THERMODYNAMICS

FIRST LAW OF THERMODYNAMICS

2011

1.

When 1 kg of ice at $0^{\circ}C$ melts to water at $0^{\circ}C$, the resulting change in its entropy, taking latent heat of ice to be $80 cal / {}^{0}C$, is a) $8 \times 10^4 cal / K$ b) 80 cal/K c) 293 cal/K d)273 cal/K 2010 2. A cylinder of fixed capacity (of 44.8 L) contains 2 moles of helium gas at STP. What is the amount of heat needed to raise the temperature of the gas in the cylinder by $20^{\circ}C$? (Use $R = 8.31 J mol^{-1} K^{-1}$) a) 996J c) 498 J b) 831 J d) 374 J Ten moles of an ideal gas at constant temperature 600K is compressed from 100L to 10L. The 3. work done in the process is a) $4.11 \times 10^4 J$ c) $11.4 \times 10^4 J$ b) $-4.11 \times 10^4 J$ d) $-11.4 \times 10^4 J$ A perfect gas goes from state A to state B by absorbing $8 \times 10^5 J$ of heat and doing $6.5 \times 10^5 J$ of 4. external work. It is now transferred between the same two states in another process in which it absorbs $10^5 J$ of heat. In the second process a) work done on gas is $10^5 J$ b) work done on gas in $0.5 \times 10^5 J$ c) work done by gas is $10^5 J$ d) work done by gas is $0.5 \times 10^5 J$ A constant volume gas the thermometer work on 5. a) Archimedes principle b) Pascal's law c) Boyle's law d) Charles' law

2008

6. If Q, E and W denote respectively the heat added change in internal energy and the work done in a closed cycle process then

a) $W = 0$	b) $Q = W = 0$	c) $E = 0$	d) $Q = 0$

7. Two rigid boxes containing different ideal gases are placed on table. Box A contains one mole of nitrogen at temperature T_0 , while box B contains one mole of helium at temperature $(7/3)T_0$.

The boxes are then put into thermal contact with each other, and heat flows between them until the gases reach a common final temperature (ignore the heat capacity of boxes). Then, the final temperature of the gases, T_f , in terms of T_0 is

www.sakshieducation.com

a)
$$T_f = \frac{3}{7}T_0$$
 b) $T_f = \frac{7}{3}T_0$ c) $T_f = \frac{3}{2}T_0$ d) $T_f = \frac{5}{2}T_0$

8. An ideal gas is taken through a cyclic thermo dynamical process through four steps. The amounts of heat involved in these steps are $Q_1 = 5960J$ b, $Q_2 = 5585J$, $Q_3 = -2980J$; $Q_4 = 3645J$; respectively. The corresponding works involved are $W_1 = 2200J$, $W_2 = -825J$, $W_3 = -1100J$ and W_4 respectively. The value of W_4 is a) 1315 J b) 275 J c) 765 J d) 675 J

2007

9. A gas is heated at constant pressure. The fraction of heat supplied used for external work is

a)
$$\frac{1}{\gamma}$$
 b) $\left(1-\frac{1}{\gamma}\right)$ c) $\gamma-1$ d) $\left(1-\frac{1}{\gamma^2}\right)$

10. 1cm³ of water at its boiling point absorbs 540 cal of heat of become steam with a volume of 1671cm³. If the atmospheric pressure = 1.013×10⁵ Nm⁻² and the mechanical equivalent of heat = 4.19J cal the energy spent in this process in overcoming intermolecular forces is

a) 540 cal
b) 40 cal
c) 500 cal
d) zero

2004

11. Assertion (A): Thermodynamic processes in nature are irreversible Reason (R): Dissipative effects cannot be eliminated

a) Both assertion and reason are true and reason is the correct explanation of assertion

- b) Both assertion and reason are true but reason is not the correct explanation of assertion
- c) Assertion is true but reason is false
- d) Both assertion and reason are false
- 12. Air is expanded from 50L to 150L at 2 atm pressure. The external work done is $(1 \text{ atm } 1 \times 10^5 \text{ Nm}^{-2})$

a) $2 \times 10^{-8} J$	b) $2 \times 10^4 J$	c) 200J	d) 2000J
-------------------------	----------------------	---------	----------

13. The amount of work, which can be obtained by supplying 200cal of heat, isa) 840 Jb) 840 ergc) 840 Wd) 840 dyne

2003

14.	The intensive proper	rty among the following is		
	a) Energy	b) volume	c) entropy	d) temperature

15. An ideal monatomic gas is taken around the cycle ABCDA as shown in figure. The work done during the cycle is given by

Thermodynamic Processes

2010

16. During an adiabatic expansion the increase in volume is associated with which of the following possibilities w.r.t. pressure and temperature?

