LAWS OF MOTION

2011

1. A fighter aircraft is looping in a vertical plane. The minimum velocity at the highest point is (Given $r=$ radius of the loop)
a) $\sqrt{\frac{1}{2} g r}$
b) $\sqrt{2 g r}$
c) $\sqrt{g r}$
d) $\sqrt{3 g r}$
2. In non-inertial frame, the second law of motion is written as
a) $F=m a$
b) $F=m a+F_{p}$
c) $F=m a-F_{p}$
d) $\mathrm{F}=2 \mathrm{ma}$

2010

3. A man of mass 60 kg is riding in a lift. The weight of the man, when the lift is accelerating upwards and downwards at $2 \mathrm{~ms}^{-2}$, are respectively (taking $g=10 \mathrm{~ms}^{-2}$)
a) 720 N and 480 N
b) 480 N and 720 N
c) 600 N and 600 N
d) none of these
4. The \mathbf{x} and \mathbf{y}-coordinates of a particle at any time \mathbf{t} are given by $x=7 t+4 t^{2}$ and $\mathbf{y}=\mathbf{5 y}$, where \mathbf{x} and y are in metre and t is second. The acceleration of the particle at $t=5 s$ is
a) zero
b) $8 m s^{-2}$
c) $20 \mathrm{~ms}^{-2}$
d) $40 \mathrm{~ms}^{-2}$
5. A ball of mass 0.5 kg is moving with a velocity v of $2 \mathrm{~ms}^{-1}$. It is subjected to a force of \mathbf{x} Newton in 2s. Because of this force, the ball moves with a velocity of $3 \mathrm{~ms}^{-1}$. The value of x is
a) 5 N
b) 8.25 N
c) 0.25 N
d) 1 N
6. A force F_{1} and 500 N is required to push a car of mass 1000 kg slowly at constant speed on a leveled road. If a force F_{2} of 1000 N is applied, the acceleration of the car will be
a) zero
b) $1.5 \mathrm{~ms}^{-2}$
c) $1 \mathrm{~ms}^{-2}$
d) $0.5 \mathrm{~ms}^{-2}$
7. A monkey of mass $m \mathrm{~kg}$ slides down a light rope attached to a fixed spring balance, with an acceleration a. The reading of this balance is $w \mathbf{k g}$ ($\mathrm{g}=$ acceleration due to gravity)
a) $m=\frac{w g}{g-a}$
b) $m=w\left(1+\frac{a}{g}\right)$
c) the force of friction exerted by the rope on the monkey is $\mathrm{m}(\mathrm{g}-\mathrm{a})$ Newton
d) the tension in the rope is wg Newton
8. A ball hits a vertical wall horizontally at $10 \mathrm{~m} / \mathrm{s}$ and bounces back at $10 \mathrm{~m} / \mathrm{s}$, then
a) there is no acceleration because $10 \mathrm{~m} / \mathrm{s}-10 \mathrm{~m} / \mathrm{s}=0$
b) there may be an acceleration because its initial direction is horizontal
c) there is an acceleration because there is a momentum change
d) even though there is no change in momentum there is a change in direction. Hence, it has acceleration

2008
9. A body of mass 2 kg has an initial velocity of $3 \mathrm{~ms}^{-1}$ along OE and it is subjected to a force of 4 N in a direction perpendicular to OE . The distance of body from O after 4 s will be

a) 12 m
b) 20 m
c) 8 m
d) 48 m
10. An object of mass 10 kg moves at a constant speed of $10 \mathrm{~ms}^{-1}$. A constant force, which acts for 4s on the object, gives it a speed $2 \mathrm{~ms}^{-1}$ in opposite direction. The force acting on the object is
a) -3 N
b) -30 N
c) 3 N
d) 30 N

