WORK, ENERGY AND POWER

WORK

1. Force \mathbf{F} on a particle moving in a straight line varies with distance d as shown in the figure. The work done on the particle during its displacement of 12 m is

a) 12 J
b) 26 J
c) 13 J
d) 18 J
2. A body of mass M hits normally a rigid wall with velocity v and bounces back with the same velocity. The impulse experience by the body is
a) 1.5 Mv
b) 2 Mv
c) zero
d) Mv
3. A person of mass 60 kg is inside a lift of mass 940 kg and presses the button on control panel. The lift starts moving upwards with acceleration $1.0 \mathrm{~ms}^{-2}$. If $g=10 \mathrm{~ms}^{-2}$, the tension in the supporting cable is
a) 9680 N
b) 11000 N
c) 1200 N
d) 8600 N
4. A plate of mass m, length b and breadth a is initially lying on a horizontal floor with length parallel to the floor and breadth perpendicular to the floor. The work done to exect it on its breadth is
a) $m g\left[\frac{b}{2}\right]$
b) $m g\left[a+\frac{b}{2}\right]$
c) $m g\left[\frac{b-a}{2}\right]$
d) $m g\left[\frac{b+a}{2}\right]$
5. A force F acting on an object varies with distance x as shown here. The force is in newton and x is in metre. The work done by the force in moving the object from $x=0 \mathbf{m}$ to $x=6 \mathbf{m}$ is

a) 4.5 J
b) 13.5 J
c) 9 J
d) 18 J

2009
6. A quarter horse power motor runs at a speed of 600 rpm . Assuming 40% efficiency, the work done by the motor in one rotation will be
a) 7.46 J
b) 7400 J
c) 7.46 erg
d) 74.6 J

2008

7. A particle of mass 100 g is thrown vertically upwards with a speed of $5 \mathrm{~ms}^{-1}$. The work done by the force of gravity during the time, the particle goes up is
a) -0.5 J
b) -1.2 J
c) 1.25 J
d) 0.5 J
8. How much work done must be done by a force on 50 kg body in order to accelerate it from rest to $20 \mathrm{~ms}^{-1}$ in 10s
a) $10^{3} \mathrm{~J}$
b) $10^{4} \mathrm{~J}$
c) $2 \times 10^{3} \mathrm{~J}$
d) $4 \times 10^{4} \mathrm{~J}$
9. When the bob of a simple pendulum swings, the work done by tension in the string is
a) >0
b) <0
c) zero
d) maximum
10. The work done by a particle moving with a velocity of 0.7 c (where c is the velocity of light) in empty space free of electromagnetic field and far away from all matter is
a) positive
b) negative
c) zero
d) infinite

2007
11. A vertical spring with force constant k is fixed on a table. A ball of mass m at a height h above the free upper end of the spring falls vertically on the spring, so that the spring is compressed by a distance d. The net work done in the process is
a) $m g(h+d)+\frac{1}{2} k d^{2}$
b) $m g(h+d)-\frac{1}{2} k d^{2}$
c) $m g(h-d)-\frac{1}{2} k d^{2}$
d) $m g(h-d)+\frac{1}{2} k d^{2}$
12. The relationship between the force F and position x of a body is as shown in figure. The work done in displacing the body from $x=1 \mathrm{~m}$ to $x=5 \mathrm{~m}$ will be

a) 30 J
b) 15 J
c) 25 J
d) 20 J

Energy

2011

13. The potential energy of a system increase if work is done
a) by the system against a conservative force
b)by the system against a non-conservative force
c) upon the system by a conservative force
d) upon the system by a non-conservative force

