ALTERNATING CURRENTS

Voltage and Power

2011

1. In an AC circuit, V and I are given by $V = 150\sin(150t)$ volt and $I = 150\sin\left(150t + \frac{\pi}{3}\right)$ amp. The power dissipated in the circuit is a) 106 W b) 150 W c) 5625 W d) zero

2010

- 2. An AC ammeter is used to measure current in a circuit. When a given direct current passes through the circuit, the AC ammeter reads 3A. When another alternating current passes through the circuit, the AC ammeter reads 4A. Then the reading of this ammeter, if DC and AC flow through the circuit simultaneously, is
 - a) 3 A b) 4 A c) 7 A d) 5 A

3. An AC source is 120V – 60Hz. The value of voltage after $\frac{1}{720}s$ from start will be

a) 20.2 V b) 42.4 V c) 84.8 V d) 106.8 V

2009

- 4. The oscillating electric and magnetic vectors of an electromagnetic wave are oriented along
 a) the same direction but have a phase difference of 90°
 - b) the same direction and are in same phase
 - c) mutually perpendicular directions and are in same phase
 - d) mutually perpendicular directions but has a phase difference of 90°
- 5. Alternating current is transmitted to take places
 a) at high voltage and low current
 b) at high voltage and high current
 c) at low voltage and low current
 d) at low voltage and high current

2008

6.

In an AC circuit the emf (e) and the current (i) at any instant are given respectively by $e = E_o \sin \omega t$ $i = I_o \sin (\omega t - \phi)$

The average power in the circuit over one cycle of AC is

a)
$$\frac{E_o I_o}{2}$$
 b) $\frac{E_o I_o}{2} \sin \phi$ c) $\frac{E_o I_o}{2} \cos \phi$ d) $E_o I_o$

7.	Alternating current cannot be measured by DC ammeter because												
	a) AC cannot pass throug	gh DC ammeter		b) AC changes direction									
	c) Average value of curr	ent for complete cycle is	zero	d) DC ammeter will get damaged									
2007	,												
2007		1 1											
8.	If the power factor change	ges from $\frac{1}{2}$ to $\frac{1}{4}$ then wh	nat is the in	crease in imped	lance in AC?								
	a) 20%	b) 50%	c) 25%		d) 100%								
9.	The instantaneous volta	ge through a device of	ce of impedance 20Ω is $e = 80\sin 100\pi t$. The										
	effective value of the current is												
	a) 3 A b) 2.828 A	c) 1.732 A	d) 4 A	e) $\sqrt{2}A$	•								
10.	For high frequency, capa	citor offers											
	a) more resistance	b) less resistance	c) zero	resistance d)) None of the above								
2006			6										
11.	If reading of an ammeter is 10A, the peak value of current is												
	10	5											
	a) $\frac{1}{\sqrt{2}}A$	b) $\overline{\sqrt{2}}^A$	c) 20√	2 A	d) 10√2 <i>A</i>								
12.	If impedance is $\sqrt{3}$ times of resistance, find phase difference												
	a) Zero	b) 30°	c) 60°	d) [Data is incomplete								
13.	An alternating voltage V	$V = V_o \sin \omega t$ is applied as	cross a cire	cuit. As a result	the current								
	$I = I_o \sin(\omega t - \pi/2) \text{ flow}$	ows in it. The power cons	sumed in th	he circuit per cy	cle is								
	a) $0.5V_o I_o W$	b) $0.707 V_o I_o W$	c) 1.91	$9V_o I_o W$	d) zero								
14.	An AC is represented b	y $e = 220\sin(100\pi)t$ ve	olt and is a	applied over a r	resistance of 110Ω .								
	The heat produced in 7 n	nin is											
	a) $11 \times 10^{3} cal$	b) $22 \times 10^3 cal$	c) 33×	$10^3 cal$	d) $25 \times 10^{3} cal$								
15.	If an AC produces same	e heat as that produced b	v a steady	current of 4A.	then peak value of								
	current is	I	5 5	,	1								
	a) 4 A	b) 1.56 A	c) 5.6 A	۱.	d) 1.41 A								
16.	The potential difference	across an instrument in	an AC ci	rcuit of frequen	cies f is V and the								
	current through it is I su	ch that $V = 5\cos 2\pi ft$ a	and $I = 2 \sin^2 \theta$	in $2\pi ft$ amp . The second s	he power dissipated								
	in the instrument is												
	a) Zero	b) 10 W	c) 5 W		d) 2.5 W								

2005

18.

