P-BLOCK ELEMENTS

VA GROUP ELEMENTS

SUBTOPIC-I

General characteristics, Hydrides, oxides and Halides

- Nitrogen, Phosphorus, Arsenic, Antimony and Bismuth belong to VA group or 15 the group of the periodic table.
- > Elements of Nitrogen family are called pnictogens and their compounds are called pnictides.
- \blacktriangleright The general valency shell electronic configuration of these elements is ns² ns³
- > In air N_2 occurs to the extent of 78% by mass or 80% by volume.
- > In nature occurrence of VA group elements decreases from N to Bi
- From the structure of P₄. We can observe that each 'P' shares three of its valence electrons with other 'P' and one lone pair of e⁻ is seen on each 'P'
- Phosphorus atoms are larger in size hence lateral overlapping is not possible. So P₄ molecules are formed by single bonds between p atoms.
- > Nitrogen is chemically inert because $N \equiv N$ energy is very high (945.4 K.J./ mole).
- There is a considerable increase in covalent radius from N to P. However, from As to Bi only a small increase in covalent radius is observed. This is due to the presence of completely filled d and / or orbitals in heavier members.

Allotropic modifications:

- Except bismuth all the elements of this group exhibit allotropy.
- Nitrogen has two allotropes in the solid sate.
- Phosphorus exists in a variety of forms. The most important forms of phosphorus are white or yellow, red, α Black, β -Black, scarlet, violet.
- > In P₄ molecule, the four P atoms are present at the corners of tetrahedron and bond angle is 60° .
- > The allotropes of Antimony are yellow, metallic form and explosive forms.
- The catenation capacity depends on bond energy, Greater the bond energy value, higher the "catenation capacity".
- Catenation capacity decreases from N- Bi

Oxidation states:

> VA group's elements exhibit -3, +3 and +5 oxidation number.

Stable oxidation number of Bi is +3 due to inert pair effect.

Hydrides:

- The ability to donate lone pair (Lewis basic nature), stability, solubility and basic strength of the hydrides decrease from NH₃ to BiH₃
- \blacktriangleright NH₃ is best ligand and forms coordinate covalent bonds readily.
- MH₃ type hydrides are trigonal pyramidal in shape.
- In MH₃ type hydrides, the bond angle decreases from NH₃ to BiH₃ due to increase in the size of atom M and decrease in the E.N.
- > PH₃ is quite stable in air. But, PH₃ frequently contains P_2H_6 (diphosphine) in traces as impurity so when heated to $150^{\circ}CP_2H_6$ catches fire.
- (3) The lone pair of e⁻ is spread over a larger atom. As a result of this e⁻ donating nature (basic nature) decreases Stability order of hydrides
 NH₂ >> PH₃ > AsH₃ > SbH₃ >> BiH₃
- ➢ Order of basic nature $NH_3 > PH_3 > AsH_3 > SbH_3 > BiH_3$
- Melting point PH₃ < AsH₃ < SbH₃ < NH₃
 Boiling point PH₃ < AsH₃ < NH₃ < SbH₃

Bond lengh $NH_3 < PH_3 < AsH_3 < SbH_3$

Bond energy $NH_3 > PH_3 > SbH_3 > AsH_3$

Bond angle $NH_3 > PH_3 > AsH_3 > SbH_3$

- As pure 'p' orbitals of As and Sb are involved, the HMH bond angle in AsH₃ would be expected 90°. But due to repulsions between M-H bonds, the angle increases to 91°. 48¹.
 Oxides:
- These elements form two series of oxides Trioxides (M_2O_3) and Pentoxides (M_2O_5) . Nitrogen forms number of oxides due to $P\pi - P\pi$ multiple bonding between N and oxygen

atoms.

As oxidation number of the element increases, acidic nature of its oxides increases www.sakshieducation.com

- Acidic nature of pentoxides is more than that of trioxides.
- Trioxides and pentoxides of P, As and Sb are dimers.
- The most acidic trioxide is N_2O_3 and most basic trioxide is Bi_2O_3 the acidic and basic nature of an oxide depends on the size and charge on the V th group element.
- ➢ N,O: Nitrous oxide (or) Nitrogen monoxide.

It is also known as laughing gas.

It is prepared by heating ammonium nitrate.

It is a colourless neutral oxide

It is a liner molecule.

The structure of N_2O is

$$: N \equiv \overset{\oplus}{N} \rightarrow \overset{\circ}{O} : \leftrightarrow : \overset{\circ}{N} = \overset{\oplus}{N} = \overset{\circ}{O} :$$

Usually N_2O is administered to the patient to put him to sleep

NO: Nitric oxide; It is formed as an intermediate in the manufacture of HNO₃ by catalytic oxidation of NH₃ in presence of Pt.

$$\blacktriangleright$$
 Its structure is $N = C$

- \blacktriangleright N₂O₃ : Nitrogen trioxide :
- The following two structures are proposed.