2007
11. A 60 kg man stands on a spring scale in the lift. At some instant he finds, scale reading has changed from 60 kg to 50 kg for a while and then comes back to the original mark. What should we conclude?
a) the lift was in constant motion upwards
b) the lift while in motion downwards
c)the lift while in constant motion upwards, is suddenly stopped
d) the lift while in constant motion downwards, is suddenly stopped
12. A man weighs 80 kg . He stands on a weighing scale in a lift which is moving upwards with a uniform acceleration of $5 \mathrm{~ms}^{-2}$. What would be the reading on the scale ($g=10 \mathrm{~ms}^{-2}$)
a) 800 N
b) 1200 N
c) zero
d) 400 N
13. When a car moves on a road with uniform speed of $30 \mathrm{kmh}^{-1}$, then resultant force on the car is
a) the driving force, drives the car in the direction of propagation of car
b) the resistive force acts opposite to the direction of propagation of car
c) zero
d) none of the above

2005

14. A person is standing in an elevator. In which situation he finds his weight less
a)when the elevator moves upward with constant acceleration
b) when the elevator moves downward with constant acceleration
c) when the elevator moves upward with uniform velocity
d) when the elevator moves downward with uniform velocity

2004
15. A ball of mass 150 g moving with acceleration $20 \mathrm{~ms}^{-2}$ is hit by a force, which acts on it for 0.1 s . The impulsive force is
a) $0.5 \mathrm{~N}-\mathrm{s}$
b) $0.1 \mathrm{~N}-\mathrm{s}$
c) $0.3 \mathrm{~N}-\mathrm{s}$
d) $1.2 \mathrm{~N}-\mathrm{s}$

Conservation of Linear Momentum and Impulse

2008

16. A particle of mass \boldsymbol{m} is projected with velocity v making an angle of 45^{0} with the horizontal. When the horizontal. When to particle lands on the level ground the magnitude of the change in its momentum will be
a) 2 mv
b) $m v / \sqrt{2}$
c) $m v \sqrt{2}$
d) zero
17. Sand is being dropped on a conveyor belt at the rate of Mkgs^{-1}. The force necessary to keept the belt moving with a constant velocity of vms^{-1} will be
a) Mv Newton
b) 2 Mv Newton
c) $\frac{M v}{2}$ Newton
d) zero
18. A machine gun is mounted on a 200 kg vehicle on a horizontal smooth road (friction negligible). The gun fires 10 bullets/s with a velocity of $500 \mathrm{~ms}^{-1}$. If the mass of each bullet be 10 g , what is the acceleration produced in the vehicle?
a) $25 \mathrm{cms}^{-2}$
b) $30 \mathrm{cms}^{-2}$
c) $50 \mathrm{cms}^{-2}$
d) $20 \mathrm{cms}^{-2}$

2006

19. A disc of mass 100 g is kept floating horizontally in air by firing bullets, each of mass 5 g with the same velocity at the same rate of 10 bullets per second. The bullets rebound with the same speed in opposite direction, the velocity of each bullet at the time of impact is
a) $196 \mathrm{cms}^{-1}$
b) $9.8 \mathrm{cms}^{-1}$
c) $98 \mathrm{cms}^{-1}$
d) $980 \mathrm{cms}^{-1}$
20. A 0.5 kg ball moving with a speed of $12 \mathrm{~ms}^{-1}$ strikes a hard wall at an angle of 30° with the wall. It is reflected with the same speed and at the same angle. If the ball is in contact with the wall for 0.25 s , the average force acting on the wall is