17. An alternating current is given by $I = I_1 \cos \omega t + I_2 \sin \omega t$. The root mean square current is

a)
$$\frac{(I_1 + I_2)}{\sqrt{2}}$$
 b) $\frac{(I_1 + I_2)^2}{2}$ c) $\sqrt{\frac{I_1^2 + I_2^2}{2}}$ d) $\frac{\sqrt{I_1^2 - I_2^2}}{2}$
The peak value of AC voltage on 220V mains is
a) $240\sqrt{2}V$ b) $230\sqrt{2}V$ c) $220\sqrt{2}V$ d) $200\sqrt{2}V$

The time taken by an alternating current of 50Hz in reaching from zero to its maximum value will be

d) 5

a) 0.5 s b) 0.005 s c) 0.05 s

ALTERNATING CURRENT

Voltage and Power

KEY

1)	c	2)	d	3)	c	4)	c	5)	a	6)	c 7) c		8)	d	9)	b	10)	b
11)	d	12)	c	13)	d	14)	b	15)	c	16)	a 17) c	:	18)	c	19)	b		

SOLUTIONS

1. $V = 150 \sin (150t) \text{ volt}$ And $I = 150 \sin (150t + \pi/3) amp$ $I_0 = 150 amp$ and $V_0 = 150 \text{ volt}$ $P = \frac{1}{2} V_o I_0 \cos \phi$ $P = 0.5 \times 150 \times 150 \times \cos 60^0$ 2. Quantity of heat liberated in the ammeter of resistance R i) Due to direct current of 3 A, $Q = \left[(3)^2 R/J \right] \right]$ ii) Due to alternating current of 4 A, $Q = \left[(4)^2 R/J \right] \right]$ Total heat produced per second $= \frac{(3)^2 R}{J} + \frac{(4)^2 R}{J} = \frac{25R}{J}$ But, $\frac{I^2 R}{J} = \frac{25R}{J}$

I = 5 A

 $V = V_0 \sin \omega t$ 3. $V = V_{rms}\sqrt{2}\sin\omega t$ $t = \frac{1}{720}s$ $V = 120\sqrt{2}\sin 2\pi vt = 120\sqrt{2}\sin 2\pi \times 60 \times \frac{1}{720} = 60\sqrt{2} = 84.8V$ 5RA CON $P_{av} = \frac{W}{T}$ 6. $P_{av} = \frac{\left(E_0 I_0 \cos\phi\right) T/2}{T}$ $P_{av} = \frac{E_0 I_0 \cos \phi}{2}$ 8. $\cos\phi \alpha \frac{1}{7}$ $\therefore \qquad \frac{Z_1}{Z_2} = \frac{\cos \phi_1}{\cos \phi_2} = \frac{1/4}{1/2} = \frac{1}{2}$ \Rightarrow $Z_2 = 2Z_1$ Percentage change = $\frac{2Z_1 - Z_1}{Z_1} \times 100 = 100\%$ $e = 80 \sin 100\pi t$ 9. Here, $e_0 = 80V$ Where e_0 is the peak value of voltage Impedance (Z) = 20 Ω $I_0 = \frac{e_0}{Z} I_0 = \frac{e_0}{Z}$ $I_{rms} = \frac{I_0}{\sqrt{2}} = \frac{4}{\sqrt{2}} = 2\sqrt{2} = 2.828 \,A$ 11. $i_{rms} = \frac{i_0}{\sqrt{2}}$ $\Rightarrow i_0 = \sqrt{2} \times i_{rms} = \sqrt{2} \times 10 A = 10 \sqrt{2} A$

13.
$$V = V_0 \sin \omega r \text{ and } I = I_0 \sin(\omega r - \pi/2)$$

 $\therefore P = \frac{1}{2} V_0 I_0 \cos \phi$
But $\phi = \pi/2 = 90^0$
 $P = \frac{1}{2} V_0 I_0 \cos 90^0$
 $= 0 (\because \cos 90^0 = 0)$
14. $H = \frac{I_t^2 RT}{J} cal = \frac{(\sqrt{2})^2 \times 100 \times 7 \times 60}{42} = 22 \times 10^3 \text{ Cal}$
 $\left(\because I_{mu} = \frac{I_0}{\sqrt{2}} = \frac{220/100}{\sqrt{2}} = \sqrt{2}\right)$
15. $I_0 = \sqrt{2} I_{mas}$
 $I_{mas} = 4A$
 $I_0 = \sqrt{2} \times 4 = 5.6 A$
16. $P = VI \cos \phi$
 $V = 5 \cos (2\pi ft + \frac{\pi}{2}) and I = 2 \sin 2\pi ft$
Here, $\phi = \frac{\pi}{2}$
 $P = VI \cos \phi = VI \cos \frac{\pi}{2} = 0$
17. $I = I_1 \cos \omega r + I_2 \sin \omega r$
 $I_0 = \sqrt{I_t^2 + I_2^2}$
 $I_{mas} = \frac{I_0}{\sqrt{2}} = \frac{\sqrt{I_t^2 + I_2^2}}{\sqrt{2}} = \sqrt{\frac{I_t^2 + I_2^2}{2}}$
18. $V_{mas} = 220V$
But $V_{mas} = \frac{peak voltage}{\sqrt{2}} = \frac{V_p}{\sqrt{2}}$

$$V_{P} = 220\sqrt{2}V$$
19. $T = \frac{1}{f} = \frac{1}{50} = 0.0.2s$

$$\therefore \frac{T}{4} = \frac{0.02}{4} = 0.005s$$

AC CIRCUITS

2011

1. In an AC circuit an alternating voltage $e = 200\sqrt{2} \sin 100t$ volt is connected to a capacitor of capacity $1\mu F$. The rms value of the current in the circuit is