Pressure	Temperature
a) increase	increase
b) increase	decrease
c) increase	decrease
b) decrease	increase

17. A mono-atomic gas is suddenly compressed to (1/8)th of its initial volume adiabatically. The ratio of its final pressure to the initial pressure is (given the ratio of the specific heats of the given gas to be 5/3)

a) 32	b) 40/3	c) 24/5	d)	8
-	,	0) 10/0	0) = 1/2	~ <i>,</i>	0

- Assertion (A): The isothermal curve intersects each other at a certain point.
 Reason (R): The isothermal change takes place rapidly, so the isothermal curve have very little slope.
 - a) Both assertion and reason are true and reason is the correct explanation of assertion
 - b) Both assertion and reason are true but reason is not the correct explanation of assertion
 - c) Assertion is true but reason is false d) Both assertion and reason are false
- 19. In an adiabatic process where pressure is increased by $\frac{2}{3}$ %. If $\frac{C_p}{C_v} = \frac{3}{2}$, then the volume

decreases by about

a) $\frac{4}{9}\%$ b) $\frac{2}{3}\%$ c) 4% d) $\frac{9}{4}\%$

2007

20. The internal energy of an ideal gas increases during an isothermal process when the gas is

- a) expanded by adding more molecules to it
- b) expanded by adding more heat to it
- c) expanded against zero pressure
- d) compressed by doing work on it
- **21.** A sample of gas expands from volume V_1 to V_2 . The amount of work done by the gas is greatest when the expansion is
 - a) adiabatic
 - c) isothermal

b) isobaricd) equal in all above cases

2005

- 22. Assertion (A): Air quickly leaking out of a balloon becomes cooler Reason (R): The leaking air undergoes adiabatic expansion
 - a) Both assertion and reason are true and reason is the correct explanation of assertion
 - b) Both assertion and reason are true but reason is not the correct explanation of assertion
 - c) Assertion is true but reason is false d) Both assertion and reason are false
- 23. A perfect gas is found to obey the relation $PV^{3/2}$ = constant during an adiabatic process, if such a gas initially at a temperature T, is compressed to half of its initial volume, then its final temperature will be
 - a) 2T b) 4T c) $(2)^{1/2}T$ d) $2(2)^{1/2}T$

2004

- 24. A gas is compressed at a constant pressure of $50 Nm^{-2}$ from a volume of $10m^3$ to a volume of $4m^3$. Energy of 100J, then added to gas by heating. Its internal energy is
 - a) Increased by 400J b) increased by 200J c) increased by 100J d) decreased by 200J
- 25. If the ratio of specific heats of a gas constant pressure to that at constant volume is γ the change in internal energy of a gas when the volume changes from V to 2V at constant pressure p, is

a) pV b)
$$\frac{R}{\gamma - 1}$$
 c) $\frac{pV}{\gamma - 1}$ d) $\frac{\gamma pV}{\gamma - 1}$

www.sakshieducation.com

www.sakshieducation.com Second Law of Thermodynamics and Entropy

2010

26. Choose the incorrect statement from the following

S1: the efficiency of a heat engine can be 1, but the coefficient of performance of a refrigerator can never infinity

S2: The first law of thermodynamics is basically the principle of conservation of energy

S3: The second law of thermodynamics does not allow several phenomena consistent with the first law

S4: A process whose sole result is the transfer of heat from a colder object to a hotter object is impossible

a) S1 b) S3 c) S2 d) S4

- 27. Which of the following statement is correct for any thermodynamics system
 - a) The internal energy changes in all processes
 - b) Internal energy and entropy are state functions
 - c) The change in entropy can never be zero
 - d) The work done in an adiabatic process is always zero