1)
$$O = N - O - N = O$$

$$NO_2$$
 (or) N_2O_4 : Nitrogen dioxide of Dinitrogen tetroxide

It is obtained by heating Lead Nitrate.

 $2Pb(NO_3)_2 \xrightarrow{\Lambda} 2PbO + 4NO_2 + O_2$

➢ It is a reddish brown poisonous gas soluble in water.

It becomes a colourless solid on cooling due to the formation of dimmer N₂O₄.

It dissolves in water giving HNO₂ and HNO₃. So it is called mixed anhydride.

60%

NO₂ is an odd electron molecule and exhibits paramagnetic property. In dimeric state (N_2O_4) it is colourless and diamagnetic in nature

N₂O₅: Dinitrogen pentoxide. It is obtained by dehydrating HNO₃ with P₂O₅.

It is the anhydride of Nitric acid.

It is a powerful oxidizing agent.

It is a colourless solid.

It dissolves in water to give nitric acid.

 $N_2O_5 + H_2O \rightarrow 2HNO_3$

It has planar structure and is represented as

Oxides of Phosphorus:

P₄**O**₆ : Phosphorus trioxide

It is obtained by burning phosphorus in limited supply of air.

It is the anhydride of phosphorus acid.

Is dissolves in cold water to form phosphorus acid.

In P₄O₆ each phosphorus is surrounded by three oxygen atoms.

It is an acidic oxide.

Numbers of P-O-P bonds are six

P₄O₁₀ : Phosphorus trioxide

It is obtained by burning phosphorus in excess or air or oxygen.

It is the anhydride of phosphoric acid.

It dissolves in water to form H₃PO₄.

In P₄O₁₀ each phosphorus is surrounded by four oxygen atoms.

Numbers of P-O-P bonds are six

It is a strong dehydrating agent

From N_2O_3 to Bi_2O_3 acidic nature decreases and basic nature increases.

Acidic nature decreases or basic nature increases from N2O5 to Sb4O10

Halides:

VA group elements from trihalides of the type MX₃ and pentahalides of the type MX₅.
 Trihalides are prepared by the reaction of VA group element or its compound with halogen. NF₆ does not undergo hydrolysis.

NCl₃ on hydrolysis gives NH₃ and Hypochlorous acid.

PF₃ is weakly reactive to water

- NCl₃ + 3H₂O → NH₃ + 3HOCl
 PCl₃ on hydrolysis gives HCl and H₃ PO₃
- ➢ $PCl_3 + 3H_2O \rightarrow H_3PO_3 + 3HCl$ Tri halides are covalent.

Trihalides use the SP³ hybridised orbitals of the central atom.

Nitrogen cannot form NCl₅ because it has no d-orbitals in the valency shell.
 PCl₅ is obtained by passing Cl₂ into liquid PCl₃.

PCl₅ undergoes a two step hydrolysis.

 $PCl_5 + H_2O \rightarrow POCl_3 + 2HCl$

 $POCl_3 + 3H_2O \rightarrow H_3PO_4 + 3HCl$

- Bi does not form BiCl₅ due to inert pair effect.
 Penta halides use the sp³d hybridized orbitals of the central atom.
- Pentahalides have trigonal bipyramidal structure.
 The extent of hydrolysis decreases from NX₃ to BiX₃.

> The tendency to act as lewis base decreases from NI_3 to NF_3 (Due to increased E.N from I to F)

VA GROUP ELEMENTS (SUBTOPIC-II)

Oxyacides of Nitrogen, Phosphorous, ammonia and super phosphate of lime:

Oxyacides of Nitrogen:

➢ Nitrous acid (HNO₂):

Nitrous acid is unstable except in dilute solutions

In the laboratory it is prepared by the addition of ice cold dilute acid to Barium nitrite

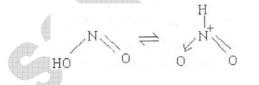
$$\succ Ba(NO_2)_2 + H_2SO_4 \rightarrow BaSO_4 + 2HNO_2$$
(icecold)

Its solution in slightly bluish in colour due to the presence N₂O₃.

➢ On standing it undergoes auto oxidation-reduction in acidic solution 3HNO₂→HNO₃ + 2NO + H₂O

In this reaction

In HNO₂ \rightarrow HNO₃ O.S of 'N' changes from + 3 to + 5


In HNO₂ \rightarrow NO O.S of N changes from + 3 to +2 i.e. "HNO₂"

With oxidizing agents stronger than HNO₂ like KMnO₄, K₂Cr₂O₇, Br₂ + H₂O or H₂O₂ solutions HNO₂ functions as reductant.

Where as with weaker oxidants i.e. reducing agents like H_2s , SO_2 'or' Sn^{+2} solutions HNO_2 functions as oxidant

 $\succ \underline{Structure of} (HNO_2):$

HNO₂ exists in two tautomeric forms i.e. in two structural isomers.