2010

14. A bomb of 12 kg explodes into two pieces of masses 4 kg and 8 kg . The velocity of 8 kg mass is $6 \mathrm{~ms}^{-1}$. The kinetic energy o the other mass is
a) 348 J
b) 332 J
c) 324 J
d) 288 J
15. A coin is of mass 4.8 kg and radius 1 m , is rolling on a horizontal surface without sliding, with an angular velocity of $600 \mathrm{rad} / \mathrm{min}$. What is the total kinetic energy of the coin
a) 360 J
b) $1440 \pi^{2} J$
c) $4000 \pi^{2} J$
d) $600 \pi^{2} J$
16. An open water tight railway wagon of mass $5 \times 10^{3} \mathrm{~kg}$ coasts at an initial velocity of $1.2 \mathrm{~m} / \mathrm{s}$ without friction on a railway track. Rain falls vertically downwards into the wagon. What change occurs in kinetic energy of the wagon, when it has collected $10^{3} \mathrm{~kg}$ of water
a) 900 J
b) 300 J
c) 1560 J
d) 1200 J
17. A person, with outstretched arms, is spinning on a rotating stool. He sudden brings his arms down to his sides. Which of the following is true about his kinetic energy K and angular momentum L ?
a) 900 J
b) 300 J
c) 1560 J
d) 1200 J
18. A particle of mass m at rest is acted upon by a force P for a time t. Tis kinetic energy after an interval t is
a) $\frac{P^{2} t^{2}}{m}$
b) $\frac{P^{2} t^{2}}{2 m}$
c) $\frac{P^{2} t^{2}}{3 m}$
d) $\frac{P t}{2 m}$
19. A body of mass 2 kg makes an elastic collision with another body at rest and continues to move in the original direction with one-fourth its original speed. The mass of the second body which collides with the first body is
a) 2 kg
b) 1.2 kg
c) 3 kg
d) 1.5 kg

2007

20. The driver of a car travelling at velocity v suddenly sees a broad wall infront of him at a distance d. He should
a)brake sharply
b) turn sharply
c) both a and b
d) none of these
21. A free α-particle and a free proton, which are separated by a distance of $10^{-10} \mathrm{~m}$ are released. The KE of α-particle when at infinite separation is
a) $46 \times 10^{-19} \mathrm{~J}$
b) $23 \times 10^{-19} \mathrm{~J}$
c) $36.8 \times 10^{-19} \mathrm{~J}$
d) $9.2 \times 10^{-19} \mathrm{~J}$
22. A child is swinging a swing. Minimum and maximum heights of swing from earth's surface are 0.75 m and 2 m respectively. The maximum velocity of this swing is
a) $5 \mathrm{~ms}^{-1}$
b) $10 \mathrm{~ms}^{-1}$
c) $15 \mathrm{~ms}^{-1}$
d) $20 \mathrm{~ms}^{-1}$
23. A spherically ball of mass 20 kg is stationary at the top of a hill of height 100 m . It rolls down a smooth surface to the ground, then climbs up another hill of height 30 m and finally rolls down to a horizontal base at a height of 20 m above the ground. The velocity attained by the ball is
a) $40 \mathrm{~ms}^{-1}$
b) $20 \mathrm{~ms}^{-1}$
c) $10 \mathrm{~ms}^{-1}$
d) $10 \sqrt{30} \mathrm{~ms}^{-1}$
24. Two bodies A and B having masses in the ratio of $3: 1$ posses the same kinetic energy. The ratio of linear momentum of B to A is
a) $1: 2$
b) $3: 1$
c) $1: \sqrt{3}$
d) $\sqrt{3}: 1$
25. An open kinetic edge of mass m is dropped from a height h on a wooden floor. If the blade penetrates s into the wood, the average resistance offered by the wood to the blade is
a) Mg
b) $M g\left(\frac{h}{s}\right)$
c) $\operatorname{Mg}\left(1-\frac{h}{s}\right)$
d) $M g\left(1+\frac{h}{s}\right)^{2}$
26. A stationary particle explodes into two particles of masses m_{1} and m_{2} which move in opposite directions with velocities v_{1} and v_{2}. The ratio of their kinetic energies E_{1} / E_{2} is
a) 1
b) $m_{1} v_{2} / m_{2} v_{1}$
c) m_{2} / m_{1}
d) m_{1} / m_{2}
27. A bread gives a boy of mass 40 kg an energy of 21 kJ . If the efficiency is 28%, then the height that can be climbed by him using this energy is
a) 22.5 m
b) 15 m
c) 10 m
d) 5 m
28. A ball of mass 2 kg and another of mass 4 kg are dropped together from a 60 ft tall building. After a fall of 30ft each towards earth, their respective kinetic energies will be in the ratio of
a) $\sqrt{2}: 1$
b) $1: 4$
c) $1: 2$
d) $1: \sqrt{2}$
29. A stone is tied to a string of length l and is whirled in a vertical circle with the other end of the string at the centre. At a certain instant of time, the stone is at its lowest position and has a speed u. The magnitude of the change in velocity of string when horizontal (g being acceleration due to gravity) is
a) $\sqrt{2\left(u^{2}-g l\right)}$
b) $\sqrt{\left(u^{2}-g l\right)}$
c) $u-\sqrt{\left(u^{2}-2 g l\right)}$
d) $\sqrt{2 g l}$