2008

28. The freezer in a refrigerator is located at the top section so that

- a) the entire chamber of the refrigerator is cooled quickly due to convection
- b) the motor is not heated
- c) the heat gained from the environment is high
- d) the heat gained from the environment is low
- **29.** A Carnot engine takes heat from a reservoir at $627^{\circ}C$ and rejects heat to a sink at $27^{\circ}C$. Its efficiency will be

a) 3/5 b) 1/3 c) 2/3 d) 200/209

2007

30. An engine has an efficiency of $\frac{1}{6}$. When the temperature of sink is reduced by $62^{\circ}C$, its efficiency is doubled. Temperature of the source is a) $124^{\circ}C$ b) $37^{\circ}C$ c) $62^{\circ}C$ d) $99^{\circ}C$

31. An ideal gas heat engine operates in a Carnot cycle between 227°C and 127°C. It absorbs 6 kcal at the higher temperature. The amount of heat (in kcal) converted into work is equal to a) 1.6 b) 1.2 c) 4.8 d) 3.5

2006

	-			
32.	Assertion (A) : In	n an isolated system the	entropy increases.	
	Reason (R) : The	process in an isolated s	ystem are adiabatic	
	a) Both assertion a	and reason are true and re	ason is the correct explan	ation of assertion
	b) Both assertion a	and reason are true but rea	ason is not the correct exp	planation of assertion
	c) Assertion is true	e but reason is false	d) Both assertion	and reason are false
33.	Assertion (A) : T	he Carnot cycle is usefu	l in understanding the p	erformance of heat engines
	Reason (R) : The achievable with r	Carnot cycle provide a eservoirs of given temp	way of determining the erature	maximum possible efficiency
	a) Both assertion a	and reason are true and re	ason is the correct explan	ation of assertion
	b) Both assertion a	and reason are true but rea	ason is not the correct exp	planation of assertion
	c) Assertion is true	e but reason is false	d) Both assertion	and reason are false
34.	The inside outsid	e temperatures of a refr	igerators are 273K and	303K respectively. Assuming
	that refrigerator	cycle is reversible, for e	very joule of work done	the heat delivered to the
	surrounding will	be		
	a) 10 J	b) 20 J	c) 30 J	d) 50 J
35.	A Carnot engine	has efficiency 1/5. Effici	ency becomes 1/3 when	temperature of sink is
	decreased by 50k	K. What is the temperatu	ıre of sink	
	a) 325 K	b) 375 K	c) 300 K	d) 350 K
36.	Consider the stat	ement (A) and (B) and i	dentify the correct answ	vers
	A : First law of th	hermodynamics specific	s the conditions under w	which a body can use its heat
	energy to produc	e the work		
	B: Second law of	f thermodynamics states	s that heat always flows i	from hot body to cold body
	the itself			
	a) Both A and B a	re true	b) Both A and B	are false
	c) A is true but B	is false	d) A is false B is	true
37.	Efficiency of eng	ine working at $40^{\circ}C$, 20	^{0}C is	
	a) 0.064 %	b) 0.645	c) 64%	d) 6.4%
200)5			
200	Cornet ongine co	nnat give 1000/ offician	av haansa wa annat	
30.	a) aliminata frictic	milliot give 100 /0 emicien	b) find ideal sour	2006
	a) eminiate frictio		d) reach absolute	ccs
20	\sim prevent radiation \sim			
37.	temperature 677	IN IS ILLEU AL LEIIIPETALU ${}^{0}C$ Work dong in (joul)	$t \in 2/C$ and near of 100	y ktai is taken irvin source at
	$a) 0.28 \times 10^6$		$a) 29 \times 10^{6}$	$d) 0.028 \times 10^{6}$
	a) 0.28×10	U) 2.8×10	C) 28×10	$(1) 0.028 \times 10^{-1}$

www.sakshieducation.com Calorimetry

2009

40. Equal masses of two liquids A and B contained in vessels of negligible heat capacity are supplied heat at the same rate. The temperature-time graphs for the two liquids are shown If S represents specific heat and L represents latent heat of liquid then

