UNITS AND DIMENSIONS

2011

1.	The Si unit of activity of radioactive sample is						
	a) Curie	b) Rutherford	c) Becquerel	d) Mill curie			
2.	SI unit of power is						
	a) Joule	b) Erg	c) Newton	d) Watt			
3.	The SI unit of them	The SI unit of thermal conductivity is					
	a) $Jsm^{-1}K^{-1}$	b) $W^{-1}m^{-1}K^{-1}$	c) $Wm^{-1} K^{-1}$	d) $Wm^{-2} K^{-1}$			
4.	The dimensions of	The dimensions of $(\mu_0 \varepsilon_0)^{-1/2}$ are					
	a) $[L^{-1}T]$	b) $[LT^{-1}]$	c)[$L^{-1/2}T^{1/2}$]	d) $[L^{1/2}T^{-1/2}]$			
5.	Surface tension has the same dimensions as that of						
	a) Coefficient of viscosity		b) impulse				
	c) momentum	d) spring constant	e) frequency				
6.	The dimension of impulse is						
	a) $[MLT^{-1}]$	b) $[ML^2T^{-1}]$	c) $[ML^{-1}T^{-1}]$	d) $[MT^{-1}]$			
7.	If C be the capacitance and V be the electric potential, then the dimensional formula of CV^2 is						
	a) $[ML^2T^{-2}A^0]$	b) $[MLT^{-2}A^{-1}]$	c) $[M^0 L T^{-2} A^0]$	d) $[ML^{-3}TA]$			
201	10						
8.	The unit of magnet	ic moment is					
	a) TJ^{-1}	b) JT^{-1}	c) Am^{-2}	d) Am^{-1}			
9.	Unit of electrical conductivity is						
	a) Ohm	b) siemen	c) m/mho	d) mho/m			
10.	Dimensions of capacitance is						
	a) $[M^{-1}L^{-2}T^4A^2]$		b) $[MLT^{-3}A^{-1}]$				
	c) $[ML^2T^{-3}A^{-1}]$		d) $[M^{-1}L^2T^3A^{-1}]$				

11. A uniform wire of length L, diameter D and density ρ is stretched under a tension T. The correct relation between its fundamental frequency f, the length L and the diameter D is

a)
$$f \propto \frac{1}{LD}$$
 b) $f \propto \frac{1}{L\sqrt{D}}$ c) $f \propto \frac{1}{D^2}$ d) $f \propto \frac{1}{LD^2}$

12.	The relation $p = \frac{\alpha}{\beta}e$	$\frac{-\alpha Z}{k\theta}$ where p is pressure, Z	is distance, k is Boltzm	ann constant and $ heta$ is		
	temperature. The dimensional formula of β will be					
	a) $[M^0 L^2 T^0]$	b) $[ML^2T]$	c) $[ML^0T^{-1}]$	d) $[M^0 L^2 T^{-1}]$		
13.	If $p = \frac{RT}{V-b}e^{-\alpha V/RT}$, t	hen dimensional formula o	of α is			
	a) p	b) R	c) T	d) V		
14.	Velocity v is given by respectively?	Velocity v is given by $v = at^2 + bt + c$, where t is time. What are the dimensions of a, b and c respectively?				
	a) $[LT^{-3}], [LT^{-2}] and [$	LT^{-1}]	b) $[LT^{-1}], [LT^{-2}] and [LT^{-3}]$			
	c) $[LT^{-2}], [LT^{-3}] and [$	LT^{-1}]	d) $[LT^{-1}], [LT^{-3}] and [L]$	T^{-2}]		
15.	If E, M, L and G der	note energy, mass, angular	momentum and gravita	ational constant		
	respectively, then the quantity (E^2L^2/M^5G^2) has the dimensional of					
	a) angle	b) length	c) mass	d) none of these		
200	9					
16.	Which one of the following quantities has not been expressed in proper units ?					
	a) Torque	: Newton meter				
	b) Stress	: Newton metre ⁻²				
	c) Modulus of elasticity: Newton metre ⁻²					
	d) Power	: Newton metre second ⁻¹				
	e) Surface tension	: Newton metre ⁻²				
17.	The unit of specific of	conductivity is				
	a) $\Omega - cm^{-1}$	b) $\Omega - cm^{-2}$	c) $\Omega^{-1}-cm$	d) $\Omega^{-1} - cm^{-1}$		
18.	An object is moving through the liquid. The viscous damping force acting on it is proportional to the velocity. Then dimensional formula of constant of proportionality is					
	a) $[ML^{-1}T^{-1}]$	b) [<i>MLT</i> ⁻¹]	c) $[M^0 L T^{-1}]$	d) $[ML^0T^{-1}]$		
200	8					
40		• . •				