a) 48 N
b) 24 N
c) 12 N
d) 96 N

2005

21. In the figure given the position-time graph of a particle of mass 0.1 kg is shown. The impulse at $t=2 s$ is

a) $0.2 \mathrm{~kg}-\mathrm{ms}^{-1}$
b) $-0.2 \mathrm{~kg}-m s^{-1}$
c) $0.1 \mathrm{~kg}-\mathrm{ms}^{-1}$
d) $-0.4 \mathrm{~kg}-m s^{-1}$
22. A rocket of mass 1000 kg is to be projected vertically upwards. The gases are exhausted vertically downwards with velocity $100 \mathrm{~ms}^{-1}$ with respect to the rocket. What is the minimum rate of burning of fuel, so as to just lift the rocket upwards against the gravitational attraction (take $g=10 \mathrm{~ms}^{-2}$)
a) $50 \mathrm{kgs}^{-1}$
b) $100 \mathrm{kgs}^{-1}$
c) $200 \mathrm{kgs}^{-1}$
d) $400 \mathrm{kgs}^{-1}$
23. A force of 10 N acts on a body of mass 20 kg for 10 s . The change in its momentum is
a) $50 \mathrm{~kg}-\mathrm{ms}^{-1}$
b) $100 \mathrm{~kg}-\mathrm{ms}^{-1}$
c) $300 \mathrm{~kg}-\mathrm{ms}^{-1}$
d) $1000 \mathrm{~kg}-\mathrm{ms}^{-1}$
24. A boat of mass 40 kg is at rest. A dog of mass 4 kg moves in the boat with a velocity of $10 \mathrm{~ms}^{-1}$. What is the velocity of boat?
a) $4 \mathrm{~ms}^{-1}$
b) $2 \mathrm{~ms}^{-1}$
c) $8 m s^{-1}$
d) $1 \mathrm{~ms}^{-1}$
25. A nucleus of mass under \mathbf{A}, originally at rest, emits an α-particle with speed \mathbf{v}. The daughter nucleus recoils with a speed
a) $\frac{2 v}{A+4}$
b) $\frac{4 v}{A+4}$
c) $\frac{4 v}{A-4}$
d) $\frac{2 v}{A-4}$
26. What is the momentum of a 10000 kg truck whose velocity is $2 \mathrm{~ms}^{-1}$
a) $2 \times 10^{5} \mathrm{~kg}-\mathrm{ms}^{-1}$
b) $1 \times 10^{5} \mathrm{~kg}-\mathrm{ms}^{-1}$
c) $4 \mathrm{~kg}-\mathrm{ms}^{-1}$
d) none of these
27. Masses of two substances are 1 g and 9 g respectively. If their kinetic energies are same, then the ratio of their momentum will be
a) $1: 9$
b) $9: 1$
c) $3: 1$
d) $1: 3$

Equilibrium of Forces

2008
28. Three forces acting on a body are shown in the figure. To have the resultant force only along the \mathbf{y}-direction, the magnitude of the minimum additional force needed is

a) 0.5 N
b) 1.5 N
c) $\frac{\sqrt{3}}{4} \mathrm{~N}$
d) $\sqrt{3} \mathrm{~N}$
29. The square of resultant of two equal forces is three times their product. Angle between the forces is
a) π
b) $\frac{\pi}{2}$
c) $\frac{\pi}{4}$
d) $\frac{\pi}{3}$

2006

30. A person used force (F), shown in figure to move a load with constant velocity on given surface Identify the correct surface profile

c)

d)

31. If a street light of mass M is suspend from the end of a uniform rod of length L in different possible pattern as shown in figure, then
A)

B)

C)

a) pattern A is more sturdy
b) pattern B is more sturdy
c) pattern C is more sturdy
d) all will have same sturdiness
32. A weight w is suspended from, the mid-point of a rope, whose ends are at the same level. In order to make the rope perfectly horizontal, the force applied to each of its ends must be
a) less than w
b) equal to w
c) equal to 2 w
d) infinitely large

2004

33. Two equal forces (\mathbf{P} each) act at a point inclined to each other at an angle of 120°. The magnitude of their resultant is
a) $\mathrm{P} / 2$
b) $\mathrm{P} / 4$
c) P
d) 2 P