a) $S_A > S_B, L_A < L_B$ b) $S_A > S_B, L_A > L_B$ c) $S_A < S_B, L_A < L_B$ d) $S_A < S_B, L_A > L_B$

- 41. 19g of water at $30^{\circ}C$ and 5g of ice at $-20^{\circ}C$ are mixed together in a calorimeter. What is the final temperature of the mixture? (Given specific heat of ice = 0.5cal $g^{-1}({}^{\circ}C)^{-1}$ and latent heat of fission of ice = $80ca \lg^{-1}$)
 - a) $0^{\circ}C$ b) $-5^{\circ}C$ c) $5^{\circ}C$ d) $10^{\circ}C$
- 42. The height of a waterfall is 30m.($g = 9.8ms^{-2}$) the difference between the temperature at the top and the bottom of the waterfall is

a) $1.17^{\circ}C$ b) $2.17^{\circ}C$ c) $0.117^{\circ}C$ d) $1.43^{\circ}C$

2006

- **43.** In an energy recycling process, X g of steam at $100^{\circ}C$ becomes water at which converts Y g of ice $0^{\circ}C$ into water at $100^{\circ}C$. The ratio of X and Y will be
 - a) $\frac{1}{3}$ b) $\frac{2}{3}$ c) 3 d) 2

2005

44. Assertion (A): In pressure temperature (P-T) phase diagram of water, the slope of the melting curve is found to be negative

Reason (R): Ice contracts on melting to water

- a) Both assertion and reason are true and reason is the correct explanation of assertion
- b) Both assertion and reason are true but reason is not the correct explanation of assertion
- c) Assertion is true but reason is false d) Both assertion and reason are false

www.sakshieducation.com KEY

1) c	2) c	3) b	4) d	5) d	6) c	7) c	8) c	9) b	10) c
11) a	12) b	13) a	14) d	15) c	16) b	17) a	18) d	19) a	20) a
21) b	22) a	23) c	24) a	25) c	26) a	27) d	28) a	29) c	30) d
31) b	32) b	33) a	34) a	35) c	36) a	37) d	38) d	39) a	
40) d	41) c	42) c	43) a	44) a					

HINTS

First Law of Thermodynamics

1.
$$\Delta S = \frac{ml}{T} = \frac{1000 \times 80}{273} = 293 \, cal \, K^{-1}$$

2. Internal energy =
$$\mu C_V \Delta T$$

$$U = \frac{1}{2} f \mu R \Delta T \left[\because C_{\nu} = \frac{1}{2} f R \right]$$
$$U = \frac{1}{2} \times 3 \times 2 \times 8.31 \times 20 = 498.6\text{J}$$

3.
$$W = 2.3026n RT \log_{10} \left(\frac{V_2}{V_1}\right)$$
$$= 2.3026 \times 10 \times 8.3 \times 600 \log_{10} \left(\frac{10}{100}\right) = -11.4 \times 10^4 J$$

4. From first law of thermodynamics

dU = dQ - dW
dU = 8×10⁵ - 6.5×10⁵
dU = -0.5×10⁵ J
In the second process, dU remains the

$$\therefore dW = dQ - dU = 1 \times 10^{5} - 1.5 \times 10^{5}$$

dW = -0.5×10⁵ J
7. $\Delta U_{A} = 1 \times \frac{5R}{2} (T_{f} - T_{0})$
 $\Delta U_{B} = 1 \times \frac{3R}{2} (T_{f} - \frac{7}{3}T_{0})$
Now, $\Delta U_{A} + \Delta U_{B} = 0$
 $\frac{5R}{2} (T_{f} - T_{0}) + \frac{3R}{2} (T_{f} - \frac{7T_{0}}{3}) = 0$

www.sakshieducation.com

same

www.sakshieducation.com

$$5T_f - 5T_0 + 3T_f - 7T_0 = 0$$
$$= 8T_f = 12T_0$$
$$\Rightarrow T_f = \frac{12}{8}T_0 = \frac{3}{2}T_0$$
$$AQ = Q + Q + Q + Q$$

8. $\Delta Q = Q_1 + Q_2 + Q_3 + Q_4$

= 5960 - 5585 - 2980 + 3645 = 1040J

 $\Delta W = W_1 + W_2 + W_3 + W_4$

 $= 2200 - 825 - 1100 + W_4 = 275 + W_4$

For a cyclic process $\Delta U = 0$

Ie,
$$U_f - U_i = 0$$

From first law of thermodynamics,

$$\Delta Q = \Delta U + \Delta W$$

 $1040 = 0 + 275 + W_4$

Or
$$W_4 = 765J$$

- 12. Work done $W = p \times \Delta V = 2 \times 10^5 \times (150 50) \times 10^{-3} = 2 \times 10^4 J$
- 13. Work done = heat supplied $W = 200 \times 4.2$ W = 840 J
- 15. The work done = area of p-V rectangle $W = AD \times CD = (3V - V) (3p-p) = 2V \times 2p = 4pV$

