DUAL NATURE OF MATTER & RADIATION

2012

1.	A 200 W sodium street lamp emits yellow light of wavelength 0.6 μ m. assuming it to be 25%									
	efficient in converting	g electrical energy to	light, the number of pl	notons of yellow light it emits						
	per second is	10	20							
	a) 1.5 x 10 ²⁰	b) 6 x 10 ¹⁸	c) 62 x 10 ²⁰	d) 3×10^{19}						
2.	Monochromatic radia	tion emitted when ele	ectron on hydrogen ato	m jumps from first excited to						
	the ground state poter	ntial is measured to be	3.57V. The threshold	frequency of the material is						
2	a) $4x \ 10^{15} \text{ Hz}$	b) 5 x 10^{15} Hz	c) $1.6 \times 10^{15} \text{ Hz}$	d) 2.5×10^{13} Hz						
3.	An α -particle moves in a circular path of radius 0.83 cm in the presence of a magnetic field of 25 Wit ($\frac{2}{3}$ The h D m H m m m m m m m m m m m m m m m m m									
	0.25 Wb/m. The de l	Broglie wavelength as	sociated with the partie	cle will be						
	a) 1 Å	b) 0.1 Å	c) $10\dot{A}$	d) 0.01 Å						
4.	If the momentum of	an electron is change	ed by P, then the de E	Broglie wavelength associated						
	with it changes by 0.5%. The initial momentum of electron will be?									
	a) 200P	b) 400 P	P	d) 100 P						
	u) 2001	0) 100 1	200							
5.	Two radiations of photons energies 1 eV and 2.5 eV, successively illuminate a photosensitive									
	metallic surface of work function 0.5 eV. The ratio of the maximum speeds of the emitted									
	electrons is 114	h) 1.7		d) 1.5						
	a) 1.4	0) 1:2	0)1.1	u) 1:5						
0011										
2011										
0.	Photoelectric emission occurs only when the incident light has more than a certain minimum									
7	In the Davisson and	a) power b) wavelength c) intensity d) frequency In the Devision and Correct events the velocity of electrons emitted from the electron								
7.	gun can be increased	and the Davisson and Germer experiment, the velocity of electrons emitted from the electron								
	a) increasing the potential difference between the anode and filament									
	c) decreasing the filament current									
	d) decreasing the potential difference between the anode and filament									
8.	Light of two differen	Light of two different frequencies whose photons have energies 1 eV and 2.5 eV respectively								
	illuminate a metallic surface whose work function is 0.5 eV successively. Ratio of maximum									
	speeds of emitted elec	ctrons will be								
	a) 1:4	b) 1:2	c) 1:1	d) 1:5						
9.	Electrons used in an	electron microscope a	ire accelerated by a vo	ltage of 25 kV. If the voltage						
	is increased to 100 kV	/ then the de-Broglie	wavelength associated	with the electrons would						
	a) increase by 2 times	5	b) decrease by 2 time	es						
10	c) decrease by 4 times d) increase by 4 times									
10.	"In photoelectric emission process from a metal of work function 1.8 eV, the kinetic energy of most energetic electrons is 0.5 eV. The corresponding stopped potential is									
	a) 1.8 V	b) 1.3 V	c) 0.5 V	d) 2.3 V						
11.	The threshold frequen	ncy for a photosensitiv	we metal of 3.3×10^{14}	Hz. If light of frequency 8.2 x						
	10^{14} Hz is incident on this metal, the cu-off voltage for the photoelectron emission is nearly									
	a) 1 V	b) 2 V	c) 3 V	d) 5 V						

2010

- A beam of cathode rays is subjected to crossed electric (E) and magnetic fields (B). The fields 12. are adjusted such that the beam is not deflected. The specific charge of the cathode rays is given by
 - a) $\frac{B^2}{2VE^2}$ b) $\frac{2VB^2}{E^2}$ c) $\frac{2VE^2}{R^2}$ d) $\frac{E^2}{2VB^2}$ (Where V is the potential difference between cathode and anode)

A source S_1 is producing, 10^{15} photons per second of wavelength 5000 Å. Another source S_2 is 13. producing 1.02 x 10^{15} photons per second of wavelength $5100\overset{0}{A}$. Then, (power of S₂)/(power of S_1) is equal to a) 1.00 b) 1.02 c) 1.04 d) 0.98

14. The potential difference that must be applied to stop the fastest photoelectrons emitted by a nickel surface, having work function 5.01 eV, when ultraviolet light of 200nm falls on it, must be

d) 1.2 V b) -1.2 V c) -2.4 V a) 2.4 V When monochromatic radiation of intensity I falls on a metal surface, the number of 15. photoelectrons and their maximum kinetic energy are N and T respectively. If the intensity of radiations is 2I, the number of emitted electrons and their maximum kinetic energy are respectively