2006
30. If we throw a body upwards with velocity of $4 \mathrm{~ms}^{-1}$, at what height does its kinetic energy reduce to half of the initial value? (take $g=10^{-2}$)
a) 4 m
b) 2 m
c) 1 m
d) 0.4 m

2005
31. A block of mass 10 kg is moving in x-direction with a constant speed of $10 \mathrm{~ms}^{-1}$. It is subjected to a retarding force $F=-0.1 \times \mathrm{Jm}^{-1}$ during its travel from $\mathbf{x}=\mathbf{2 0} \mathbf{m}$ to $\mathbf{x}=\mathbf{3 0} \mathbf{m}$. Its final kinetic energy will be
a) 475 J
b) 450 J
c) 275 J
d) 250 J
32. A projectile is fired at 30° with momentum p. Neglecting friction, the change in kinetic energy, when it returns back to the ground, will be
a) zero
b) 30%
c) 60%
d) 100%
33. A machine which is 75% efficient, uses 12 J of energy in lifting 1 kg mass through a certain distance. The mass is then allowed to fall through the same distance. The velocity at the end of its fall is
a) $\sqrt{12} \mathrm{~ms}^{-1}$
b) $\sqrt{18} m s^{-1}$
c) $\sqrt{24} m s^{-1}$
d) $\sqrt{32} \mathrm{~ms}^{-1}$

2004

34. A mass of 0.5 kg moving with a speed of $1.5 \mathrm{~ms}^{-1}$ on a horizontal smooth surface, collides with a nearly weightless spring of force constant $k=50 \mathrm{Nm}^{-1}$. The maximum compression of the spring would be

a) 0.15 m
b) 0.12 m
c) 1.5 m
d) 0.5 m
35. A 30 g bullet travelling initially at $500 \mathrm{~ms}^{-1}$ penetrates 12 cm into wooden block. The average force exerted will be
a) 31250 N
b) 41250 N
c) 31750 N
d) 30450 N
36. A thin uiform rod of mass m and length is hinged at the lower end to a level floor and strands vertically. It is now allowed to fall, then its upper end will strike the floor with the velocity
a) $\sqrt{2 g l}$
b) $\sqrt{5 g l}$
c) $\sqrt{3 g l}$
d) $\sqrt{m g l}$
37. A cylinder of mass 10 kg rolling on a rough plane with a velocity of $10 \mathrm{~ms}^{-1}$. If the coefficient of friction between the surface and cylinder is 0.5 , then before stopping it will cover a distance of (take $g=10 \mathrm{~ms}^{-2}$)
a) 10 m
b) 7.5 m
c) 5 m
d) 2.5 m

Power

2010

38. A cyclist rides up a hill at a constant velocity. Determine the power developed by the cyclist if the length of the connecting rod of the pedal is $r=25 \mathrm{~cm}$, the time of revolution of the rod is $t=2 \mathrm{~s}$ and the mean force exerted by his foot on the pedal is $\mathrm{F}=\mathbf{1 5} \mathrm{kg}$
a) 115.6 W
b) 215.6 W
c) 15.6 W
d) 11.56 W
39. A body of mass 10 kg moves with a velocity v of $2 \mathrm{~ms}^{-1}$ along a circular path of radius $\mathbf{8 m}$. The power produced by the body will be
a) $10 \mathrm{Js}^{-1}$
b) $98 \mathrm{Js}^{-1}$
c) $49 \mathrm{Js}^{-1}$
d) zero