19. The unit of thermal conductance isa) WK^{-1} b) JK^{-1} c) WKd) JK

20.	Match t	he following	columns						
	Column I			Column II					
	A) Capa	citance		i) volt (ar	$\mathbf{npere})^{-1}$				
	B) Magr	netic inducti	on	ii) volt - sec (ampere) ⁻¹					
	C) Indu	ctance		iii) newtor	n (ampere)) ⁻¹ (metro	e) ⁻¹		
	D) Resis	tance		iv) Coulor	iv) Coulomb ² (joule) ⁻¹				
	Α	B C	D D		Α	В	С	D	
	a) ii	iii iv	i i		b) iv	iii	ii	i	
	c) iv	i ii	iii		d) ii	iv	Ι	iii	
21.	If 'musc muscle?	le times spe	ed equals power	r', what is th	ne ratio of 1	the SI u	nit aı	nd the CGS unit	t of
	a) 10 ⁵		b) 10 ³		c) 10 ⁷			d) 10 ⁻⁵	
22.	The unit	t of universa	l gas constant is	5	í (,	
	a) watt/K	Z	b) $dyne/{}^{0}C$		c) erg/K			d) newton / ^{0}R	
23.	Which t	Which two of the following five physical parameters have the same dimensions ?							
	1) energy	y density	2) refractive in	ndex 3) dielectric constant					
	4) young	s' modulus	5) magnetic fie	eld					
	a) 2 and	4	b) 3 and 5		c) 1 and 4	ļ		d) 1 and 5	
24.	The phy	sical quanti	ty having the di	mensions [A	$M^{-1}L^{-3}T^{3}A^{2}$] is			
	a) resista	ince		b) resistivity					
	c) electri	cal conducti	vity	d) electromotive force					
25.	The speed of light c, gravitational constant G and Planck's constant h are taken as fundamental units in a system. The dimensions of time in this new system should be								
	a) $[G^{1/2}h]$	$\frac{1}{2}c^{-5/2}$]	b) $[G^{1/2}h^{1/2}c^{1/2}]$		c) $[G^{1/2}h^{1/2}]$	$(c^{-3/2}]$	·	d) $[G^{1/2}h^{1/2}c^{1/2}]$	
26.	Dimensions of resistance in an electrical circuit, in terms of dimensions of mass M. of length L					length L,			
	of time 7	Г and of cur	rent A, would b	e					
	a) [<i>ML</i> ² 7	$[-3A^{-1}]$	b) $[ML^2T^{-2}]$		c) $[ML^2T^2]$	$^{-1}A^{-1}$]		d) $[ML^2T^{-3}A^{-2}]$	
27.	Given that the displacement of an oscillating particle is given by $y = A \sin(Bx + Ct + D)$. The				. The				
	dimensi	onal formul	a for (ABCD) is						
	a) $[M^0 L^0]$	$^{-1}T^{0}$]	b) $[M^0 L^0 T^{-1}]$		c) $[M^0 L^{-1}]$	T^{-1}]		d) $[M^{0}L^{0}T^{0}]$	
28.	If p repr	esents radia	ation pressure, c	represents	speed of li	ght and	Q re	presents radiat	ion
	energy striking a unit area per second then non-zero integers x, y and z such that $P^{x}Q^{y}c^{z}$ is						$e^{y}c^{z}$ is		
	dimensi	onal, are							
	a) x = 1,	y = 1, z = -1	b) x =1, y =-1,	z = 1	c) x =-1, y	y = 1, z =	= 1	d) x = 1, y = 1,	z = 1

