P-BLOCK ELEMENTS

VA GROUP ELEMENTS

SUBTOPIC-I

General characteristics, Hydrides, oxides and Halides

$>$ Nitrogen, Phosphorus, Arsenic, Antimony and Bismuth belong to VA group or 15 the group of the periodic table.
$>$ Elements of Nitrogen family are called pnictogens and their compounds are called pnictides.
> The general valency shell electronic configuration of these elements is $\mathrm{ns}^{2} \mathrm{~ns}^{3}$
$>$ In air N_{2} occurs to the extent of 78% by mass or 80% by volume.
$>$ In nature occurrence of VA group elements decreases from N to Bi
$>$ From the structure of P_{4}. We can observe that each ' P ' shares three of its valence electrons with other ' P ' and one lone pair of e^{-}is seen on each ' P '
$>$ Phosphorus atoms are larger in size hence lateral overlapping is not possible. So P_{4} molecules are formed by single bonds between p atoms.
> Nitrogen is chemically inert because $\mathrm{N} \equiv \mathrm{N}$ energy is very high (945.4 K.J./ mole).
$>$ There is a considerable increase in covalent radius from N to P . However, from As to Bi only a small increase in covalent radius is observed. This is due to the presence of completely filled d and / or orbitals in heavier members.

Allotropic modifications:

$>$ Except bismuth all the elements of this group exhibit allotropy.
$>$ Nitrogen has two allotropes in the solid sate.
Phosphorus exists in a variety of forms. The most important forms of phosphorus are white or yellow, red, α-Black, β-Black, scarlet, violet.

In P_{4} molecule, the four P atoms are present at the corners of tetrahedron and bond angle is 60°.
The allotropes of Antimony are yellow, metallic form and explosive forms.
The catenation capacity depends on bond energy, Greater the bond energy value, higher the "catenation capacity".
$>$ Catenation capacity decreases from $\mathrm{N}-\mathrm{Bi}$

Oxidation states:

$>$ VA group's elements exhibit $-3,+3$ and +5 oxidation number.

Stable oxidation number of Bi is +3 due to inert pair effect.

Hydrides:

The ability to donate lone pair (Lewis basic nature), stability, solubility and basic strength of the hydrides decrease from NH_{3} to BiH_{3}
$>\mathrm{NH}_{3}$ is best ligand and forms coordinate covalent bonds readily.
$>\mathrm{MH}_{3}$ type hydrides are trigonal pyramidal in shape.
$>$ In MH_{3} type hydrides, the bond angle decreases from NH_{3} to BiH_{3} due to increase in the size of atom M and decrease in the E.N.
$>\mathrm{PH}_{3}$ is quite stable in air. But, PH_{3} frequently contains $\mathrm{P}_{2} \mathrm{H}_{6}$ (diphosphine) in traces as impurity so when heated to $150^{\circ} \mathrm{C}_{2} \mathrm{H}_{6}$ catches fire.
(3) The lone pair of e^{-}is spread over a larger atom. As a result of this e^{-}donating nature (basic nature) decreases Stability order of hydrides

$$
\mathrm{NH}_{3} \gg \mathrm{PH}_{3}>\mathrm{AsH}_{3}>\mathrm{SbH}_{3} \gg \mathrm{BiH}_{3}
$$

Order of basic nature

$$
\mathrm{NH}_{3}>\mathrm{PH}_{3}>\mathrm{AsH}_{3}>\mathrm{SbH}_{3}>\mathrm{BiH}_{3}
$$

Melting point $\mathrm{PH}_{3}<\mathrm{AsH}_{3}<\mathrm{SbH}_{3}<\mathrm{NH}_{3}$
Boiling point $\mathrm{PH}_{3}<\mathrm{AsH}_{3}<\mathrm{NH}_{3}<\mathrm{SbH}_{3}$

Bond lengh $\mathrm{NH}_{3}<\mathrm{PH}_{3}<\mathrm{AsH}_{3}<\mathrm{SbH}_{3}$

Bond energy $\mathrm{NH}_{3}>\mathrm{PH}_{3}>\mathrm{SbH}_{3}>\mathrm{AsH}_{3}$

Bond angle $\mathrm{NH}_{3}>\mathrm{PH}_{3}>\mathrm{AsH}_{3}>\mathrm{SbH}_{3}$

As pure 'p' orbitals of As and Sb are involved, the HMH bond angle in AsH_{3} would be expected 90°. But due to repulsions between M-H bonds, the angle increases to $91^{0} .48^{1}$.

Oxides:

These elements form two series of oxides - Trioxides $\left(M_{2} O_{3}\right)$ and Pentoxides $\left(M_{2} O_{5}\right)$.
Nitrogen forms number of oxides due to $P \pi-P \pi$ multiple bonding between N and oxygen atoms.