KEY

1$) \mathbf{c}$	$2) \mathbf{c}$	$3) \mathbf{a}$	$4) \mathbf{b}$	$5) \mathbf{c}$	$6) \mathbf{d}$	$7) \mathbf{c}$	$8) \mathbf{c}$	$9) \mathbf{b}$	$10) \mathbf{b}$
11$) \mathbf{c}$	$12) \mathbf{b}$	$13) \mathbf{c}$	$14) \mathbf{b}$	$15) \mathbf{d}$	$16) \mathbf{c}$	$17) \mathbf{a}$	$18) \mathbf{a}$	$19) \mathbf{d}$	$20) \mathbf{b}$
21$) \mathbf{a}$	$22) \mathbf{b}$	$23) \mathbf{b}$	$24) \mathbf{d}$	$25) \mathbf{c}$	$26) \mathbf{a}$	$27) \mathbf{d}$	$28) \mathbf{a}$	$29) \mathbf{d}$	$30) \mathbf{a}$
31$) \mathbf{a}$	$32) \mathbf{d}$	$33) \mathbf{c}$							

HINTS

1. $m g=\frac{m v^{2}}{r}$
$v^{2}=g r$
$v=\sqrt{g r}$
2. In non-inertial frame, $F=m a-F_{p}$

Here F_{p} is pseudo force and a is the acceleration of the body relative to non-inertial frame
3. Weight

$$
\begin{aligned}
& \mathrm{w}=\mathrm{m}(\mathrm{~g}+\mathrm{a})=60(10+2)=60 \times 12=720 \mathrm{~N} \\
& a=\sqrt{a_{x}{ }^{2}+a_{y}{ }^{2}} \\
& =\left[\left(\frac{d^{2} x}{d t^{2}}\right)^{2}+\left(\frac{d^{2} y}{d t^{2}}\right)^{2}\right]^{\frac{1}{2}}=\frac{d^{2} x}{d t^{2}}=8 \mathrm{~ms}^{-2}
\end{aligned}
$$

4. Acceleration
5. $F \Delta t=m \Delta v$
$\mathrm{F}=\mathrm{x}$ Newton, $\Delta t=2 s, v_{1}=2 m s^{-1}, v_{2}=3 m s^{-1}, \mathrm{~m}=0.5 \mathrm{~kg}$
$\Rightarrow x=\frac{0.5}{2}=0.25 \mathrm{~N}$
6. \quad Acceleration $=\frac{\text { Net force }}{\text { Mass }}=\frac{1000-500}{1000}=0.5 \mathrm{~ms}^{-2}$
7. The reading of the spring balance $=$ tension in the rope $=$ force of friction between the rope and monkey

$$
\begin{aligned}
& =m(g)-m(a) \\
& =m(g-a) \text { Newton }
\end{aligned}
$$

8. Change in momentum $=2 \mathrm{mv}$

Also since we know that force $=$ rate of change of momentum so, force will act on the ball. So there is acceleration.
9. The acceleration of the body perpendicular to OE is
$a=\frac{F}{m}=\frac{4}{2}=2 \mathrm{~ms}^{-2}$
Displacement along OE
$s_{1}=v t=3 \times 4=12 \mathrm{~m}$
Displacement perpendicular to OE
$s_{2}=\frac{1}{2} a t^{2}=\frac{1}{2} \times 2 \times(4)^{2}=16 \mathrm{~m}$
The resultant displacement
$s=\sqrt{s_{1}^{2}+s_{2}^{2}}=\sqrt{144+256}=20 \mathrm{~m}$
10. $a=\frac{v-u}{t}$
$\therefore a=\frac{-2-10}{4}=-3 \mathrm{~ms}^{-2}$
But, $\mathrm{F}=\mathrm{ma}=10 \times(-3)=-30 \mathrm{~N}$
11. Apparent weight $=m(g+a)$

If lift suddenly stops during upward motion then apparent weight $=m(g-a)$
As it is given that scale reading initially was 60 kg and due to sudden jerk reading decreases and finally comes back to the original mark i.e 60 kg .