a) 100 mA b) 200 mA c) 20 mA d) 10 mA

- 2. An AC voltage is applied to a resistance R and an inductor L in series. If R and the inductive reactance are both equal to 3Ω , the phase difference between the applied voltage and the current in the circuit is
 - a) $\pi/4$ b) $\pi/2$
 - c) zero d) $\pi/6$
- 3. The peak value of an alternating current is 5A and its frequency is 60Hz. Find its rms value and time taken to reach the peak value of current starting from zero

a) 3.536 A, 4.167 ms b) 3.536 A, 15 ms c) 6.07 A, 10 ms d)2.536A, 4.167 m

4. An L – C – R series current is under resonance. If I_m is current amplitude, V_m is voltage amplitude, R is the resistance, z is impedance, X_L is the inductive reactance and X_C is the capacitive reactance then

a)
$$I_m = \frac{V_m}{Z}$$
 b) $I_m = \frac{V_m}{X_L}$ c) $I_m = \frac{V_m}{X_C}$ d) $I_m = \frac{V_m}{R}$

- 5. In the case of an inductor
 - a) voltage lags the current by $\frac{\pi}{2}$ c) voltage leads the current by $\frac{\pi}{3}$ b) voltage leads the current by $\frac{\pi}{4}$

The power factor of an R – L circuit is $\frac{1}{\sqrt{2}}$. If the frequency of AC is doubled, what will be 6.

the power factor?

a)
$$\frac{1}{\sqrt{3}}$$
 b) $\frac{1}{\sqrt{5}}$ c) $\frac{1}{\sqrt{7}}$ d) $\frac{1}{\sqrt{11}}$

An ideal choke draws a current of 8A when connected to an AC supply of 100V, 50Hz. A pure 7. resistor draws a current of 10A when connected to the same source. The ideal choke and the resistor are connected in series and then connected to the AC source of 150V, 40Hz. The current in the circuit becomes

a)
$$\frac{15}{\sqrt{2}}A$$
 b) 8A c) 18A d) 10A

8. In an AC circuit the potential difference V and current i are given respectively by

$$V = 100 \sin(100t)$$
 volt and $i = 100 \sin\left(100t + \frac{\pi}{3}\right) mA$. The power dissipated in the circuit will be

l De

12.

a)
$$10^4 W$$
 b) 10 W c) 2.5 W d) 5 W

9. An inductor L, a capacitor of $20\mu F$ and a resistor of 10Ω are connected in series with an AC source of frequency 50Hz. If the current in the phase with the voltage, then the inductance of the inductor is

The impedance of a circuit, when a resistance R and an inductor of inductance L are connected 10. in series in an AC circuit of frequency f, is

a)
$$\sqrt{R + 2\pi^2 f^2 L^2}$$
 b) $\sqrt{R + 4\pi^2 f^2 L^2}$ c) $\sqrt{R^2 + 4\pi^2 f^2 L^2}$ d) $\sqrt{R^2 + 2\pi^2 f^2 L^2}$

11. In a series L – C – R circuit, resistance $R = 10\Omega$ and the impedance $Z = 10\Omega$. The phase difference between the current and the voltage is a) 00 1 . 200 150 d) 60°

a)
$$0^2$$
 b) 30^2 c) 45^2 d)

The inductive time constant in an electrical circuit is

a) LR b)
$$\frac{L}{R}$$
 c) $\sqrt{\frac{L}{R}}$ d) $\frac{R}{L}$

13.	In a $L - C - R$ circuit R	$=10\Omega$. When capacitant	ce C is removed, the curre	ent lags behind the										
	voltage by $\frac{\pi}{3}$, when in	ductance L is removed,	the current leads the v	oltage by $\frac{\pi}{3}$. The										
	impedance of the circuit a) 50Ω	is b) 100Ω	c) 200Ω	d) 400Ω										
14.	In an $L - C - R$ series A	c circuit at resonance												
	a) the capacitive reactand	ce is more than the inducti	ve reactance											
	b) the capacitive reactand	ce equals the inductive rea	actance											
	c) the capacitive reactance is less than the inductive reactance													
	d) the power dissipated is minimum													
15.	An L – C – R series circuit consists of a resistance of 10Ω a capacitor of reactance 6.0Ω and													
	an inductor coil. The circuit is found to resonate when put across a 300V, 100Hz supply. The													
	inductance of coil is (taking $\pi = 3$)													
	a) 0.1 H	b) 0.01 H	c) 0.2 H	d) 0.02 H										
16.	A capacitor or capacitan	ce $1\mu F$ is charged to a provide the set of the set o	potential of 1V. It is connected	ected in parallel to										
	an inductor of inductance	$e^{-3}H$. The maximum	current that will flow in	the circuit has the										
	value													
	a) $\sqrt{1000} mA$	b) 1 A	c) 1 mA	d) 1000 mA										
17.	Assertion: For an electric	c lamp connected in series	with a variable capacitor	and AC source, its										
	brightness increases with	increase in capacitance												
	Reason: Capacitive react	ance decreases with increases	ase in											
	1) Both assertion and rea	son are true and reason is	the correct explanation of	assertion										
	2) Both assertion and rea	son are true but reason is	not the correct explanatior	n of assertion										
	3) assertion is true but re	ason is false												
	4) assertion is false but r	eason is true												
18.	In an $L - R$ circuit, the v	value of L is $\left(\frac{0.4}{\pi}\right)H$ and	d the value of R is 30Ω .	If in the circuit, an										
	alternating emf of 200V	at 50 cycle/s is connected	ed, the impedances of the	circuit and current										
In the second se	will be													
	a) 11.4Ω, 17.5 <i>A</i>	b) 30.7Ω, 6.5 <i>A</i>	c) 40.4Ω, 5A	d) 50Ω, 4A										

20.

