxillary or submandibular** (lower jaw), 3. **Sub linguals** (below the tongue).
- * Infra orbital or zygomatic glands or absent in man
- * Saliva (pH 6.9) contains enzyme **ptyalin** (amylase).
- * Ptyalin acts on starch and converts it to maltose in the presence of **chloride ions**.
- * Smallest salivary glands are sublingual glands and the largest are parotid glands.
- * Parotid glands are **compound tubulo alveolar** glands whereas submandibular and sublingual are **compound alveolar** glands.
- * 'Mumps' is a viral disease caused by *Paramyxo* virus causing inflammation of parotid glands.
- * Secretions of perotid glands is pored into buccal cavity through stenson's duct
- * Duct of submaxillary riches buccul cavity through wharton's duct
- * Ducts of sublingual gland is duct of Bartholin and duct of Rivinus

Liver

- * It is the largest reddish brown gland of the body.
- * It weighs 1.2 to 1.5 kg in an adult human.
- * It is located below the diaphragm in the abdomen.
- * It is attached to the posterior concavity of diaphragm by a fold called **coronary** ligament.
- * It is also attached to the anterior abdominal wall by **falciform ligament.**
- * It has two lobes.
- * Structural and functional units of liver are hepatic lobules.
- * Hepatic cells are arranged in the form of cords.

 The connective tissue that covers each lobule is called **Glisson's capsule.**
- * Hepatic cells secrete bile (pH 7.6)
- * Bile is stored and concentrated in a thin muscular sac called the gall bladder.
- * The duct of gall bladder is called **cystic duct**.
- * Bile duct (ductus choledocus) of liver joined combine cystic duct and form, common bile duct
- * The common hepato-pantreatic duct opens into the duodenum and opening is guarded by a sphincter called **Sphincter of Oddi**.
- * Kupffer's cells are hepatic macrophages present between hepatic cords
- * Breaking down gall stones by use of ultra sonic vibration is called **lithotripsy.**
- * Surgical removal of the gall bladder is called **Cholecystectomy.**
- * Retarded function of liver can cause **jaundice**.

Functions of Liver:

- * Liver performs variety of functions
- * Glycogenesis: Exra gluose is converted to glycogen
- * Glycogenolysis: Glycogen is converted into glucose
- * Glucogenesis: Synthesis of glucose from other carbohydrates
- * Lipogenesis. Extra protein and carbohydrates are converted into lipid
- * Deamination of protein
- * Ornithine Cycle. NH₃ is converted into urea
- Cori Cycle. Lactic acid formed in muscle is converted back to glycogen
- * Synthesis of substance like Vit_A From carotene Vit_D from cholesterol or ergocalciferol, Heparin Insulin-like growth factor
- * Detoxification of substances
- * Storage of glycogen, Vitamin like Vit_A , Vit_D , VIt_{K_1} , Vit_{B12} and folic acid etc.; Fe and Cu
- * It acts as thermoregulatory organ

Pancreas

- * Pancreas is a compound racemose organ situated between the two limbs of duodenum.
- * It is second largest gland
- * It has both exocrine and endocrine cells.
- * Exocrine portion secretes pancreatic juice (pH 8.8) containing enzymes.
- * Endocrine portion secretes hormones insulin and glucagon.

Intestinal glands

- * Submucosa of duodenum is with Brunner's glands produces alkaline mucus
- * In between the villi of ilem crypts of Lieberkühn are present
- * Succus enterious is secreted by crypts of Lieberkuhn

Digestion of food

- * Process of digestion involves mechanical digestion, chemical digestion and micro bial digestion.
- * Break down of food by the action of teeth and muscles is called mechanical digestion.
- * Chemical digestion is by enzyme action.
- * All enzymes are proteins.
- * All digestive enzymes are hydrolytic.
- * The major functions of buccal cavity are mastication of food and mixing food with mucus to help in swallowing.
- * The food bolus formed is sent into oesophagus by deglutition.

- * Saliva contains electrolytes, enzymes and lysozyme.
- * pH of saliva is 6.8.
- * Daily secretion of saliva in man is about 1 to 1.5 litres.
- * Lysozyme is an anti bacterial agent.

Digestion in stomach

- * Gastric glands have three major types of cells.
 - 1. Mucus neck cells which secretes mucus
 - 2. **Peptic or chief cells** that secrete pro enzyme pepsinogen.
 - 3. Parietal or Oxyntic cells which secrete HCl and intrinsic factor.
- * pH of gastric juice is 1 to 3.5.
- * Protein digestion starts in stomach.
- * Food mixed with gastric juice in stomach is called **chyme.**HCl provides the acidic pH. Optimal pH for pepsin is 1.8
 Rennin helps in digestion of milk.
- * Another enzyme of the stomach is gastric lipase.
- * Gastric lipase acts best at pH of 5 to 6.