www.sakshieducation.com

29.	If force F, work W and velocity v are taken as fundamental quantities, then the dimensional formula of time T is						
	a) [WFv]	b) $[WFv^{-1}]$	c) $[W^{-1}F^{-1}v]$	d) $[WF^{-1}v^{-1}]$			
30.	If E = energy, G	= gravitational constant, I=	ravitational constant, I= impulse and M = mass, then dimensions of $\frac{GIM^2}{E^2}$				
	are same as that	of					
	a) time	b) mass	c) length	d) force			
200)7						
31.	Parsec is the unit	it of					
	a) time	b) distance	c) frequency	d) angular acceleration			
32.	The unit of permittivity of free space, \mathcal{E}_0 , is						
	a) coulomb/newton-metre		b) newton – metre	b) $newton - metre^2 / coulomb^2$			
	c) $coulomb^2 / newton - metre^2$		d) $coulomb^2 / (new$	d) $coulomb^2 / (newton - metre)^2$			
33.	Given that $y = A \sin \left[\left(\frac{2\pi}{\lambda} (ct - x) \right) \right]$ where y and x are measured in meter. Which of the						
	following statements is true?						
	a) The unit of λ is same as that of x and A						
	b) The unit of λ is same as that of x but not of A						
	c) The unit of c is same as that of $\frac{2\pi}{\lambda}$						
	d) The unit of (ct –x) is same as that of $\frac{2\pi}{\lambda}$						
34.	Light year is a u	nit of					
	a) time	b) speed	c) distance	d) none of these			
35.	The magnitude of any physical quantity						
	a) depends on the method of measurement						
	b) does not depend on the method of measurement						
	c) is more in SI system than in CGS system						
d) directly proportional to fundamental unit of mass, length and time							
35.	The unit of Stefan's constant is						
	a) $Wm^{-2}K^{-1}$	b) WmK^{-4}	c) $Wm^{-2}K^{-4}$	d) $Nm^{-2}K^{-4}$			
36.	Which one of the following is not a derived unit?						
	a) Frequency	b) Planck's constant	c) Gravitational co	onstant			
	d) Charge	e) Electric current					

www.sakshieducation.com

- **37.** What is SI unit of electric field intensity?
 - a) cm b) Vm^{-1} c) Am^{-1} d) NA
- 38. If the magnetic flux is represented in Weber, then the unit of magnetic induction will be a) $\frac{Wb}{m^2}$ b) Wb x m c) $Wb \times m^2$ d) $\frac{Wb}{m}$

39. The ratio of the dimensions of Planck's constant and that of the moment of inertia is the dimension of

- a) frequency b) velocity c) angular momentum d) time
- 40. The speed v of ripples on the surface of water depends on surface tension σ , density ρ and wavelength λ . The square of speed v is proportional to

a)
$$\frac{\sigma}{\rho\lambda}$$
 b) $\frac{\rho}{\sigma\lambda}$ c) $\frac{\lambda}{\sigma\rho}$ d) $\rho\lambda\sigma$

41. Using mass M, length L, time T and current A as fundamental quantities, the dimensions of permeability is

1)
$$[M^{-1}LT^{-2}A]$$
 b) $[ML^{-2}T^{-2}A^{-1}]$ c) $[MLT^{-2}A^{-2}]$ d) $[MLT^{-1}A^{-1}]$

42. The position of the particle moving along Y-axis is given as $y = At^2 - Bt^3$, where y is measured in meter and t in second. Then the dimensions of B is

a) $[LT^{-2}]$ b) $[LT^{-1}]$ c) $[LT^{-3}]$ d) $[MLT^{-2}]$

43. Which of the following units denotes the dimensions $[ML^2/Q^2]$, where Q denotes the electric charge ?

- a) Wb/m^2 b) Henry (H) c) H/m^2 d) Weber (Wb)
- 44. The dimensions of $\frac{e^2}{4\pi\varepsilon_0 hc}$, where e, ε_0, h and c are electronic charge, electric permittivity,

Planck's constant and velocity of light in vacuum respectively

a) $[M^0 L^0 T^0]$ b) $[M L^0 T^0]$ c) $[M^0 L T^0]$ d) $[M^0 L^0 T]$

- 45. The only mechanical quantity which has negative dimension of mass is
 a) angular momentum
 b) torque
 c) coefficient of thermal conductivity
 d) gravitational constant
 - c) coefficient of thermal conductivity d) gravitational constant

2006

46. The magnetic force on a point charge is F = q(v x B) Here, q = electric charge, v = velocity of point charge, B = magnetic field. The dimensions of B is

a) $[MLT^{-1}A]$ b) $[M^2LT^{-2}A^{-1}]$ c) $[MT^{-2}A^{-1}]$ d) none of these

47.	If σ = surface charge	sions of $\frac{\sigma}{\varepsilon}$ are same as		
	a) electric force	b) electric field intensity	c) pressure	d) electric charge
200 48.)5 Which one of the fol	llowing is not a unit of You	ng's modulus?	