19. Power dissipated in an L – C – R series circuit connected to an AC source of emf ε is

- a) ahead of the voltage by $\pi/2$ b) lagging the voltage by $\pi/2$
- c) ahead of the voltage by $\pi/4$ d) lagging the voltage by $3\pi/4$
- 21. The average power dissipated in a pure capacitance AC circuit is

b) zero

a) CV

c) $\frac{1}{CV^2}$

d) $\frac{1}{4}CV^2$

- 22. In a pure inductive circuit, current
 - a) lags behind emf by $\frac{\pi}{2}$ c) lags behind by π d) leads the emf by $\frac{\pi}{2}$ d) leads the emf by π
- 23. An alternating current of rms value 10A is passed through a 12Ω resistor. The maximum potential difference across the resistor is
- a) 20 V b) 90 V c) 169.68 V d) None of these 24. Same current is flowing in to alternating circuits. The first circuit contains only inductance and
- the other contains only a capacitor. If the frequency of the emf of AC is increased, the effect on the value of the current will be
 - a) increases in the first circuit and decreases in the other
 - b) increases in both the circuits
 - c) decreases in both the circuits
 - d) decreases in the first circuit and increases

25. An AC source of angular frequency ω is fed across a resistor R and a capacitor C in series. The current registered is I. If now the frequency of source is changed to $\omega/3$ (but maintaining the same voltage), the current in the circuit is found to be halved. Calculate the ratio of reactance to resistance at the original frequency ω

a)
$$\sqrt{\frac{3}{5}}$$
 b) $\sqrt{\frac{2}{5}}$ c) $\sqrt{\frac{1}{5}}$ d) $\sqrt{\frac{4}{5}}$

26. What is the value of inductance L for which the current is a maximum in a series L - C - Rcircuit with $C = 10 \mu F$ and $\omega = 1000 s^{-1}$? a) 100 mH b) 1 mH

- c) Cannot be calculated unless R is known d) 10 mH
- 27. In non resonant circuit, what will be the nature of the circuit for frequencies higher than the resonant frequency?
- a) Resistive b) Capacitive c) Inductive d) None of the above
 28. A coil has an inductance of 0.7H and is joined in series with a resistance of 20Ω. When an alternating emf of 220V at 50 cps is applied to it, then the wattles component of the current in the circuit is

- 29. In L C R circuit what is the phase angle ϕ ? a) 90° b) 180° c) 0° d) 60°
- 30. In R C circuit $\omega = 100 \, rad \, s^{-1}$, $R = 100 \,\Omega$, $C = 20 \,\mu F$. What is impedance? a) $510 \,\Omega$ b) $200 \,\Omega$ c) $250 \,\Omega$ d) $300 \,\Omega$
- 31. The power factor in a circuit connected to an AC power supply has a value which isa) unity when the circuit contains only inductance
 - b) unity when the circuit contains only resistance
 - c) zero when the circuit contains an ideal resistance only
 - d) unity when the circuit contains an ideal capacitance only

32.

In an AC circuit, a resistance of R ohm is connected in series with an inductor of self inductance L. If phase angle between voltage and current be 45° , the value of inductive reactance (X_L) will be equal to

a) R b)
$$\frac{R}{8}$$
 c) $\frac{R}{4}$ d) $\frac{R}{2}$

33. A transistor – oscillator using a resonant circuit with an inductor L (or negligible resistance) and a capacitor C in series produce oscillations of frequency f. If L is doubled and C is changed to 4C, the frequency will be

a)
$$f/4$$
 b) 8f c) $f/2\sqrt{2}$ d) $f/2$

34. The natural frequency (ω_o) of oscillations in L – C circuit is given by

a)
$$\frac{1}{2\pi} \frac{1}{\sqrt{LC}}$$
 b) $\frac{1}{2\pi} \sqrt{LC}$ c) $\frac{1}{\sqrt{LC}}$ d) \sqrt{LC}

35. In L – C- R circuit the resonance condition in terms of capacitive reactance (X_C) and inductive reactance (X_L) is

a)
$$X_C + X_L = 0$$
 b) $X_C = 0$ c) $X_L = 0$ d) $X_C - X_L = 0$

2007

36. An inductor of inductance L and resistor of resistance R are joined in series and connected by a source of frequency ω . Power dissipated in the circuit is

a)
$$\left(\frac{R^2 + \omega^2 L^2}{V}\right)$$
 b) $\frac{V^2 R}{\left(R^2 + \omega^2 L^2\right)}$ c) $\left(\frac{V}{R^2 + \omega^2 L^2}\right)$ d) $\frac{\sqrt{R^2 + \omega^2 L^2}}{V^2}$