Digestion in small intestine

- * Three types of digestive juices are released into the small intestine.
- * 1.Bile, 2.Pancreatic and 3.Intestinal juice
- * Bile and pancreatic juice are released through hepato pancreatic duct or ductus choledochus.
- * Daily secretion of bile is man is about 600ml.
- * Bile is alkaline, yellow to green in colour and has pH of 7.8 to 8.6.
- * Bile does not have any enzymes.
- * Bile salts like sodium taurocholates and sodium glycocholates help in emulsification of fats.
- * Bile salts also help absorption of fat soluble vitamins.
- * Bile pigments like bilirubin and biliverdin are produced during break down of old RBCs
- * Bile also contains Cholesterol and phospho lipids.
- * Bile also activates lipases.

Pancreatic juices

- * Pancreatic juice is a complete digestive juice.
- * It takes part in the digestion of proteins, carbohydrates and fats.
- * Pancreatic juice contains trypsinogen, chymotrypsinogen, procarboxypeptidases, amylases, lipases and nucleases.
- * Enterokinase secreted by intestinal mucosa converts inactive trypsinogin to active trpsin.

Intestinal juice

- * Intestinal juice or succus entericus is mainly secreted by crypts of lieberkuhn.
- * It is a clear yellow fluid, slightly alkaline with a pH of 7.8.
- * The intestinal mucosal epithelium has goblet cells which secrete mucus.
- * The secretions of brush border cells of the mucosa along with the secretions of the goblet cells constitute the succus entericus.
- * Enzymes of intestinal juice are disaccharidases, dipeptidases, lipases, nucleosidases etc.
- * Mucous along with bicarbonates forms the layer that protects the intestinal mucosa from acids.
- * It also provides an alkaline medium for enzymatic functions.

Process of digestion

- * Proteins, proteoses and peptones are partially hydrolysed proteins of chyme.
- * Trypsin, chymotrypsin and carboxy peptidase act on proteins, peptones and proteoses and convert them to dipeptides.
- * Pancreatic amylase hydrolyse carbohydrates in the chyme into disaccharides.
- * Lipases act on fats and convert them to di and monoglycerides.
- * Nucleic acids are converted to nucleotides and nucleosides by nucleases in the pancreatic juice.
- * Enzymes of succus entericus act on end products of the above reactions.
- * Biomolecule break down occurs in duodenum of the small intestine.
- * The regions of absorption of digested food are jejunum and ileum.
- * The undigested and un absorb substances pass into large intestine.
- * Functions of large intestine include
 - 1.absorption of water, minerals and drugs.
 - 2.secretion of mucus that adheres to the waste particle and helps in their easy passage.

Chemical digestion in buccal cavity

$$Starch \xrightarrow{salivar\ y\ amylase\ ,Cl^-} maltose$$

In stomach

proteins
$$\xrightarrow{pep \sin} proteoses + peptones$$

In small intestine pancreatic juice action

$$chymotrypsonogen \xrightarrow{tryp \sin} chymotryp \sin$$

proteins, peptones, proteoses
$$\xrightarrow{tryp \sin/chymotryp \sin}$$
 $\rightarrow dipeptides$

$$polysacchrides(starch) \xrightarrow{amylase} disaccharides$$

 $Fats \xrightarrow{lipases} diglycerides \rightarrow monoglycerides$

 $Nucleicacids \xrightarrow{\ln euclases} neucleotides \rightarrow neucleosides$

Action of enzymes of succus entericus

 $Dipeptides \xrightarrow{dipeptidases} a \min oacids$

 $Maltose \xrightarrow{maltase} glu \cos e + glu \cos e$

 $sucrose \xrightarrow{sucrase} glu \cos e + fructose$

 $Nucleotides \xrightarrow{nucleotidases} nucleosides$

 $Nucleosides \xrightarrow{nucleotidases} sugars + bases$

 $Di \& monoglycerides \xrightarrow{lipases} fattyacids + glycerol$

- * Undigested, unabsorbed substances called faeces enter into the caecum of the large intestine through ileo-caecal valve.
- * Ileo-caecal valve prevents back flow of faecal matter.
- * Faecal matter is temporarily stored in the rectum till defaecation.

Neural control on GI tract

- * Secretion of saliva is stimulated by sight, smell or presence of food in the oral cavity.
- * Neural signals stimulate gastric and intestinal secretions.
- * Through CNS and local stimulation, muscular activities of different parts of alimentary canal can be moderated.