- a) N and 2T c) 2N and 2T b) 2N and T d) N and T The electron in the hydrogen atom jumps from excited state (n=-3) to its ground state (n=1)
- 16. and the photons thus emitted irradiate a photosensitive material. If the work function of the material is 5.1 eV, the stopping potential is estimated to be (the energy of the electron in nth state $E = -\frac{13.6}{2} eV$

PREVIOUS EXAMINATION QUESTIONS KEY:

1. a	2. c	3.d	4. a	5. b	6. d	7. a
8. b	9.b	10.c	11.b	12.d	13. a	14.b

SOLUTIONS

2012

15.b

1.

(a)

Energy of a photon, $E = \frac{hc}{\lambda}$ $\frac{(6.6 \times 10^{-34} J s)(3 \times 10^8 m s^{-1})}{0.6 \times 10^{-6} m}$ $= 33 \times 10^{-20} \text{ J}$ Number of photons emitted per second is $\frac{25}{2}P$ $\frac{25}{2} \times 200W$ 0^{20} Ν

16.d

$$T = \frac{100}{E} = \frac{100}{33 \times 10^{-20} J} = 1.5 \times 10^{-20} J$$

www.sakshieducation.com

For hydrogen atom, $E_n = -\frac{13.6}{n^2} eV$ For ground state, n = 1 $\therefore E_1 = -\frac{13.6}{1^2} = -13.6 eV$ For first excited state, n = 2 $\therefore E_2 = -\frac{13.6}{2^2} = -3.4 eV$ $hv = E_2 - E_1 = -3.4 eV - (-13.6 eV) = 10.2 eV$ Maximum kinetic energy $K_{max} = eV_s = e \ge 3.57 V = 3.57 eV$ According to Einstein's photoelectric equation $K_{max} = hv - \phi_0$ (d)

Radius of the circular path of charged particles in a magnetic field is given by

 $R = \frac{m\upsilon}{Bq}$

Or mv = RBq

de Broglie wavelength,

$$\lambda = \frac{h}{m\nu} = \frac{6.6 \times 10^{-34}}{0.83 \times 10^{-2} \times 0.25 \times 2 \times 1.6 \times 10^{-19}} = 0.01$$

4. (a)

2.

3.

(c)

De Broglie wavelength associated with aN electron is

$$P = \frac{n}{\lambda}$$
$$\therefore \frac{\Delta P}{P} = -\frac{\Delta \lambda}{\lambda}$$
$$\frac{P}{P_{initial}} = \frac{0.5}{100}$$
$$P_{inital} = 200P$$

5. (b)

According to Einstein's photoelectric equation

$$\frac{1}{2}mv_{\max}^{2} = hv - \phi_{0}$$

$$\therefore \frac{1}{2}mv_{\max_{1}}^{2} = 1eV - 0.5eV = 0.5eV \qquad \dots \dots \dots (i)$$

$$\therefore \frac{1}{2}mv_{\max_{2}}^{2} = 2.5eV - 0.5eV = 2eV \qquad \dots \dots \dots (ii)$$

Divide (i) and (ii), we get

$$\frac{v_{\max_{1}}^{2}}{v_{\max_{2}}^{2}} = \frac{0.5}{2}$$

$$\frac{v_{\max_{1}}}{v_{\max_{2}}} = \sqrt{\frac{0.5}{2}} = \frac{1}{2}$$

2011

6. (d) According to Einstein's photoelectric equation

$$K_{\rm max} = h\upsilon - h\upsilon_0$$

Since K_{max} is +ve, the photoelectric emission occurs only if

 $hv > hv_0$ or $v > v_0$

The photoelectric emission occurs only when the incident light has more than a certain minimum frequency. The minimum frequency is called threshold frequency.

7. (a)

8. (b) Here, work function, $\phi_0 = 0.5 eV$

According to Einstein's photoelectric equation

Maximum kinetic energy of the emitted electrons = Incident photon energy – Work function $K_{i} = 1 a V - 0.5 a V - 0.5 a V$ (i)

$$K_{\max_{1}} = 1eV - 0.5eV = 0.5eV = 0.5eV \qquad(1)$$

and $K_{\max_{2}} = 2.5eV - 0.5eV = 2eV \qquad(ii)$
Divide (i) by (ii), we get
$$\frac{K_{\max_{1}}}{K_{\max_{2}}} = \frac{0.5eV}{2eV} = \frac{1}{4}$$

$$\frac{1}{2}mv^{2}_{\max_{1}}}{\frac{1}{2}mv^{2}_{\max_{2}}} = \frac{1}{4} \qquad \text{or } \frac{v_{\max_{1}}}{v_{\max_{2}}} = \sqrt{\frac{1}{4}} = \frac{1}{2}$$

