www.sakshieducation.com

RESPIRATION

Previous question from Respiration

1.	Correct sequence of electron transport in ATP synthesis is							
	1. Cyt a ₁ , a, b, c	2.Cyt b, c,a,a ₃	3. Cyt ł	o, c,a ₃ , a	4. Cyt c, b, a,	a ₃		
2.	The product of fermentation is					1997		
	1. Ethanol and lactic acid		2. Acet	ic acid and lactic acid	ı			
	3. Ethanol and lactic acid		4. All o	of these				
3.	What is the total production of ATP by breakdown of one glucose molecule during 2							
	aerobic respiration							
	1) 34	2) 38	3) 14	4) 4				
4.	In which one of the following do the two names refere ro one and the same thing					2003		
	1. Keb's cycle and Calvin's cycle 2. Tricarboxylic acid cy			arboxylic acid cycle	and Citric aci	d cycle		
	3. Citric acid cycle	and Calvin's cycle	4. Trica	arboxylic acid cycle a	nd urea cycle			
5.	In , Glycolysis during oxidation electrons are removed by					2004		
	1. ATP 2. Glyceraldehydes-3-phosphate							
	3.NAD ⁺ 4. Molecular oxygen							
6.	Dough kept overnight in warm weather becomes soft and spongy because of					2004		
	 Absorption of ca Cohesion 	arbon dioxide from atm	osphere	2. Fermentat4. Osmosis	tion			
7.	Chemiosmotic theory of ATP synthesis in chloroplasts and mitochondria is based on 2005							
	1. Proton gradient	t 2. A	ccumulatio	on K ions				
	3. Accumulation of Na ions 4. Membrane potential							
8.	Dyring which stage in the complete oxidation of glucose are the greatest number of 2005							
	ATP molecules forms from ADP							
	1. Conversion of py	yruvic acid to acetyle (Co A	2. Electron transpor	rt chain			
	3. Glycolysis			4. Kreb's cycle				

www.sakshieducation.com

www.sakshieducation.com

9.	complete oxidation of	ow many ATP molecules could maximally be generated fron one molecule glucose, if the omplete oxidation of one molecule glucose to CO ₂ and H ₂ O yields 686 kcal and the useful nemical energy available in the high energy phosphate bond of one molecule of ATP is 12 cal?						
	1. One	2. Two	3. Thirty	4. Fifty seven				
10.	All enzymes of TCA cycle are located in the mitochondrial matrix except one which is located in inner mitochondrial membrane in eukaryotes and in cytosol in prokaryotes. This enzyme is 200							
	1. Isocitric dehydroge	enase	2. Malate dehydroge	enase				
	3. Succinate dehydro	ogenase	4. Lactate dehydroge	enase				
11.	The overall goal of glycolysis, Kreb's cycle and the electron transport system is the formation of							
	1. ATP in one large o	xidation reaction	2. Sugars					
	3. Nucleic acids		4. ATP in sn	nall stepwise units				
12.	The correct sequence of cell organelles during photorespiration is (1) Chloroplast, -vacuole, -peroxisome (2) Chloroplast,-Golgibodies,-mitochondria (3) Chloroplast,-Rough Endoplasmic reticulum,-Dictyosomes (4) Chloroplast,-mitochondria,-peroxisome							