2008
40. Water falls from a height of 60 m at the rate of $15 \mathrm{kgs}^{-1}$ to operate a turbine. The losses due to frictional forces are 10% of energy. How much power is generated by the turbine? (Take $g=10 \mathrm{~ms}^{-2}$)
a) 8.1 kW
b) 10.2 kW
c) 12.3 kW
d) 7.9 kW
41. A motor is used to deliver water at a certain rate through a given horizontal pipe. To deliver n-times the water through the same pipe in the same time the power of the motor must be increased as follows
a) n-times
b) n^{2}-times
c) n^{3}-times
d) n^{4}-times
42. A machine is delivering constant power to drive a body along a straight line. What is the relation between the distance travelled by the body against time?
a) $s^{2} \propto t^{3}$
b) $s^{2} \propto t^{-3}$
c) $s^{2} \propto t^{2}$
d) $s \propto t^{3}$
43. A particle of mass m is moving in a circular path of constant radius r such that centripetal acceleration a_{c} varying with time is $a_{c}=k^{2} r t^{2}$, where \mathbf{k} is a constant. What is the power delivered to the particle by the force acting on it

a) $2 m k r^{2} t$
b) $m k r^{2} t^{2}$
c) $m k^{2} r^{2} t$
d) $m k^{2} r t^{2}$

2006

44. A body is initially at rest. It undergoes one-dimensional motion with constant acceleration. The power delivered to it at time t is proportional to
a) $t^{1 / 2}$
b) t
c) $t^{3 / 2}$
d) t^{2}

KEY

1$) \mathbf{c}$	$2) \mathbf{b}$	$3) \mathbf{b}$	$4) \mathbf{c}$	$5) \mathbf{b}$	$6) \mathbf{a}$	$7) \mathbf{b}$	8) \mathbf{b}	9) \mathbf{c}	$10) \mathbf{c}$
11$) \mathbf{b}$	$12) \mathbf{d}$	$13) \mathbf{a}$	$14) \mathbf{d}$	$15) \mathbf{b}$	$16) \mathbf{c}$	$17) \mathbf{d}$	$18) \mathbf{b}$	19) \mathbf{b}	$20) \mathbf{a}$
21$) \mathbf{d}$	$22) \mathbf{a}$	$23) \mathbf{a}$	$24) \mathbf{c}$	$25) \mathbf{b}$	$26) \mathbf{c}$	$27) \mathbf{b}$	$28) \mathbf{c}$	$29) \mathbf{a}$	$30) \mathbf{d}$
31$) \mathbf{a}$	$32) \mathbf{a}$	$33) \mathbf{b}$	$34) \mathbf{a}$	$35) \mathbf{a}$	$36) \mathbf{c}$	$37) \mathbf{a}$	$38) \mathbf{a}$	$39) \mathbf{d}$	$40) \mathbf{a}$
41$) \mathbf{c}$	$42) \mathbf{a}$	$43) \mathbf{c}$	$44) \mathbf{b}$						

HINTS

Work

1. Work done $=$ Area under the graph $=2 \times(7-3)+\frac{1}{2} \times 2 \times(12-7)=13 \mathrm{~J}$
2. Impulse $|J|=|\Delta p|=\mathrm{Mv}-(-\mathrm{Mv})=2 \mathrm{Mv}$
3. Total mass $=940+60=1000 \mathrm{~kg}$
$\mathrm{T}-\mathrm{mg}=\mathrm{ma}$
$\mathrm{T}-1000 \times 10=1000 \times 1$
$\mathrm{T}=11000 \mathrm{~N}$
4. Initial height of centre of gravity $=\frac{a}{2}$

Final height of centre of gravity $=\frac{b}{2}$

Work done $=m g\left[\frac{b}{2}-\frac{a}{2}\right]=m g\left[\frac{b-a}{2}\right]$
5. $W=$ area of rectangle + area of triangle $=3 \times 3 \times \frac{1}{2} \times 3 \times 3=13 \mathrm{~J}$
6. We have $\mathrm{P} \times 40 \%=\frac{W}{t}$
$\Rightarrow \frac{746}{4} \times \frac{40}{100}=\frac{W}{\left(2 \pi \times \frac{600 \times 2 \pi}{60}\right)}$
$\Rightarrow W=7.46 \mathrm{~J}$
7. $h=\frac{u^{2}}{2 g}=\frac{25}{2 \times 9.8}$