So, we can conclude that lift was moving upwards with constant speed and suddenly stops.
12. Mass of man $\mathrm{M}=80 \mathrm{~kg}$

Acceleration of lift, $\mathrm{a}=5 \mathrm{~ms}^{-2}$

When lift is moving upwards, the reading of weighting scale will be equal to R.
The equation of motion gives
$R-m g=m a$
Or $\mathrm{R}=\mathrm{mg}+\mathrm{ma}=\mathrm{m}(\mathrm{g}+\mathrm{a})=80(10+5)=1200 \mathrm{~N}$
13. Concept
14. $w^{\prime}=m(g-a)$
i.e, the person finds his weight less.
15. $\mathrm{F}=\mathrm{ma}$
$m=150 \mathrm{~g}=150 \times 10^{-3} \mathrm{~kg}, a=20 \mathrm{~ms}^{-2}$
$\therefore F=0.15 \times 20=3 \mathrm{~N}$
Im pulse $=F \Delta t=3 \times 0.1=0.3 \mathrm{Ns}$

Topic - 2: Conversation of Linear Momentum and Impulse

16. Change in momentum, $\Delta p=p_{f}-p_{i}=m\left(v_{f}-v_{i}\right)$

$$
\begin{aligned}
& =m\left[\left(v \cos 45^{0} i-v \sin 45^{0} j\right)-\left(v \cos 45^{0} i+v \sin 45^{0} j\right)\right] \\
& =m\left[\left(\frac{v}{\sqrt{2}} i-\frac{v}{\sqrt{2}} j\right)-\left(\frac{v}{\sqrt{2}} i+\frac{v}{\sqrt{2}} j\right)\right]=-\sqrt{2} m v j \\
& \therefore|\Delta p|=\sqrt{2} m v
\end{aligned}
$$

17. Force required, $F=\frac{d(m v)}{d t}$
$=v\left(\frac{d m}{d t}\right)-v M$
As velocity v is constant, hence
F = Mv Newton
18. Momentum carried by each bullet $=\mathrm{mv}=0.010 \times 500 \mathrm{~kg}-\mathrm{ms}^{-1}=5 \mathrm{~kg}-\mathrm{ms}^{-1}$

Now, force $=$ change in momentum in $1 \mathrm{~s}=5 \times 10=50 \mathrm{~N}$
Acceleration $=\frac{50}{200} \mathrm{~ms}^{-2}=25 \mathrm{cms}^{-2}$
19. From law of conversation of momentum., $2 m v n=m g$

$$
\therefore v=\frac{m g}{2 m^{\prime} n}=\frac{100 \times 980}{2 \times 5 \times 10}=980 \mathrm{cms}^{-1}
$$

20. $\Delta p=O B \sin 30^{\circ}-\left(-O A \sin 30^{\circ}\right)$

$=m v \sin 30^{\circ}-\left(-m v \sin 30^{\circ}\right)=2 m v \sin 30^{\circ}$
$\therefore F \times t=2 m v \sin 30^{\circ}$
Or $F=\frac{2 m v \sin 30^{\circ}}{t}$
But, $\mathrm{m}=0.5 \mathrm{~kg}, \mathrm{v}=12 \mathrm{~ms}^{-1} \mathrm{t}=0.25 \mathrm{~s}, \theta=30^{\circ}$
$F=\frac{2 \times 0.5 \times 12 \times \sin 30^{\circ}}{0.25}=24 \mathrm{~N}$
21. $\mathrm{I}=$ change in momentum
$=\Delta p=m \Delta v=m \frac{\Delta x}{\Delta t}$
But, $m=0.1 \mathrm{~kg}, \frac{\Delta x}{\Delta t}=\frac{4.0}{2} \mathrm{~ms}^{-1}$
$\therefore I=0.1 \times \frac{4}{2}=0.2 \mathrm{~kg}-m s^{-1}$
22. The velocity of exhaust gases with respect to rocket $=100 \mathrm{~ms}^{-1}$