Hormonal control on GI tract

- * Control of secretion of digestive juice is carried out by the local hormones produced by gastric and intestinal mucosa.
- * Gastrin, enterogastrone, choleycystokinin (CCK), secretin, pancreozymin and enterocrinin are the hormones which act on the GI tract.

Absorption of digested products

- * End products of digestion pass through intestinal mucosa into blood or lymph.
- * Substances absorbed by simple diffusion are Monosaccharides like glucose, amino acids, some of the electrolytes like chloride ions.
- * Substances absorbed by facilitated diffusion are Fructose, some amino acids, with the help of carrier ions like Na+.
- * Transport of water depends on osmotic gradient.
- * Substances absorbed by active transport are Amino acids, Monosaccharide and elecrolytes like Na+.

Absorption of end products of fat digestion

- * Fatty acids and glycerol are insoluble and cannot be absorbed into the blood.
- * They are first converted to micelle which then moves into the intestinal mucosa.

- * In the intestinal cells they are converted into very small protein coated fat globules called chylomicrons which are transported into lacteals of the villi.
- * Lymph vessels carry chylomicrons into blood stream.

Summary of absorption in different parts of digestive system

- * **Mouth** Certain drugs coming in contact with the mucosa of mouth on lower surface of tongue are absorbed into blood capillaries lining them.
- * **Stomach** Water, simple sugars and alcohol.
- * Small intestine Principal organ for absorption of nutrients. Glucose, fructose, fatty acids, glycerol and amino acids.
- * Large intestines Water, minerals and drugs.

Assimilation

* Utilization of the absorbed substances by the tissues is called assimilation.

Defecation

- * Digestive waste, seen as faeces in the rectum initiates a neural reflex causing an urge or desire for its removal.
- * Defecation is a voluntary process and is carried out by a mass peristaltic movement.
- * Faeces is egested to the outside through the anal opening.

Peristalsis

- * Peristalsis occurs usually in oesophagus, stomach and intestine.
- * Least peristalsis occurs in rectum.
 - Peristalsis is a part of mechanical digestion.
- * Stimulation of parasympathetic nervous system results in the increase of gut peristalsis.
- * Reverse peristalsis in the stomach produces vomiting.

PEM

- * **Protein energy malnutrition (PEM)** may affect large sections of the population during drought, famine and political turmoil.
- * PEM affects infants and children to produce Marasmus and Kwashiorkor
- * Marasmus is produced by a simultaneous deficiency of proteins and calories.

 It is found in infants less than a year in age, if mother's milk is replaced too early by other foods which are poor in both proteins and caloric value.
- * This often happens if the mother has second pregnancy of childbirth when the older infant is still too young.
- * **Symptoms:** Emaciation, thinning of limbs skin becomes dry, thin and wrinkled, growth rate and body weight decline.
- * **Kwashiorkar** is produced by protein deficiency unaccompanied by calorie deficiency.
- * It results from the replacement of mother's milk by a high calorie-low protein diet in a child more than one year in age.
- * **Symptoms:** Wasting of muscles, thinning of limbs, failure of growth and brain development, fat is still left under the skin: extensive oedema swelling of body

DISORDERS OF DIGESTIVE SYSTEM

- * Nausea discomfort preceding vomiting
- * Anorexia loss of appetite
- * **Haemrrchoids**: Enlargement of rectalvein which causes piles.
- * **Dyspesis**: Indigestion due to defective diet.
- * **Pavlov pouch** was fabricated by Pavlov to study the effect of feeding on gastric secretion
- * Hiatal hernia or diaphragmatic is the opening in the diaphragm. The part of the stomach is pushed into the thoraciccavity.
- * Peptic ulcer is an erosion of the stomach or duodenal mucosa.
- * Cirrhosis of the liver The liver appearsorange.
- * Some people cannot digest milk and milk consumption in them causes diarrhea and gas generation because they do not produce lactase.
- * Removal of stomach produces**dumping syndrome**.
- * Abnormal metabolism of fats causes **Gaucher's disease**
- * The **vermiform** contain numerous **lymphatic nodules** and is subjected to inflammation—**appendicitis**.
- * Most common disorder is inflammation of the intestinal tract due to bacterial and viral infections.
- * Parasites like tapeworm, roundworm, thread worm, hook worm, pin worm etc cause infections of alimentary canal.
- * **Jaundice -** Liver is affected, skin and eyes become yellow due to deposition of bile pigments.
- * **Vomiting -** A reflex action controlled by vomit centre in medulla. A feeling of nausea precedes vomiting.
- * **Diarrhorea** Abnormal frequency of bowel movement and increased liquidity of the feacal discharge is known as diarrhorea.
- * Constipation Faeces are retained within the rectum, as bowel movements are irregular.
- * Indigestion Food is not properly digested leading to a feeling of fullness.