Thermodynamics Processes

16. $\Delta Q = \Delta U + \Delta W$

For an adiabatic process

 $\Delta Q = 0$

 $\Delta U = -W$

In adiabatic process

$$p \propto \frac{1}{V^r}$$
 and $T \propto \frac{1}{V^{r-1}}$

 $\gamma > 1$, because volume increases

Then, p and T will decreases

17. $pV^{\gamma} = \text{constant}$

$$\Rightarrow \frac{p_1}{p_2} = \left(\frac{V_2}{V_1}\right)^{r}$$
$$\Rightarrow \frac{p_1}{p_2} = \left(\frac{1}{8}\right)^{5/3}$$
$$\Rightarrow \frac{p_1}{p_2} = \left(\frac{1}{2^3}\right)^{5/3} = \frac{1}{32}$$
$$\therefore \frac{p_2}{p_1} = 32$$

19. $pV^{\gamma} = \text{constant} (\text{Say C})$

$$\Rightarrow \frac{p_1}{p_2} = \left(\frac{1}{8}\right)^{5/3}$$

$$\Rightarrow \frac{p_1}{p_2} = \left(\frac{1}{2^3}\right)^{5/3} = \frac{1}{32}$$

$$\therefore \frac{p_2}{p_1} = 32$$

$$pV^{\gamma} = \text{constant (Say C)}$$
Here $\gamma = \frac{C_p}{C_p} = \frac{3}{2}$

$$\therefore pV^{3/2} = C$$

$$\Rightarrow \log p + \frac{3}{2} \log V = \log C$$

$$\Rightarrow \frac{\Delta p}{p} + \frac{3}{2} \frac{\Delta V}{V} = 0$$

$$\therefore \frac{\Delta V}{V} \times 100 = -\left(\frac{2}{3}\right) \left(\frac{\Delta p}{P} \times 100\right) = -\frac{2}{3} \times \frac{2}{3}\% = -\frac{4}{9}\%$$

Thus, volume decreases by $\frac{4}{9}\%$.

23. pV = RT where R is gas constant Also, given $pV^{3/2} = \text{constant}$

: Putting the value of
$$p = \frac{RT}{V}$$
, we have

$$\frac{RT}{V}V^{3/2} = \text{constant}$$

$$TV^{1/2} = \text{constant}$$

$$T_1V_1^{1/2} = T_2V_2^{1/2}$$

$$\therefore TV^{1/2} = T_2\left(\frac{V}{2}\right)^{1/2}$$

$$\Rightarrow T_2 = (2)^{1/2}T$$
24. $\Delta Q = \Delta U + \Delta W = \Delta U + \Delta W$

$$\Rightarrow 100 = \Delta U + 50 \times (4 - 10)$$

$$\Rightarrow \Delta U = 400J$$

www.sakshieducation.com Second Law of Thermodynamics and Entropy

29. Efficiency
$$\eta = 1 - \frac{T_2}{T_1}$$

 $\therefore \eta = 1 - \frac{(27 + 273)}{(273 + 627)} = 1 - \frac{300}{900} = \frac{600}{900} = \frac{2}{3}$
30. $\eta = 1 - \frac{T_2}{T_1}$
 $\therefore \frac{T_2}{T_1} = 1 - \eta = 1 - \frac{1}{6} = \frac{5}{6}$ (i)
In other case
 $\frac{T_2 - 62}{T_1} = 1 - \eta = 1 - \frac{2}{6} = \frac{2}{3}$ (ii)
Using eq (i)
 $T_2 - 62 = \frac{2}{3}T_1 = \frac{2}{3} \times \frac{6}{5}T_2$ or $\frac{1}{5}T_2 = 62$
 $T_2 = 310K = 310 - 273^{\circ}C$
 $= 37^{\circ}C$
Hence, $T_1 = \frac{6}{5}T_2 = \frac{6}{5} \times 310$
 $= 372 \text{ K}$
 $= 372 \text{ K}$
 $= 372 \text{ C}$
Hence, $T_1 = \frac{6}{5}T_2 = \frac{6}{5} \times 310$