The minimum force on the rocket to lift it
$F_{\min }=m g=1000 \times 10=10000 \mathrm{~N}$
Minimum rate of burning of fuel $\frac{d m}{d t}=\frac{F_{\min }}{v}=\frac{10000}{100}=100 \mathrm{kgs}^{-1}$
23. The change in momentum of the body $\Delta p=F \times \Delta t=10 \times 10=100 \mathrm{~kg}-\mathrm{ms}^{-1}$
24. By law of conservation of linear momentum, $m_{1} v_{1}=m_{2} v_{2}$

But, $m_{1}=40 \mathrm{~kg}, m_{2}=4 \mathrm{~kg}, v_{2}=10 \mathrm{~ms}^{-1}$
$\therefore 40 \times v_{1}=4 \times 10 \Rightarrow v_{1}=\frac{4 \times 10}{40}=1 \mathrm{~ms}^{-1}$
25. $\quad X^{A} \rightarrow Y^{A-4}+\alpha^{4}$

According to the law of conservation of momentum
Or $0=m_{y} v_{y}+m_{\alpha} v_{\alpha}$
Or $0=(A-4) v_{y}+4 v$
Or $v_{y}=-\frac{4 v}{A-4}$
Negative sign corresponds the recoil speed of daughter nucleus
26. Momentum of truck $p=m v=100000 \times 2=2 \times 10^{5} \mathrm{~kg}-\mathrm{ms}^{-1}$
27. By the following relation $p=\sqrt{2 m K}$

Given, $m_{1}=1 g, m_{2}=9 g, K_{1}=K_{2}=K$
$\therefore \frac{p_{1}}{p_{2}}=\frac{\sqrt{2 \times 1 \times K}}{\sqrt{2 \times 9 \times K}}=\frac{1}{3}$

Topic 3: Equilibrium of Forces

28. Minimum additional force needed

$$
\begin{aligned}
& F=-\left(F_{\text {resultant }}\right)_{x} \\
& F_{\text {resultant }}=[(4-2)(\cos 30 j-\sin 30 i)+(\cos 60 i+\sin 60 j)] \\
& =\left[2\left(\frac{\sqrt{3}}{2} j+\frac{1}{2} i\right)+\left(\frac{1}{2} i+\frac{\sqrt{3}}{2} j\right)\right]=-\frac{i}{2}+\frac{3 \sqrt{3}}{2} j
\end{aligned}
$$

$\therefore F=-\left(-\frac{i}{2}\right)=\frac{1}{2} i$

$$
|F|=0.5 \mathrm{~N}
$$

29. $\mathrm{P}=\mathrm{Q}$ and $R^{2}=3 P Q=3 P^{2}$

From, $R^{2}=P^{2}+Q^{2}+2 P Q \cos \theta$
$\therefore 3 P^{2}=P^{2}+P^{2}+2 P^{2} \cos \theta$
Or $3 P^{2}-2 P^{2}=2 P^{2} \cos \theta$
Or $1=2 \cos \theta$
$\therefore \cos \theta=\frac{1}{2}$, thus, $\cos \theta=\cos 60^{\circ}$
$\therefore \cos \theta=\frac{1}{2}$, thus $\cos \theta=\cos 60^{\circ}$ or $\theta=60^{\circ}=\frac{\pi}{3}$
30. Concept
31. For equilibrium of street light, $m g \times x=T \times y$

Or $T=\frac{m g x}{y}$

For T to be minimum, y should be maximum

Hence, pattern A is sturdier
32. For equilibrium of body
$m g=2 T \cos \theta$
$\therefore T=\frac{m g}{2 \cos \theta}$
For the string to be horizontal
$\theta \rightarrow 90^{\circ}$
$\therefore T=\frac{m g}{2 \cos 90^{\circ}} \Rightarrow T \rightarrow \infty$
33. The resultant force of two equal forces
$=\sqrt{P^{2}+P^{2}+2 P \cdot P \cos 120^{0}}=\sqrt{2 P^{2}-P^{2}}=\sqrt{P^{2}}=P$