Work done by gravity force $\mathrm{W}=\mathrm{mgh}=0.1 \times g \times \frac{25}{2 \times 9.8} \cos 180^{\circ}$
$\therefore W=-0.1 \times \frac{25}{2}=-1.25 \mathrm{~J}$
8. $v=u+a t$
$\therefore 20=0+\mathrm{ax} 10$
Or $a=2 m s^{-2}$
But , $s=u t+\frac{1}{2} a t^{2}$
Or $s=0+\frac{1}{2} \times 2 \times 10 \times 10$ or $\mathrm{s}=100 \mathrm{~m}$
\therefore Work done
$\mathrm{W}=\mathrm{Fxs}$ or $\mathrm{W}=\operatorname{maxs}=50 \times 2 \times 100=10^{4} \mathrm{~J}$
9. Tension in the string is along the radius of circular path adopted by the bob, while displacement of the bob is along the circumference of the path. Hence, again F and s are at 90° and so $\mathrm{W}=0$
10. Acceleration of the particle
$a=\frac{d v}{d t}=\frac{d}{d t}(0.7 c)=0 \quad(\because \mathrm{c}=$ constant $)$
Hence force on the particle. Thus work done by a particle will be zero
11. Net work done
$\mathrm{W}=$ potential energy stored in the spring + loss of potential energy of mass
$=m g(h+d)-\frac{1}{2} k d^{2}$
12. Work done $=$ force x displacement

$$
\begin{aligned}
& =\text { area of OAM }+ \text { area of ABNM }+ \text { area of CDEN }- \text { area of EFGH }+ \text { area of HIJ } \\
& =\frac{1}{2} \times 1 \times 10+1 \times 5-1 \times 5+\frac{1}{2} \times 1 \times 10=20 \mathrm{~J}
\end{aligned}
$$

Energy

13. The potential energy of a system increases if work is done by the system against a conservative force.
$-\Delta U=W_{\text {conservative force }}$
14. $m_{A} v_{A}=m_{B} v_{B} \Rightarrow 4 v_{A}=8 \times 6 \Rightarrow v_{A}=12 \mathrm{~ms}^{-1}$

Kinetic energy of the other mass $A=\frac{1}{2} m_{A} v_{A}^{2}=\frac{1}{2} \times 4 \times(12)^{2}=288 \mathrm{~J}$
15. Angular velocity is given by

$$
\begin{aligned}
& \omega=600 \mathrm{rad} / \mathrm{min} \\
& =20 \pi \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

$$
K=\frac{1}{2} I \omega^{2}+\frac{1}{2} m v^{2}=\frac{1}{2} \times \frac{1}{2} m r^{2} \omega^{2}+\frac{1}{2} m(r \omega)^{2}=\frac{1}{4} \times 4.8 \times 1^{2} \times(20 \pi)^{2}+\frac{1}{2} \times 4.8 \times(20 \pi)^{2} \times 1^{2}
$$

$$
=1440 \pi^{2} J
$$

16. If v^{\prime} is the final velocity of the wagon, then from the principle of conservation of linear momentum,

$$
5 \times 10^{3} \times 1 .\left(5 \times 10^{3}+10^{3}\right) \times v^{\prime}
$$

$$
v^{\prime}=1 \mathrm{~ms}^{-1}
$$

Change in KE $=\frac{1}{2}\left(6 \times 10^{3}\right) \times 1^{2}-\frac{1}{2}\left(5 \times 10^{3}\right) \times(1.2)^{2}=1560 \mathrm{~J}$
17. Concept
18. $K=\frac{p^{2}}{2 m}=\frac{P^{2} t^{2}}{2 m}$ as $F=P=\frac{p}{t}$
19. From conservation of linear momentum ,

$$
m_{1} v_{1}+m_{2} v_{2}=m_{1} v_{1}+m_{2} v_{2} \Rightarrow m_{2} v_{2}=\frac{3 u}{2}
$$