Hence, temperature of source is $99^{\circ}C$

31.
$$\eta = 1 - \frac{T_2}{T_1}$$

Or
$$\frac{W}{Q_1} = 1 - \frac{T_2}{T_1}$$

Here Q_1 = heat absorbed from the source of heat = 6 kcal

$$T_1 = 227 + 273 = 500 \text{ K}$$

And $T_2 = 127 + 273 = 400 \text{ K}$
Hence, $\frac{W}{6} = 1 - \frac{400}{500}$
Or $\frac{W}{6} = \frac{100}{500}$ or W = 1.2 kcal

www.sakshieducation.com

34. Coefficient of performance

$$\beta = \frac{Q_2}{W} = \frac{T_L}{T_H - T_L}$$

$$Q_2 = \frac{273 \times 1}{303 - 273} = \frac{273}{30} = 9J$$

Heat delivered to the surrounding

$$Q_1 = Q_2 + W = 9 + 1 = 10J$$

 $35. \quad \eta = 1 - \frac{T_L}{T_H}$

Where, T_L is temperature of sink and T_H is temperature of hot reservoir

According to question

$$\frac{1}{5} = 1 - \frac{T_L}{T_H} \dots (i)$$
And $\frac{1}{3} = 1 - \frac{T_L - 50}{T_H} \dots (ii)$

From eq (i)

$$\frac{T_L}{T_H} = \frac{4}{5} \Longrightarrow T_H = \frac{5}{4}T_L$$

Substituting value of T_H in eq (ii) we get

$$\frac{1}{3} = 1 - \frac{T_L - 50}{\frac{5}{4}T_L}$$
Or $\frac{4(T_L - 50)}{5T_L} = \frac{2}{3}$
Or $T_L - 50 = \frac{2}{3} \times \frac{5}{4}T_L$
Or $T_L - \frac{5}{6}T_L = 50$
 $\therefore T_L = 50 \times 6 = 300K$
37. $n = \left(1 - \frac{T_2}{T_1}\right) \times 100 = \left(1 - \frac{273 + 20}{273 + 40}\right) \times 100$
 $= \left(1 - \frac{293}{313}\right) \times 100 = 0.064 \times 100 = 6.4\%$
39. $\eta = \frac{W}{Q_1} = \frac{Q_1 - Q_2}{Q_1} = 1 - \frac{Q_2}{Q_1} = 1 - \frac{T_2}{T_1}$
Given, $T_2 = 27^0C = 273 + 27 = 300K$,
 $T_1 = 677^0C = 677 + 273 = 950K$

www.sakshieducation.com

$$\therefore \eta = 1 - \frac{T_2}{T_1} = 1 - \frac{300}{950} = \frac{13}{19}$$

$$\therefore W = \eta Q_1 = 100 \times 10^3 \times \frac{13}{19} cal$$

Also 4.2 J -= 1cal
$$\therefore W = 100 \times 10^3 \times \frac{13}{19} \times 4.2$$

$$W = 2.87 \times 10^5$$

$$W = 0.28 \times 10^6 J$$

Calorimetry

41. Let the final temperature of mixture be t^0C . Heat lost by water in calories,

$$H_1 = 19 \times 1 \times (30 - t)$$

= 570 - 19 t

Heat taken by ice, $H_2 = ms_i \Delta t + mL + mswt$

$$= 5 x (0.5) 20 + 5 x 80 + 5 x 1 x t$$

But, $H_1 = H_2$

5 x (0.5) x 20 + 5 x 80 + 5t = 570 - 19t

$$\Rightarrow 24t = 570 - 450 = 120 \Rightarrow t = 5^{\circ}C$$

43. Specific heat of water = $4200 J kg K^{-1}$

Specific latent heat of fusion = $3.36 \times 10^5 J kg^{-1}$

Specific latent heat of vaporization = $22.68 \times 10^5 J kg^{-1}$

- $= X \times 10^{-3} \times 22.68 \times 10^{5}$
- $= Y \times 10^{-3} \times 3.36 \times 10^{5} + Y \times 10^{-3} \times 4200 \times 100$

$$\therefore \frac{X}{Y} = \frac{7.56}{22.68} = \frac{1}{3}$$