37. An inductive coil has a resistance of 100Ω . When an AC signal of frequency 1000 Hz is applied to the coil, the voltage leads the current by 45° . The inductance of the coil is

a)
$$\frac{1}{10\pi}$$
 2) $\frac{1}{20\pi}$ c) $\frac{1}{40\pi}$ d) $\frac{1}{60\pi}$

38. The reactance of a coil when used in the AC power supply $(220V, 50 \text{ cycle s}^{-1})$ is 50Ω . The inductance of the coil is nearly

39. An inductance of $\left(\frac{200}{\pi}\right)mH$, a capacitance of $\left(\frac{10^{-3}}{\pi}\right)F$ and a resistance of 10Ω are

connected in series with an AC source 220V, 50Hz. The phase angle of the circuit is

a)
$$\frac{\pi}{6}$$
 b) $\frac{\pi}{4}$ c) $\frac{\pi}{2}$ d) $\frac{\pi}{3}$

40. In a circuit, the current lags behind the voltage by a phase difference of $\pi/2$, the circuit will contain which of the following ?

a) only R b) only C c) R and C d) only L

41.	A coil of inductive reactance 31Ω has a resistance of 8Ω . It is placed in series with a													
	condenser of	f capacitive r	reactance 25Ω . T	The com	bination is conne	ected to	an AC source	e of						
	110V. The po	ower factor of	f the circuit is											
	a) 0.56		b) 0.64		c) 0.80		d) 0.33							
42.	In a choke coil, the reactance X_L and resistance R are such that													
	a) $X_L = R$		b) $X_L >> R$		c) <i>X_L</i> << <i>R</i>	d) $X_L = \infty$								
43.	The power fa	actor of a serie	es $L - C - R$ circ	uit when	at resonance is									
	a) zero	b) 0.5	c) 1.0	1	d) depends on va	lues of I	L, C and R							
2006														
44.	In a series $L - C - R$ circuit the frequency of a 10V, AC voltage source is adjusted in such a fashion that the reactance of the inductor measures 15O and that of the succeive 11O													
	fashion that the reactance of the inductor measures 15Ω and that of the capacitor 11Ω .													
	If $R = 3\Omega$, the potential difference across the series combination of L and C will be													
	a) 8 V		b) 10 V		c) 22 V	d) 52 V								
45.	An L – C circuit is in the state of resonance. If $C = 0.1 \mu F$ and L = 0.25H, neglecting ohmic													
	resistance of circuit, what is the frequency of oscillations?													
	a) 1007 Hz		b) 100 Hz		c) 109 Hz		d) 500 Hz							
46.	In an AC circuit, the current lags behind the voltage by $\pi/3$. The components of the circuit are													
	1) R and L		2) L and C		3) R and C		4) only R							
47.	What is the ra	atio of induct	ive and capacitiv	e reactar	ice in AC circuit?									
	a) $\omega^2 LC$		b) 1		c) zero		d) $\omega^2 L$							
48.	If a circuit n	nade up of a	resistance 1Ω a	ind indu	ctance 0.01H, and	l alterna	ting emf 200V	∕at						
	50Hz is conn	ected, then th	e phase difference	ce betwe	en the current and	the emf	in the circuit i	s						
	a) $\tan^{-1}(\pi)$	5	b) $\tan^{-1}\left(\frac{\pi}{2}\right)$		c) $\tan^{-1}\left(\frac{\pi}{4}\right)$	d) $\tan^{-1}\left(\frac{\pi}{3}\right)$								
49.	A circuit drav	ws 330W from	m a 110V, 60Hz .	AC line.	The power factor	is 0.6 aı	nd the current l	lags						
	the voltage.	The capacitar	nce of a series ca	pacitor t	hat will result in	a power	factor of unit	y is						
	equal to													
	a) 31 <i>µF</i>		b) 54 <i>µF</i>		c) 151 <i>µF</i>		d) 201 <i>µF</i>							

2005

50. In a circuit, L, C and R are connected in series with an alternating voltage source of frequency
 f. The current leads the voltage by 45°. The value of C is

a)
$$\frac{1}{2\pi f(2\pi fL+R)}$$
 b) $\frac{1}{\pi f(2\pi fL+R)}$ c) $\frac{1}{2\pi f(2\pi fL-R)}$ d) $\frac{1}{\pi f(2\pi fL-R)}$
www.sakshieducation.com

AC CIRCUITS

KEY

1)	c	2)	a	3)	a	4)	a	5)	b	6)	b	7)	a	8)	c	9)	b	10)	c
11)	a	12)	b	13)	b	14)	b	15)	a	16)	a	17)	a	18)	d	19)	a	20)	a
21)	b	22)	a	23)	c	24)	d	25)	a	26)	a	27)	c	28)	b	29)	c	30)	a
31)	b	32)	a	33)	c	34)	a	35)	d	3 6)	b	37)	b	38)	a	39)	b	40)	d
41)	c	42)	b	43)	c	44)	a	4 5)	a	6)	a	47)	a	48)	a	49)	b	50)	c
	SOLUTIONS																		
1.	1. $e = 200\sqrt{2}\sin 100t$ and $C = 1\mu F$																		
	$E_{rms} = 200V$																		
$X_C = \frac{1}{\omega C} = \frac{1}{1 \times 10^{-6} \times 100} = 10^4 \Omega$																			
$i_{rms} = \frac{E_{rms}}{X_c}$																			
	i	$r_{rms} = \frac{2}{1}$	$\frac{200}{0^4} =$	=2×1	$0^{-2} A$	= 20)mA												
2	1	$an \phi =$	X_L	_ <i>L</i> w		<u>م</u>			9										