From conservation of kinetic energy ,
$\frac{1}{2} m_{1} u_{1}^{2}+\frac{1}{2} m_{2} u_{2}^{2}=\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}$
$\Rightarrow m_{2} v_{2}^{2}=\frac{15 u^{2}}{8}$
$m_{2}=1.2 \mathrm{~kg}$
20. From work-energy theorem
$\frac{1}{2} m v^{2}=F x \Rightarrow x=\frac{m v^{2}}{2 F}$
But when the makes turn, then
$\frac{m v^{2}}{r}=F \Rightarrow r=\frac{m v^{2}}{F}$
It is clear that $x=\frac{r}{2}$ i.e. by the same retarding force the car can be stopped in a less distance if the driver apply brakes. This retarding force is actually friction force
21. Kinetic energy of both α-particle and proton
$=$ potential energy of two particles
$=\frac{(2 e)(e)}{4 \pi \varepsilon_{0} r}=\frac{2 \times\left(1.6 \times 10^{-19}\right)^{2} \times 9 \times 10^{9}}{10^{-10}}=46.08 \times 10^{-19}$
As initial momentum of two particles is zero, their final momentum must also be zero
\therefore Numerical value of momentum of each particle $=\mathrm{p}$
KE of proton $=\frac{p^{2}}{2 m}=E($ say $)$
Kinetic energy of α-particle $=\frac{p^{2}}{2(4 m)}=\frac{E}{4}$
Total kinetic energy $=E+\frac{E}{4}=46.08 \times 10^{-19} J$
$\therefore E=\frac{4}{5} \times 46 \times 10^{-19} \mathrm{~J}=36.8 \times 10^{-19} \mathrm{~J}$
\therefore KE of α - particle $=\frac{36.8 \times 10^{-19}}{4}=29.2 \times 10^{-19} \mathrm{~J}$
22. From energy conservation $\frac{1}{2} m v_{\max }^{2}=m g\left(H_{2}-H_{1}\right)$

Here $H_{1}=$ minimum height of swing from earth's surface $=0.75 \mathrm{~m}$
$H_{2}=$ maximum height of swing from earth's surface $=2 \mathrm{~m}$
$\therefore \frac{1}{2} m v_{\max }^{2}=m g(2-0.75)$

Or $v_{\text {max }}=\sqrt{2 \times 10 \times 125}=5 \mathrm{~ms}^{-1}$
23. According to conservation of energy

Or $m g\left(H-h_{2}\right)=\frac{1}{2} m v^{2}$
Or $v=\sqrt{2 g(100-20)}$
Or $v=\sqrt{2 \times 10 \times 80}=40 \mathrm{~ms}^{-1}$
24. Kinetic energy $E_{K}=\frac{1}{2} m v^{2} \ldots \ldots \ldots \ldots$. (i)

Llinear momentum $\mathrm{P}=\mathrm{mv}$.

From eqs (i) and (ii), $\quad E_{K}=\frac{m^{2} v^{2}}{2 m}=\frac{p^{2}}{2 m}$
$\therefore p=\sqrt{2 m E_{K}}$
When $E_{K_{1}}=E_{K_{2}}$
$\frac{p_{1}^{2}}{2 m_{1}}=\frac{p_{2}^{2}}{2 m_{2}}$
Or $\frac{p_{1}}{p_{2}}=\sqrt{\frac{m_{1}}{m_{2}}} \quad$ Or $\quad \frac{p_{2}}{p_{1}}=\frac{1}{\sqrt{3}}$
25. Velocity at the time when knife edge strikes wooden floor is $\sqrt{2 g h}$.

From work-energy theorem, we have

$$
0-\frac{1}{2} m v^{2}=-F s \Rightarrow F=M g \frac{h}{s}
$$

26. From conservation of linear momentum

$$
p_{\text {initial }}=p_{\text {final }}
$$

$$
0=m_{1} v_{1}-m_{2} v_{2}
$$

$$
\begin{equation*}
\text { Or } \frac{v_{1}}{v_{2}}=\frac{m_{2}}{m_{1}} \tag{i}
\end{equation*}
$$

Thus, ratio of kinetic energies
$\frac{E_{1}}{E_{2}}=\frac{\frac{1}{2} m_{1} v_{1}^{2}}{\frac{1}{2} m_{2} v_{2}^{2}}=\frac{m_{1}}{m_{2}} \times\left(\frac{m_{2}}{m_{1}}\right)^{2}=\frac{m_{2}}{m_{1}}$
27. In order to climb a height h the boy utilizes potential energy $=\mathrm{mgh}$ In order to climb he will use the efficient energy
Also $1 \mathrm{~kJ}=10^{3} \mathrm{~J}$
Energy of one bread $=21 \mathrm{~kJ}=21 \times 10^{3} \mathrm{~J}$
Energy consumed by boy $=\frac{28}{100} \times 21000=5880 \mathrm{~J}$ \qquad