- Nitric acid (HNO₃) : "Aqua fortis"
- In laboratory it is prepared by the action of conc. H₂SO₄ on KNO₃ or NH₄ NO₃ H₂SO₄ on KNO₃ or NH₄ NO₃

 $HNO_3 + H_2SO_4 \rightarrow KHSO_4 + HNO_3$

A mixture of 1 : 1 conc. HNO₃ and Conc. H₂SO₄ is known as nitration mixture
 It is used in nitration reaction of organic compounds like Benzene, Toluene and phenol

 $C_6H_6 + HNO_3 \xrightarrow{H_2SO_4} C_6H_5NO_2 + H_2O$

➤ It is a very strong oxidizing agent. It oxides non-metals to their corresponding oxides or oxoacids $P_4 + 20HNO_3 \rightarrow 4H_3PO_4 + 20NO_2 + 4H_2O$

 $C + 4HNO_3 \rightarrow CO_2 + 4NO_2 + 2H_2O$

The structure of nitric acid is

$$\begin{array}{c} H O - \underset{\downarrow}{N} = O \rightleftharpoons HO - \underset{\parallel}{N} \to O \\ O & O \end{array}$$

This is a monobasic acid

It is a strong oxidizing agent

- Some metals (e.g., Cr, Al) do not dissolve in concentrated nitric acid because of the formation of a passive film of oxide on the surface.
- ➢ i) It oxidises iodine to iodic acid
 - $I_2 + 10HNO_3 \rightarrow 2HIO_3 + 10NO_2 + 4H_2O_3$
 - ii) Carbon to carbon dioxide,

$$C + 4HNO_3 \rightarrow CO_2 + 2H_2O + 4NO_2$$

iii) Sulphur to H_2SO_4

 $S_8 + 48HNO_3 \rightarrow 8H_2SO_4 + 48NO_2 + 16H_2O$

iv) Phosphorus to phosphoric acid

$$P_4 + 20HNO_3 \rightarrow 4H_3PO_4 + 20NO_2 + 4H_2O$$

Oxyacids of phosphorus:

The phosphorous series of acids contains P-Hbonds

- P-H bonds are responsible for reducing property of ous acids
- O-H bonds are responsible for acidic properties.

Hypo Phosphorous acid (H₃PO₂):

It is prepared by the heating yellow or white 'p' with dilute Ba (OH) $_2$

 $6H_2O + 2P_4 + 3Ba (OH)_2 \rightarrow 3Ba(H_2PO_2)_2 + 2PH_3\uparrow$ from Ba $(H_2PO_2)_2$, H_3PO_2 is obtained by hydrolysis.

- H₃PO₂ in monobasic acid and a very strong reducing agent in basic solutions and it is oxidized to H₃PO₃
- Meta phosphorous acid (HPO₂)
 It is mono basic acid normally exist as a cyclic compound due to polymerization.
- Ortho phosphorous acid (H₃PO₃)

It is prepared by dissolving P_4O_6 in cold H_2O

 $P_4O_6 + 6H_2O \rightarrow 4H_3PO_3 \text{ OR } P \text{ (OH)}_3$

It forms two types of salts

- 1) primary phosphates $H_2 PO_3^-$ (dihydrogen phosphate)
- 2) secondary phosphates HPO_3^{-2} (monohydrogen phosphates)
- **>** Ortho Phosphoric acid (H₃PO₄):
- > It is prepared by dissolving P_4O_{10} in water
 - $P_4O_{10}+6H_2O \rightarrow 4H_3PO_4$
- > It is a weak tribasic acid has oxidizing properties.
- Solid H₃PO₄ absorbs water and forms a colourless syrupy liquid (syrupy phosphoric acid)
- In qualitative analysis orthophosphates are indentified by ammonium phospho molybdate formation (Molybdate test)
- Meta Phosphoric acid (HPO₃):
- > Phosphoric acid. It is formed by heating pyrophosphoric acid or orthophosphoric acid to 870 K
- ➢ It is transparent glassy solid.

 HPO_3 is a monobasic acid and its salts are called meta phosphates.

There is no evidence for the existence of true monophosphate (PO_3^-) ions or of the dimeta phosphate

 $(P_2O_6^{-2})or(PO_3^{-})_{,2}$ but tri and tetra meta phosphates are well known. They form a family of ring

compounds.

- > Calcium super phosphate is manufactured by the action of conc. H_2SO_4 (chamber) acid and powdered bone ash or calcium phosphate.
- > The impurities in phosphate rock i.e. carbonates liberated as CO₂ and fluoride liberated as HF gases.
- ≻ Calcium super phosphate is $Ca(H_2PO_4)_2 + 2(CaSO_4.2H_2O)$
- The CaSO₄ in super phosphate of lime is an insoluble waste product. To avoid this waste product, the super phosphate is converted into "Triple phosphate" by treating with "H₃PO₄"

 $Ca_3(PO_4)_2 + 4H_3PO_4 \rightarrow 3Ca(H_2PO_4)_2$