SOLUTIONS

1.
$$e = 200\sqrt{2} \sin 100t$$
 and $C = 1\mu F$
 $E_{rms} = 200V$
 $X_{C} = \frac{1}{\omega C} = \frac{1}{1 \times 10^{-6} \times 100} = 10^{4} \Omega$
 $i_{rms} = \frac{E_{rms}}{X_{c}}$
 $i_{rms} = \frac{200}{10^{4}} = 2 \times 10^{-2} A = 20 mA$
2. $\tan \phi = \frac{X_{L}}{R} = \frac{L\omega}{R}$
 $\tan \phi = \frac{3\Omega}{3\Omega}$ Or $\phi = \frac{\pi}{4} rad$
3. $i_{rms} = \frac{i_{0}}{\sqrt{2}} = \frac{5}{\sqrt{2}} = 2.536A$
 $T = \frac{1}{4 \times 60} = 4.167 ms$
6. $\cos \phi = \frac{R}{\sqrt{R^{2} + 4\omega^{2}L^{2}}} = \frac{R}{\sqrt{R^{2} + 4R^{2}}} = \frac{1}{\sqrt{5}}$
7. $R = \frac{100}{10} = 10\Omega$
 $X_{L} = 2\pi fL$
 $\frac{100}{8} = 2\pi \times 50 \times L$

$$\Rightarrow L = \frac{1}{8\pi} H$$

$$X_{i} = 2\pi fL = 2\pi \times 40 \times \frac{1}{8\pi}$$

$$X_{i} = 2\pi fL = 2\pi \times 40 \times \frac{1}{8\pi} = \sqrt{(10)^{2} + (10)^{2}} = 10\sqrt{2}\Omega$$

$$i = \frac{V}{Z} = \frac{150}{10\sqrt{2}} = \frac{15}{\sqrt{2}} A$$
8.
$$V_{0} = 100V, i_{0} = 100mA = 100 \times 10^{-3} A \text{ and } \phi = \frac{\pi}{3} = 60^{0}$$

$$P = \frac{V_{0}i_{0}}{2} \cos\phi = \frac{100 \times 100 \times 10^{-3}}{2} \times \cos 60^{0} = 2.5 \text{ W}$$
9.
$$\tan\phi = \frac{\omega L - \frac{1}{\omega C}}{R} = 0$$

$$\omega L - \frac{1}{\omega C}$$

$$L = \frac{1}{\omega^{2}C}$$
Here $\omega = 2\pi f = 2 \times 3.14 \times 50s^{-1} = 314s^{-1}$
and $C = 20\mu F = 20 \times 10^{-6}F$

$$\therefore L = \frac{1}{(314s^{-1})^{2} \times (20 \times 10^{-6}F)} = 0.51H$$
11.
$$Z = \sqrt{R^{2} + X_{L}^{2}}$$

$$X_{L} - \omega L = 2\pi fL$$

$$Z = \sqrt{R^{2} + 4\pi^{2} f^{2}L^{2}}$$

$$\therefore 10 = \sqrt{(10)^{2} + (X_{L} - X_{C})^{2}}$$

$$\Rightarrow 100 = 100 + (X_{L} - X_{C})^{2}$$

$$\Rightarrow X_{L} - X_{C} = 0$$

13.
$$\tan \frac{\pi}{3} = \frac{X_L}{R}$$

When L is removed, $\tan \frac{\pi}{3} = \frac{X_L}{R}$
 $Z = R = 100\Omega$
 $\Rightarrow i_0 = \frac{220 \times \sqrt{2}}{100\pi} = \frac{220 \times \sqrt{2}}{100 \times 3.14}$
 $I_0 = 1A$
15. $a_1 = 2\pi n - 2\pi \times 100$
 $a_0 = 2 \times 3 \times 100 = 600 rad / s$
Also, $a_0 = \frac{1}{\sqrt{LC}}$
 $X_C = \frac{1}{Ca_0} = 60\omega$
 $\Rightarrow C = \frac{1}{\alpha_1 \times 60} = \frac{1}{600 \times 60}$
 $600 - \frac{1}{\sqrt{L(\frac{1}{36 \times 10^3})}}$
 $36 \times 10^4 = \frac{36 \times 10^3}{L}$
 $L = \frac{36 \times 10^3}{36 \times 10^4} = \frac{1}{10} = 0.1H$
16. $q = q_0 \sin \alpha t$
Or $I_0 = \omega g_0 = \max \operatorname{mum} \operatorname{current}$
 $\omega = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{10^{-9}}} = (10^9)^{1/2}$
 $I_0 = (10^9)^{1/2} \times (1 \times (10^{-6}) = \sqrt{1000} mA$
18. $X_L = \omega L = 2\pi fL = 2\pi \times 50 \times \frac{0.4}{\pi} = -40\Omega$
 $R = 30\Omega$
 $Z = rR^2 + X_L^2 = \sqrt{(30)^2 + (40)^2} = 50\Omega$
www.sckhieducation.com