9. (b) The de Broglie wavelength λ associated with the electrons is $\lambda = \frac{1.227}{\sqrt{V}} nm$

Where V is the accelerating potential in volts

Or
$$\lambda \propto = \frac{1}{\sqrt{V}}$$

 $\therefore \frac{\lambda_1}{\lambda_2} = \sqrt{\frac{V_2}{V_2}} = \sqrt{\frac{100 \times 10^3}{25 \times 10^3}} = 2$ Or $\lambda_2 = \frac{\lambda_1}{2}$

10. (c) The stopping potential V_s is related to the maximum kinetic energy of the emitted electrons K_{max} through the relation

$$K_{max} = eV_s$$

0.5 eV = eV_s or V_s = 0.5 V

11. (b) According to Einstein's photoelectric equation $eV_0 = hv - hv_0$ Where, v = Incident frequency $v_0 =$ Threshold frequency $V_0 =$ Cut-off or stopping potential or $V_0 = \frac{h}{e}(v - v_0)$ Substituting the given values, we get $6.63 \times 10^{-34} (8.2 \times 10^{14} - 3.3 \times 10^{14})$

$$V_0 = \frac{0.05 \times 10^{-10} (8.2 \times 10^{-19} - 5.5 \times 10^{-19})}{1.6 \times 10^{-19}} = 2V$$

2010

12. (d) When a beam of cathode rays (or electrons) are subjected to crossed electric (E) and magnetic (B) fields, then beam is not deflected, if Force on electron due to Magnetic field = Force on electron due to electric field

$$Bev = eE$$

Or $v = \frac{E}{B}$ (i)

If V is the potential difference between the anode and the cathode, then

$$\therefore \frac{1}{2}mv^2 = eV$$
$$\frac{e}{m} = \frac{v^2}{2V}$$

Specific charge of the cathode rays $\frac{e}{m} = \frac{E^2}{2VB^2}$

13. (a) For a source S_1 ,

Wavelength, $\lambda_1 = 5000 \text{ Å}$ Number of photons emitted per second, $N_1 = 10^{15}$ Energy of each photon, $E_1 = \frac{hc}{\lambda_1}$

Power of sources $S_1, P_1 = E_1 N_1$

 $=\frac{N_1hc}{\lambda_1}$

For a source S_2 ,

Wavelength, $\lambda_2 = 5100 A$ Number of photons emitted per second, N₂ = 1.02 x 10¹⁵ Energy of each photon, $E_2 = \frac{hc}{\lambda_2}$

Power of source $S_2, P_2 = E_2 N_2 = \frac{N_2 hc}{\lambda_2}$

$$\therefore \frac{Power of S_2}{Power of S_1} = \frac{P_2}{P_1} = \frac{\frac{N_2 hc}{\lambda_2}}{\frac{N_1 hc}{\lambda_1}} = \frac{N_2 \lambda_1}{N_1 \lambda_2}$$
$$= \frac{\left(1.02 \times 10^{15} \ photons \ / \ s\right) \times \left(5000 \ \overset{0}{A}\right)}{\left(10^{15} \ photons \ / \ s\right) \times \left(5100 \ \overset{0}{A}\right)} = \frac{51}{51} = 1$$

14. (b)

Incident wavelength, $\lambda = 200$ nm Work function, $\phi_0 = 5.01$ eV

According to Einstein's photoelectric equation

www.sakshieducation.com

$$eV_s = hv - \phi_0$$
$$eV_s = \frac{hc}{\lambda} - \phi_0$$

Where V_s is the stopping potential

$$eV_s = \frac{(1240eV nm)}{(200 nm)} - 5.01eV$$

= 6.2 eV - 5.01 eV = 1.2 eV

Stopping potential, $V_s = 1.2 \text{ eV}$

The potential difference that must be applied to stop photoelectrons = $-V_s = -1.2$ V

- 15. (b) The number of photoelectrons ejected is directly proportional to the intensity of incident light. Maximum kinetic energy is independent of intensity of incident light but depends upon the frequency of light.
- 16. (d) Energy released when electron in the atom jumps from excited state (n = 3) to ground state (n = 1) is

$$E = hv = E_3 - E_1 = \frac{-13.6}{3^2} - \left(\frac{-13.6}{1^2}\right)$$
$$= \frac{-13.6}{9} + 13.6 = 12.1eV$$

Therefore, stopping potential

$$eV_0 = hv - \phi_0$$

= 12.1 - 5.1 [:: work function $\phi_0 = 5.1$]

$$V_0 = 7V$$