From law of conservation of energy,
$\therefore m g h=40 \times 9.8 \times h$
Equations Eqs (i) and (ii) we have
$40 \times 9.8 \times \mathrm{h}=5880$
$\Rightarrow h=\frac{5880}{40 \times 9.8}=15 \mathrm{~m}$
28. At a 30 ft height, the velocity of both the masses will be equal ie, $v_{1}=v_{2}=v$

Thus, $\frac{K_{1}}{K_{2}}=\frac{\frac{1}{2} m_{1} v^{2}}{\frac{1}{2} m_{2} v^{2}}=\frac{m_{1}}{m_{2}}=\frac{2}{4}=\frac{1}{2}$
29. When stone is at its lowest position, it has only kinetic energy given by

$K=\frac{1}{2} m u^{2}$
At the horizontal position, it has energy
$E=U+K=\frac{1}{2} m u^{2}+m g l$

According to conservation of energy
$\frac{1}{2} m u^{2}=\frac{1}{2} m u^{2}+m g l$
Or $\frac{1}{2} m u^{2}=\frac{1}{2} m u^{2}-m g l$
Or $u^{\prime}=\sqrt{u^{2}-2 g l}$
$|\Delta u|=|u|=\sqrt{u^{\prime 2}+u^{2}+2 u^{\prime} u \cos 90^{0}}$
$|\Delta u|=\sqrt{u^{\prime 2}+u^{2}}$
$=\sqrt{2\left(u^{2}-g l\right)}$
30. Initial kinetic energy of the body $=\frac{1}{2} m v^{2}$
$=\frac{1}{2} m(4)^{2}=8 m$
$\mathrm{mgh}=4 \mathrm{~m}$
Or $h=\frac{4}{g}=\frac{4}{10}=0.4 \mathrm{~m}$
31. According to work - energy theorem, work done = change in kinetic energy of the body
$\therefore W=K_{f}-K_{i}$
Or $F . d x=K_{f}-\frac{1}{2} m v_{i}^{2}$
Or $F . d x=K_{f}-\frac{1}{2} \times 10 \times(10)^{2}$
Or $F . d x=K_{f}-500$
Or $\int_{x=20}^{x=30}(-/=0.1) x d x=K_{f}-500$
Or $-0.1\left[\frac{(30)^{2}}{2}-\frac{(20)^{2}}{2}\right]=K_{f}-500$
Or $K_{f}-500=-0.1(450-200)$
Or $K_{f}-500=-25$
$\therefore K_{f}=500-25=475 \mathrm{~J}$
32. Concept
33. Potential energy $=\frac{75}{100} \times 12=9 \mathrm{~J}$

Now, KE of the mass at the end of fall
$K E=\frac{1}{2} m v^{2}$.
Applying law of conservation of energy,
$\frac{1}{2} m v^{2}=9$
$v=\sqrt{\frac{2 \times 9}{m}}=\sqrt{18} \mathrm{~ms}^{-1}$
34. By the law of conservation of energy,
$\frac{1}{2} m v^{2}=\frac{1}{2} k x^{2}$
$\therefore x^{2}=\frac{m v^{2}}{k} \Rightarrow x=\sqrt{\left(\frac{m v^{2}}{k}\right)} \Rightarrow x=\sqrt{\left(\frac{0.5 \times 1.5 \times 1.5}{50}\right)}$
35. From kinetic energy relation
$\frac{1}{2} m v^{2}=F . s$
Or $F=\frac{m v^{2}}{2 s}=\frac{30 \times 10^{-3} \times(500)^{2}}{2 \times 12 \times 10^{-2}}=31250 \mathrm{~N}$
36. The kinetic energy at the point Q is given by