$$i_{rms} = \frac{v_{rms}}{\chi} = \frac{200}{50} = 4A$$
25.
$$I_{rms} = \frac{V_{rms}}{\sqrt{R^2 + \left(\frac{1}{aC}\right)^2}}$$
Also, $\frac{I_{rms}}{2} = \frac{V_{rms}}{\sqrt{R^2 + \left[\frac{1}{aC}\right]^2}} = \frac{V_{rms}}{\sqrt{R^2 + \frac{9}{a^2C^2}}}$

$$\therefore 3R^2 = \frac{5}{a^2C^2}$$

$$\Rightarrow \frac{1}{aC} = \sqrt{\frac{3}{5}}$$
26.
$$i = \frac{V}{\sqrt{R^2 + (X_L = X_C)^2}}$$
But, $X_L = X_C$
Or $\omega L = \frac{1}{\omega C}$ Or $L = \frac{1}{a^2C}$
 $\omega = 1000s^{-1}, C = 10\mu F = 10 \times 10^{-6}$
 $\therefore L = \frac{1}{(1000)^2 \times 10 \times 10^{-6}} = 0.1 \text{ H}$
28. Wattless component of current = $I_v \sin \theta = \frac{E_v}{Z} \sin \theta$

$$= \frac{220}{\sqrt{R^2 + \omega^2 L^2}} \times \frac{\omega L}{\sqrt{R^2 + \omega^2 L^2}} = \frac{220 \times \omega L}{(R^2 + \omega^2 L^2)}$$

$$= \frac{220 \times (2\pi \times 50 \times 0.7)}{(220)^2 + (2\pi \times 50 \times 0.7)^2} = \frac{1}{2} = 0.5A$$
34. $X_L = X_C \Rightarrow \omega_L L = \frac{1}{\omega_b C}$

$$\omega_0 = \frac{1}{\sqrt{LC}}$$
$$2\pi f = \frac{1}{\sqrt{LC}}$$
$$f = \frac{1}{2\pi\sqrt{LC}}$$

Resonance condition is $X_L = X_C$ or $X_C - X_L = 0$ 35.

37.
$$\tan \phi = \frac{X_L}{R}$$
$$\Rightarrow \tan 45^0 = \frac{L\omega}{R}$$
$$\Rightarrow L = \frac{R}{\omega} = \frac{100}{2\pi (1000)}$$
$$\Rightarrow L = \frac{1}{20\pi}$$

$$f = \frac{1}{2\pi\sqrt{LC}}$$
35. Resonance condition is $X_L = X_C$ or $X_C - X_L = 0$
37. $\tan \phi = \frac{X_L}{R}$
 $\Rightarrow \tan 45^\circ = \frac{L\omega}{R}$
 $\Rightarrow L = \frac{R}{\omega} = \frac{100}{2\pi(1000)}$
 $\Rightarrow L = \frac{1}{20\pi}$
38. $X_L = \omega L = 2\pi f L$
 $X_L = 50\Omega, f = 50 cps$
 $L = \frac{X_L}{\omega} = \frac{X_L}{2\pi f} = \frac{50}{2\pi \times 50} = \frac{1}{2\times 3.14} = 0.16H$
39. $\tan \theta = \frac{X_L - X_C}{R}$
 $X_L = 2\pi f L = 2\pi \times 50 \times \left[\frac{200}{\pi} \times 10^{-3}\right] = 20\Omega$
 $X_C = \frac{1}{2\pi f C} = \frac{1 \times \pi}{2\pi \times 50 \times 10^{-3}} = 10\Omega$
and $R = 10\Omega$
 $\tan \theta = \tan \frac{\pi}{4}$

45.
$$f = \frac{1}{2\pi\sqrt{LC}} = \frac{1}{2\pi\sqrt{0.25 \times 0.1 \times 10^{-6}}} \approx 1007 \, Hz$$

47.
$$X_L = \omega L$$
 and $X_C = \frac{1}{\omega C}$

$$\frac{X_L}{X_C} = \frac{\omega L}{1/\omega C} = \omega^2 LC$$

48.
$$\tan \phi = \frac{X_L}{R}$$
 and $X_L = \omega L = 2\pi f L = 2\pi \times 50 \times 0.01 = \pi \Omega$