As oxidation number of the element increases, acidic nature of its oxides increases
$>$ Acidic nature of pentoxides is more than that of trioxides.
$>$ Trioxides and pentoxides of P, As and Sb are dimers.
$>$ The most acidic trioxide is $\mathrm{N}_{2} \mathrm{O}_{3}$ and most basic trioxide is $\mathrm{Bi}_{2} \mathrm{O}_{3}$ the acidic and basic nature of an oxide depends on the size and charge on the V th group element.
$\mathbf{N}_{2} \mathbf{O}$: Nitrous oxide (or) Nitrogen monoxide.
It is also known as laughing gas.
It is prepared by heating ammonium nitrate.

It is a colourless neutral oxide
It is a liner molecule.

The structure of $\mathrm{N}_{2} \mathrm{O}$ is
$: N \equiv \stackrel{\oplus}{N} \rightarrow \stackrel{\oplus}{\mathrm{O}}: . \leftrightarrow: \stackrel{\oplus}{\mathrm{N}}=\stackrel{\oplus}{\mathrm{N}}=\ddot{\mathrm{O}}:$

Usually $\mathrm{N}_{2} \mathrm{O}$ is administered to the patient to put him to sleep

NO: Nitric oxide; It is formed as an intermediate in the manufacture of HNO_{3} by catalytic oxidation of NH_{3} in presence of Pt .
$>$ Its structure is $\bullet N=O_{\bullet}^{\bullet}$
$>\mathbf{N}_{2} \mathbf{O}_{3}$: Nitrogen trioxide :
$>$ The following two structures are proposed.

1) $\mathrm{O}=\mathrm{N}-\mathrm{O}-\mathrm{N}=\mathrm{O}$
2)

$\mathbf{N O}_{\mathbf{2}}$ (or) $\mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{4}}$: Nitrogen dioxide of Dinitrogen tetroxide
It is obtained by heating Lead Nitrate.

$$
2 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2} \xrightarrow{\Delta} 2 \mathrm{PbO}+4 \mathrm{NO}_{2}+\mathrm{O}_{2}
$$

It is a reddish brown poisonous gas soluble in water.
It becomes a colourless solid on cooling due to the formation of dimmer $\mathrm{N}_{2} \mathrm{O}_{4}$.

It dissolves in water giving HNO_{2} and HNO_{3}. So it is called mixed anhydride.
NO_{2} is an odd electron molecule and exhibits paramagnetic property.
In dimeric state $\left(\mathrm{N}_{2} \mathrm{O}_{4}\right)$ it is colourless and diamagnetic in nature
$\mathbf{N}_{2} \mathrm{O}_{5}$: Dinitrogen pentoxide.
It is obtained by dehydrating HNO_{3} with $\mathrm{P}_{2} \mathrm{O}_{5}$.
It is the anhydride of Nitric acid.
It is a powerful oxidizing agent.
It is a colourless solid.
It dissolves in water to give nitric acid.

$$
\mathrm{N}_{2} \mathrm{O}_{5}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HNO}_{3}
$$

It has planar structure and is represented as

Oxides of Phosphorus:

$\mathrm{P}_{4} \mathrm{O}_{6}$: Phosphorus trioxide

It is obtained by burning phosphorus in limited supply of air.
It is the anhydride of phosphorus acid.
Is dissolves in cold water to form phosphorus acid.
In $\mathrm{P}_{4} \mathrm{O}_{6}$ each phosphorus is surrounded by three oxygen atoms.
It is an acidic oxide.
Numbers of P-O-P bonds are six

$>\mathbf{P}_{4} \mathrm{O}_{\mathbf{1 0}}$: Phosphorus trioxide

It is obtained by burning phosphorus in excess or air or oxygen.
It is the anhydride of phosphoric acid.
It dissolves in water to form $\mathrm{H}_{3} \mathrm{PO}_{4}$.

In $\mathrm{P}_{4} \mathrm{O}_{10}$ each phosphorus is surrounded by four oxygen atoms.
Numbers of P-O-P bonds are six

It is a strong dehydrating agent

From $\mathrm{N}_{2} \mathrm{O}_{3}$ to $\mathrm{Bi}_{2} \mathrm{O}_{3}$ acidic nature decreases and basic nature increases.
Acidic nature decreases or basic nature increases from $\mathrm{N}_{2} \mathrm{O}_{5}$ to $\mathrm{Sb}_{4} \mathrm{O}_{10}$

Halides:

* VA group elements from trihalides of the type MX_{3} and pentahalides of the type MX_{5}. Trihalides are prepared by the reaction of VA group element or its compound with halogen. NF_{6} does not undergo hydrolysis.
NCl_{3} on hydrolysis gives NH_{3} and Hypochlorous acid.
PF_{3} is weakly reactive to water
$>\mathrm{NCl}_{3}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{3}+3 \mathrm{HOCl}$
PCl_{3} on hydrolysis gives HCl and $\mathrm{H}_{3} \mathrm{PO}_{3}$
$>\mathrm{PCl}_{3}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{3}+3 \mathrm{HCl}$
Tri halides are covalent.
Trihalides use the SP^{3} hybridised orbitals of the central atom.
$>$ Nitrogen cannot form NCl_{5} because it has no d-orbitals in the valency shell.
PCl_{5} is obtained by passing Cl_{2} into liquid PCl_{3}.
PCl_{5} undergoes a two step hydrolysis.
$\mathrm{PCl}_{5}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{POCl}_{3}+2 \mathrm{HCl}$
$\mathrm{POCl}_{3}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+3 \mathrm{HCl}$
$>\mathrm{Bi}$ does not form BiCl_{5} due to inert pair effect.
Penta halides use the $\mathrm{sp}^{3} \mathrm{~d}$ hybridized orbitals of the central atom.
> Pentahalides have trigonal bipyramidal structure.
The extent of hydrolysis decreases from NX_{3} to BiX_{3}.
$>$ The tendency to act as lewis base decreases from NI_{3} to NF_{3} (Due to increased E.N from I to F)

VA GROUP ELEMENTS (SUBTOPIC-II)

Oxyacides of Nitrogen, Phosphorous, ammonia and super phosphate of lime:

Oxyacides of Nitrogen:

$>$ Nitrous acid $\left(\mathrm{HNO}_{2}\right)$:
Nitrous acid is unstable except in dilute solutions
In the laboratory it is prepared by the addition of ice cold dilute acid to Barium nitrite
$>\mathrm{Ba}\left(\mathrm{NO}_{2}\right)_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \underset{\text { (iceeold) }}{\mathrm{BaSO}_{4}}+2 \mathrm{HNO}_{2}$
Its solution in slightly bluish in colour due to the presence $\mathrm{N}_{2} \mathrm{O}_{3}$.
$>$ On standing it undergoes auto oxidation-reduction in acidic solution
$3 \mathrm{HNO}_{2} \rightarrow \mathrm{HNO}_{3}+2 \mathrm{NO}+\mathrm{H}_{2} \mathrm{O}$
In this reaction
In $\mathrm{HNO}_{2} \rightarrow \mathrm{HNO}_{3} \mathrm{O} . \mathrm{S}$ of ' N ' changes from +3 to +5
In $\mathrm{HNO}_{2} \rightarrow \mathrm{NO}$ O.S of N changes from +3 to +2 i.e. " HNO_{2} "
$>$ With oxidizing agents stronger than HNO_{2} like
$\mathrm{KMnO}_{4}, \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}, \mathrm{Br}_{2}+\mathrm{H}_{2} \mathrm{O}$ or $\mathrm{H}_{2} \mathrm{O}_{2}$ solutions HNO_{2} functions as reductant.
Where as with weaker oxidants i.e. reducing agents like $\mathrm{H}_{2} \mathrm{~s}, \mathrm{SO}_{2}$ 'or' Sn^{+2} solutions HNO_{2} functions as oxidant

$>$ Structure of $\left(\mathrm{HNO}_{2}\right)$:

HNO_{2} exists in two tautomeric forms i.e. in two structural isomers.

$>$ Nitric acid $\left(\mathrm{HNO}_{3}\right)$: "Aqua fortis"
$>$ In laboratory it is prepared by the action of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ on KNO_{3} or $\mathrm{NH}_{4} \mathrm{NO}_{3}$ $\mathrm{H}_{2} \mathrm{SO}_{4}$ on KNO_{3} or $\mathrm{NH}_{4} \mathrm{NO}_{3}$
$\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{KHSO}_{4}+\mathrm{HNO}_{3}$
$>$ A mixture of 1:1 conc. HNO_{3} and Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ is known as nitration mixture It is used in nitration reaction of organic compounds like Benzene, Toluene and phenol

$$
\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{HNO}_{3} \xrightarrow{\mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

$>$ It is a very strong oxidizing agent. It oxides non-metals to their corresponding oxides or oxoacids $\mathrm{P}_{4}+20 \mathrm{HNO}_{3} \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4}+20 \mathrm{NO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{C}+4 \mathrm{HNO}_{3} \rightarrow \mathrm{CO}_{2}+4 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
$>$ The structure of nitric acid is