a) Nm^{-1} b) Nm^{-2} c) $Dyne cm^{-2}$ d) Mega Pascal 49. Density of liquid in CGS system is $0.625g cm^{-3}$. What is its magnitude in SI system? a) 0.625 b) 0.0625 c) 0.00625 d) 625

2003

50.The dimensions of $\frac{a}{b}$ **in the equation** $p = \frac{a-t^2}{bx}$ where **p** is pressure, **x** is distance and **t** is time, **are** a) $[M^2LT^{-3}]$ b) $[MT^{-2}]$ c) $[LT^{-3}]$ d) $[ML^3T^{-1}]$

KEY

1)C 2)d 3)c 4)b 5)d 6)a 7)a 8)b 9)d 10)a
11)a 12)a 13)a 14)a 15)d 16)e 17)d 18)c 19)a 20)b
21)a 22)c 23)c 24)c 25)a 26)d 27)b 28)b 29)d 30)a
31)b 32)c 33)a 34)c 35)b 36)e 37)b 38)a 39)a 40)a
41)c 42)c 43)b 44)a 45)d 46)a 47)b 48)a 49)d 50)b

HINTS

11. The fundamental frequency is $f = \frac{1}{2L} \sqrt{\frac{T}{\mu}}$

$$\Rightarrow f = \frac{1}{2L} \sqrt{\frac{T}{\rho \pi \frac{D^2}{4}}} = \frac{1}{LD} \sqrt{\frac{T}{\pi \rho}}$$
$$\therefore f \propto \frac{1}{LD}$$

12. In the given equation, $\frac{\alpha Z}{k\theta}$ should be dimensionless

$$\therefore \alpha = \frac{k\theta}{Z}$$

$$\Rightarrow [\alpha] = \frac{[ML^2T^{-2}K^{-1}][K]}{[L]} = [MLT^{-2}]$$
And $p = \frac{\alpha}{\beta}$

$$\Rightarrow [\beta] = \left[\frac{\alpha}{p}\right] = \frac{[MLT^{-2}]}{[ML^{-1}T^{-2}]}$$

$$= [M^0I^2T^0]$$

13. Given
$$p = \frac{RT}{V-b}e^{-\alpha V/RT}$$

So, $\frac{\alpha V}{RT}$ is dimensionless
Hence, $[\alpha] = \left[\frac{RT}{V}\right] = \frac{[ML^2T^{-2}\theta^{-1}][\theta]}{[L^3]}$

$$=[ML^{-1}T^{-2}]$$

This is also the dimensionless formula of pressure.

14. Dimensions of velocity is $[v] = [L][T^{-1}]$ So, dimensions of $[at^2] = [LT^{-1}]$ $\Rightarrow [a][T^2] = [LT^{-1}]$ $\Rightarrow [a] = [LT^{-3}]$ Dimensions of $[bt] = [LT^{-1}] \Rightarrow [b][T] = [LT^{-1}]$ $\Rightarrow [b] = [LT^{-2}]$

Dimensions of $[c] = [LT^{-1}]$

- 15. The dimensions of $E = [ML^2T^{-2}]$
 - Dimensions of M = [M]
 - Dimensions of $L = [ML^2T^{-2}]$
 - Dimensions of $G = [M^{-1}L^3T^{-2}]$

 \therefore Dimensions of

$$\left[\frac{E^{2}L^{2}}{M^{5}G^{2}}\right] = \frac{[ML^{2}T^{-2}][ML^{2}T^{-1}]^{2}}{[M]^{5}[M^{-1}L^{3}T^{-2}]^{2}} = [ML^{2}T^{-2}]$$

18. We have $F \propto v \Longrightarrow F = kv$

$$\Rightarrow [k] = \left[\frac{F}{v}\right] = \left[\frac{MLT^{-2}}{LT^{-1}}\right]$$
$$= [ML^0T^{-1}]$$

21. Muscle x speed = power

Or $Muscle = \frac{power}{speed} = \frac{work}{time \times speed}$

$$=\frac{[ML^2T^{-2}]}{[T][LT^{-1}]}=[MLT^{-2}]$$

= mass x acceleration = force

$$\therefore \frac{SI \text{ unit of force}}{CGS \text{ unit of force}} = \frac{kg \times m \times s^{-2}}{g \times cm \times s^{-2}}$$
$$= 10^{3} \times 10^{2} = 10^{5}$$