Also
$$R = 1\Omega$$
 $\therefore \phi = \tan^{-1}(\pi)$

47.
$$X_{L} = \omega L$$
 and $X_{C} = \frac{1}{\omega C}$
 $\frac{X_{L}}{X_{C}} = \frac{\omega L}{1/\omega C} = \omega^{2} L C$
48. $\tan \phi = \frac{X_{L}}{R}$ and $X_{L} = \omega L = 2\pi f L = 2\pi \times 50 \times 0.01 = \pi \Omega$
Also $R = I\Omega$ $\therefore \phi = \tan^{-1}(\pi)$
49. $R = \frac{V_{2}}{P} = \frac{110 \times 110}{330} = \frac{110}{3} \Omega$
 $\cos R = \frac{V_{2}}{P} = \frac{110 \times 110}{330} = \frac{110}{3} \Omega = 0.6.$
 $\frac{R}{\sqrt{R^{2} + X_{L}^{2}}} = 0.6$
 $R^{2} + X_{L}^{2} = \left(\frac{R}{0.6}\right)^{2}$
 $X_{L}^{2} = \frac{R^{2}}{(0.6)^{2}} - R^{2} \Rightarrow X_{L}^{2} = \frac{R^{2} \times 0.64}{0.36}$
 $X_{L} = \frac{0.8R}{0.6} = \frac{4R}{3}$
And
 $X_{L} = K_{C}$
 $X_{C} = \frac{4R}{3} = \frac{4}{3} \times \frac{100}{3} = \frac{440}{9} \Omega$
 $\frac{1}{2\pi f} = \frac{440}{9} \Omega$
 $C = -\frac{9}{3}$

 $\overline{2 \times 3.14 \times 60 \times 440}$ $-0.000054 F = 54 \mu F$

50.
$$\tan \phi = \frac{\omega L - \frac{1}{\omega C}}{R}$$
$$\phi = 45^{\circ}$$
$$\therefore \quad \tan 45^{\circ} = \frac{\omega L - \frac{1}{\omega C}}{R}$$
$$\Rightarrow \quad 1 = \frac{\omega L - \frac{1}{\omega C}}{R}$$
$$\Rightarrow \quad R = \omega L - \frac{1}{\omega C}$$
$$\Rightarrow \quad \omega C = \frac{1}{(\omega L - R)}$$
$$\Rightarrow \quad C = \frac{1}{2(\omega L - R)} = \frac{1}{2\pi f (2\pi f L - R)}$$

GROWTH AND DECAY OF CURRENT

2010

1. A coil of resistance R and inductance L is connected to a battery of emf E volt. The final current in the coil is

a)
$$\frac{E}{R}$$
 b) $\frac{E}{L}$ c) $\sqrt{\frac{E}{R^2 + L^2}}$ d) $\sqrt{\frac{EL}{R^2 + L^2}}$

2008

3. A coil of inductance 300mH and resistance 2Ω is connected to a source of voltage 2V. The current reaches half of its steady state value in

b) 0.1 s c) 0.15 s d) 0.3 s

2007

a) 0.05 s

4.

A coil of 40H inductance is connected in series with a resistance of 8Ω and this combination is connected to the terminals of 2V battery. The inductive time constant of the circuit is (in second) a) 40 b) 20 c) 5 d) 0.2

5. In an L – R circuit, time constant is that time in which current grows from zero to the value a) $0.63I_o$ b) $0.50I_o$

c)
$$0.37 I_o$$
 d) I_o

6. In a series resonant L – C – R circuit, the voltage across R is 100V and $R = 1k\Omega$ with $C = 2\mu F$. The resonant frequency ω is 200 rad s⁻¹. At resonance the voltage across L is

a) $2.5 \times 10^{-2} V$ b) 40 V c) 250 V d) $4 \times 10^{-3} V$

GROWTH AND DECAY OF CURRENT

KEY

1) **a** 2) **c** 3) **b** 4) **c** 5) **a** 6) **c**

HINTS

2. At time t = 0, i.e., when capacitor is charging, current
$$I = \frac{2}{1000} = 2mA$$

$$I = \frac{2}{2000} = 1mA$$
3.
$$I = I_o \left(1 - e^{-Rt/L}\right)$$

$$\frac{I_o}{2} = I_o \left(1 - e^{-Rt/L}\right)$$

$$\frac{I}{2} = \left(1 - e^{-Rt/L}\right)$$

$$e^{-Rt/L} = 1/2$$

$$\frac{Rt}{L} = \ln 2$$

$$\therefore \quad \frac{L}{R} \ln 2 = \frac{300 \times 10^{-3}}{2} \times 0.693$$

$$= 150 \times 0.693 \times 10^{-3}$$

$$= 0.10395 \text{ s} = 0.1 \text{ s}$$
4.
$$t = \frac{L}{R} = \frac{40}{8} = 5 \text{ s}$$
5.
$$I = I_o \left(1 - e^{-1/\tau}\right)$$

$$\tau \left(=\frac{L}{R}\right) \text{ Is called time constant.}$$
At $t = \tau$

$$I = I_o \left(1 - e^{-1}\right)$$
or
$$I = I_o \left(1 - \frac{1}{e}\right)$$

or
$$I = 0.63I_{o}$$

6. $\omega L = \frac{1}{\omega C}$
 $I = \frac{V_{k}}{R} = \frac{100}{1000} = 0.1A$
 $V_{L} = IX_{L} = I\omega L$
But $\omega L = \frac{1}{\omega C}$ $\therefore V_{L} = \frac{1}{\omega C} = \frac{0.1}{200 \times 2 \times 10^{-6}} = 250V$