This is a monobasic acid

It is a strong oxidizing agent
$>$ Some metals (e.g., Cr, Al) do not dissolve in concentrated nitric acid because of the formation of a passive film of oxide on the surface.
$>$ i) It oxidises iodine to iodic acid
$\mathrm{I}_{2}+10 \mathrm{HNO}_{3} \rightarrow 2 \mathrm{HIO}_{3}+10 \mathrm{NO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
ii) Carbon to carbon dioxide,
$\mathrm{C}+4 \mathrm{HNO}_{3} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{NO}_{2}$
iii) Sulphur to $\mathrm{H}_{2} \mathrm{SO}_{4}$
$\mathrm{S}_{8}+48 \mathrm{HNO}_{3} \rightarrow 8 \mathrm{H}_{2} \mathrm{SO}_{4}+48 \mathrm{NO}_{2}+16 \mathrm{H}_{2} \mathrm{O}$
iv) Phosphorus to phosphoric acid

$$
\mathrm{P}_{4}+20 \mathrm{HNO}_{3} \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4}+20 \mathrm{NO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

Oxyacids of phosphorus:

The phosphorous series of acids contains P-Hbonds
$\mathrm{P}-\mathrm{H}$ bonds are responsible for reducing property of ous acids
$\mathrm{O}-\mathrm{H}$ bonds are responsible for acidic properties.

$>$ Hypo Phosphorous acid $\left(\mathbf{H}_{3} \mathrm{PO}_{2}\right)$:

It is prepared by the heating yellow or white ' p ' with dilute $\mathrm{Ba}(\mathrm{OH})_{2}$
$6 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{P}_{4}+3 \mathrm{Ba}(\mathrm{OH})_{2} \rightarrow 3 \mathrm{Ba}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2}+2 \mathrm{PH}_{3} \uparrow$ from $\mathrm{Ba}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2}, \mathrm{H}_{3} \mathrm{PO}_{2}$ is obtained by hydrolysis.
$>\mathrm{H}_{3} \mathrm{PO}_{2}$ in monobasic acid and a very strong reducing agent in basic solutions and it is oxidized to $\mathrm{H}_{3} \mathrm{PO}_{3}$
$>$ Meta phosphorous acid $\left(\mathrm{HPO}_{2}\right)$
It is mono basic acid normally exist as a cyclic compound due to polymerization.
$>$ Ortho phosphorous acid $\left(\mathrm{H}_{3} \mathrm{PO}_{3}\right)$
It is prepared by dissolving $\mathrm{P}_{4} \mathrm{O}_{6}$ in cold $\mathrm{H}_{2} \mathrm{O}$
$\mathrm{P}_{4} \mathrm{O}_{6}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{3} \mathrm{OR} \mathrm{P}(\mathrm{OH})_{3}$
It forms two types of salts

1) primary phosphates $\mathrm{H}_{2} \mathrm{PO}_{3}^{-}$(dihydrogen phosphate)
2) secondary phosphates HPO_{3}^{-2} (monohydrogen phosphates)

$>$ Ortho Phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$:

$>$ It is prepared by dissolving $\mathrm{P}_{4} \mathrm{O}_{10}$ in water
$\mathrm{P}_{4} \mathrm{O}_{10}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4}$
> It is a weak tribasic acid has oxidizing properties.
$>$ Solid $\mathrm{H}_{3} \mathrm{PO}_{4}$ absorbs water and forms a colourless syrupy liquid (syrupy phosphoric acid)
$>$ In qualitative analysis orthophosphates are indentified by ammonium phospho molybdate formation (Molybdate test)

> Meta Phosphoric acid ($\mathbf{H P O}_{3}$):

$>$ Phosphoric acid. It is formed by heating pyrophosphoric acid or orthophosphoric acid to 870 K
$>$ It is transparent glassy solid.
HPO_{3} is a monobasic acid and its salts are called meta phosphates.
There is no evidence for the existence of true monophosphate $\left(\mathrm{PO}_{3}^{-}\right)$ions or of the dimeta phosphate $\left(\mathrm{P}_{2} \mathrm{O}_{6}^{-2}\right)$ or $\left(\mathrm{PO}_{3}^{-}\right)_{2}$. but tri and tetra meta phosphates are well known. They form a family of ring compounds.
$>$ Calcium super phosphate is manufactured by the action of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ (chamber) acid and powdered bone ash or calcium phosphate.
$>$ The impurities in phosphate rock i.e. carbonates liberated as CO_{2} and fluoride liberated as HF gases.
$>$ Calcium super phosphate is $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}+2\left(\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$
$>$ The CaSO_{4} in super phosphate of lime is an insoluble waste product.
To avoid this waste product, the super phosphate is converted into "Triple phosphate" by treating with " $\mathrm{H}_{3} \mathrm{PO}_{4}$ "

$$
\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+4 \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow 3 \mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}
$$