$=\frac{1}{2} I \omega^{2}=\frac{1}{2} \frac{m l^{2}}{3} \frac{v^{2}}{l^{2}}$
$=\frac{1}{2} \times \frac{1}{3} m v^{2}$
The potential energy at $\mathrm{G}=\frac{1}{2} \mathrm{mgl}$
From eqs (i) and (ii), we get $\frac{1}{2} \frac{m v^{2}}{3}=\frac{1}{2} m g l$ $v=\sqrt{3 g l}$
37. A body of mass m moving with velocity v, possess kinetic energy given by
$K=\frac{1}{2} m v^{2}$.
This kinetic energy is utilized in doing work against the frictionless forces
$W=\mu m g s$
Where μ is coefficient of kinetic friction, m is mass, g is gravity and s is displacement.
Equating eqs (i) and (ii) we get
$\frac{1}{2} m v^{2}=\mu m g s$
Where $\frac{1}{2} m v^{2}=\frac{1}{2} \times 10 \times(10)^{2}=500 \mathrm{~kg}-m s^{-1}$
Given $v=10 \mathrm{~ms}^{-}, \mu=0.5 \mathrm{~m}, \mathrm{~m}=10 \mathrm{~kg}, g=10 \mathrm{~ms}^{-2}$
$\Rightarrow s=\frac{\frac{1}{2} \times m \times(10)^{2}}{\mu m g} \quad=\frac{50}{0.5 \times 10}=10 \mathrm{~m}$

Power

38. Linear velocity $v=r \omega=r\left(\frac{2 \pi}{r}\right)=\frac{1}{4} \times \frac{2 \pi}{2}=\frac{\pi}{4} m s^{-1}$

Power, $P=F \times v=15 \times 9.8 \times \frac{\pi}{4}=115.6 \mathrm{~W}$
39. Power is defined as the rate of change of energy in a system or the time rate of doing work
$\Rightarrow P=\frac{d E}{d t}=\frac{d W}{d t}$
Work=force x displacement $=\mathrm{Fx} \mathrm{d}$
So $P=\frac{d}{d t}(F \times d)=\frac{d}{d t} \times 0=0$
40. Power generated by the turbine

$$
P_{\text {generated }}=P_{i n p u t} \times \frac{90}{100}=\frac{M g h}{t} \times \frac{90}{100}
$$

Putting he given values

$$
\begin{aligned}
& \frac{M}{t}=15 \mathrm{kgs}^{-1}, g=10 \mathrm{~ms}^{-2}, \mathrm{~h}=60 \mathrm{~m} \\
& \therefore P_{\text {generated }}=(15 \times 10 \times 60) \times \frac{90}{100}=8.1 \mathrm{~kW}
\end{aligned}
$$

41. Mass flowing out per second $m=A v \rho$.
$\frac{P^{\prime}}{P}=\frac{\frac{1}{2} A \rho v^{3}}{\frac{1}{2} A \rho v^{3}} \quad$ Or $\quad \frac{P^{\prime}}{P}=\left(\frac{v^{\prime}}{v}\right)^{3}$
Now, $\frac{m^{\prime}}{m}=\frac{A \rho v^{\prime}}{A \rho v}=\frac{v^{\prime}}{v}$
As $m^{\prime}=n m, v^{\prime}=n v$
$\therefore \frac{P^{\prime}}{P}=n^{3}$
$\Rightarrow P^{\prime}=n^{3} P$
42. Power $=\left[M L^{2} T^{-3}\right]=$ constant
$\therefore\left[\frac{M L^{2}}{T^{3}}\right]=$ constant
$\therefore\left[L^{2}\right] \propto\left[T^{3}\right]$ or $s^{2} \propto t^{3}$
43. Centripetal acceleration $a_{c}=\frac{v^{2}}{r}=k^{2} r t^{2}$
$\Rightarrow v^{2}=k^{2} r^{2} r^{2}$
$K E=\frac{1}{2} m v^{2}=\frac{1}{2} m k^{2} r^{2} t^{2}$
According to work energy theorem, change in kinetic energy is equal to work done

$\therefore W=\frac{1}{2} m k^{2} r^{2} t^{2}$
Thus, power delivered to the particle
$P=\frac{d W}{d t}=m k^{2} r^{2} t$
44. Power delivered to the body

$$
\mathrm{P}=\mathrm{F} . \mathrm{v}=\mathrm{mav}
$$

Since, body undergoes one dimensional motion and is initially at rest, so
$\mathrm{v}=0+\mathrm{gt}$
$\therefore P=$ magt \quad Or $\quad P \propto t$