25. Time $\propto c^x G^y h^z$

$$\Rightarrow T = kc^{x}G^{y}h^{z}$$

 $\Rightarrow [M^{0}L^{0}T] = [LT^{-1}]^{x} [M^{-1}L^{3}T^{-2}]^{y} [ML^{2}T^{-1}]^{z}$

$$\Rightarrow [M^0 L^0 T] = [M^{-y+z} L^{x+3y+2z} T^{-x-2y-z}]$$

Comparing the powers of M, L and T, we get

- y + z = 0(i)
x + 3y + 2z = 0(ii)
-x - 2y - z = 1.....(iii)
On solving eqs (i), (ii) and (iii) we get
$$x = -\frac{5}{2}, y = z = \frac{1}{2}$$

www.sakshieducation.com

Hence, dimensions of time are $[G^{1/2}h^{1/2}c^{-5/2}]$

26. Resistance
$$R = \frac{potential \, difference}{current} = \frac{V}{I} = \frac{W}{qI}$$

So, dimensions of R

[dimensions of work]

[dimensions of charge][dimensions of current]

$$=\frac{[ML^2T^{-2}]}{[AT][A]}=[ML^2T^{-3}A^{-2}]$$

27. Given $y = A \sin (Bx + Ct + D)$

As each term inside the bracket is dimensionless, so

$$A = y = [L]$$
$$B = \frac{1}{x} = [L^{-1}]$$
$$C = \frac{1}{t} = [T^{-1}]$$

And D is dimensionless

$$\therefore [ABCD] = [L][L^{-1}][T^{-1}][1]$$
$$= [M^{0}L^{0}T^{-1}]$$

28. $pressure = \frac{force}{area}$

$$[p] = \frac{[F]}{[A]} = [ML^{-1}T^{-2}], [c] = [LT^{-1}]$$

$$[Q] = \frac{[E]}{[A][T]} = [MT^{-3}]$$

As given, $p^{x}Q^{y}c^{z} = [M^{0}L^{0}T^{0}]$

$$[ML^{-1}T^{-2}]^{x}[LT^{-1}]^{z}[ML^{-3}]^{y} = [M^{0}L^{0}T^{0}]$$

$$M^{x+y}L^{-x+z}T^{-2x-z-3y} = [M^{0}L^{0}T^{0}]$$

 $\therefore x + y = 0$

 $-\mathbf{x} + \mathbf{z} = 0$

$$-2x - z - 3y = 0$$

Solving, we get x = 1, y = -1, z = 1

29. Let $T \propto F^{a}W^{b}v^{c}$ $[T] = [MLT^{-2}]^{a}[ML^{2}T^{-2}]^{b}[LT^{-1}]^{c}$ $[T^{1}] = [M^{a+b}][L^{a+2b+c}][T^{2a-2b-c}]$ Comparing the powers, we get a + b = 0(i) a + 2b + c = 0(ii) -2a - 2b - c = 1(iii) Solving eqs (ii), (iii) and (iv) we get a = -1, b = 1, c = -1Therefore, from eq (i) $[T] = k[F^{-1}Wv^{-1}]$

Taking k = 1 in SI system, we have

$$[T] = [WF^{-1}v^{-1}]$$

30. Dimensions of $\frac{GIM^2}{E^2}$

$$=\frac{[M^{-1}L^{3}T^{-1}][MLT^{-1}][M^{2}]}{[ML^{2}T^{-2}]^{2}}$$

=[T] = dimensions of time

33. Here $\frac{2\pi}{\lambda}(ct-x)$ is dimensionless. Hence, $\frac{ct}{\lambda}$ is also dimensionless and unit of it is same as that of x. Therefore, unit of λ is same as that of x. Also unit of y is same as that of A, which is also the unit of x.

- 42. As $y = B[T^3]$ $\Rightarrow [L] = B[T^3]$ $\therefore B = [LT^{-3}]$
- 49. We know that, density $=\frac{mass}{volume}$

In CGS units $d = 0.625 g \ cm^{-3}$

In SI units
$$d = \frac{0.625 \times 10^{-3} kg}{10^{-6} m^3} = 625 kg m^{-3}$$