HORIZONTAL MOTION

1.	A Body moves 6 <i>m</i> north. 8 <i>m</i> east and 10 <i>m</i> vertically upwards, what is its resultant displacement from initial position [DCE 2000]						
	(1) $10\sqrt{2}m$	(2) 10 <i>m</i>	$(3)\frac{10}{\sqrt{2}}m$	$(4) 10 \times 2m$			
2.	A man goes 10 <i>m</i> towa	rds North, then 20m	towards east then displac	ement is			
			-	9; JIPMER 1999; AFMC 2003]			
	(1) 22.5 <i>m</i>	· · /	(3) 25.5 <i>m</i>	(4)30 <i>m</i>			
3.				$30\sqrt{2}$ <i>m</i> in south-west direction.			
	The displacement of the (1) 10 <i>m</i> along north	he person from the c	(2) 10 m long south	[J & K CET 2004]			
	(1) 10 m along norm (3) 10 m along west		(2) 10 m long south (4) Zero				
4.	-) m north and 300 n	i south and then flies 1200) m upwards then net			
4.	displacement is			[AFMC 2004]			
	(1) $1200 m$	(2) 1300 <i>m</i>	(3) 1400 <i>m</i>	(4) 1500 <i>m</i>			
5۰	An athlete completes	one round of a circu	lar track of radius R in 40	sec. What will be his			
	displacement at the en	d of 2 min. 20 <i>sec</i>	[N	CERT1990; Kerala PMT 2004]			
	(1) Zero	(2) 2 <i>R</i>	(3) $2\pi R$	(4) 7 <i>π</i> R			
6.	A wheel of radius 1 n	neter rolls forward h	alf a revolution on a hori	zontal ground. The magnitude of			
	the displacement of th	e point of the wheel	initially in contact with the	ne ground is [BCECE 2005]			
	 2π 	(2) $\sqrt{2}\pi$	$(3)\sqrt{\pi^2+4}$	(4) <i>π</i>			
7•	A person travels alon	g a straight road for	half the distance with ve	elocity v_1 and the remaining half			
	distance with velocity v_2 The average velocity is given by [MP PMT 200]						
	(1) $v_1 v_2$	(2) $\frac{v_2^2}{v_1^2}$	(3) $\frac{v_1 + v_2}{2}$	$(4) \ \frac{2v_1v_2}{v_1 + v_2}$			
8.	The displacement-tim	ne graph for two pa	rticles A and B are straig	nt lines inclined at angles of 30°			
0.			-	in mes menned at angles of 50			
	and 60° with the time	axis. The fatio of ve	clocities of $V_A : V_B$ is				
		[CP]	MT 1990; MP PET 1999	; MP PET 2001; Pb. PET 2003]			
	(1) 1:2	(2) $1:\sqrt{3}$	(3) $\sqrt{3}:1$	(4) 1:3			
9.	A car travels from A	to B at a speed of	20 km / hr and returns at a	speed of 30 km / hr. The average			
	speed of the car for the	e whole journey is		[MP PET 1985]			
	(1) 25 km / hr	(2) 24 km / hr	(3) 50 km / hr	(4) 5 km / hr			

10.	www.sakshieducation.com A boy walks to his school at a distance of 6 <i>km</i> with constant speed of 2.5 <i>km/hour</i> and walks back with a constant speed of 4 <i>km/hr</i> . His average speed for round trip expressed in <i>km/hour</i> , is [AIIMS 1995]						
	(1) 24/13	(2) 40/13	(3) 3	(4) 1/2			
11.	A car travels the first	half of a distance be	tween two places at a s	peed of 30 km/hr and the second			
	half of the distance at a	50 <i>km/hr</i> . The averag	e speed of the car for the	e whole journey is			
			[M	anipal MEE 1995; AFMC 1998]			
	(1) 42.5 km/hr	(2) 40.0 km/hr	(3) 37.5 km/hr	(4) 35.0 <i>km/hr</i>			
12.	One car moving on a s	straight road covers of	ne third of the distance	with 20 <i>km/hr</i> and the rest with 60			
	<i>km/hr</i> . The average sp	eed is		[MP PMT 1999; CPMT 2002]			
	(1) 40 <i>km/hr</i>	(2) 80 km/hr	(3) $46\frac{2}{3}$ km/hr	(4) 36 km/hr			
13.	A car moves for half covered is 60 km. What		<i>n/h</i> and for rest half of	time at 40 <i>km/h</i> . Total distance [RPET 1996]			
	(1) 60 km / h	• •	(3) 120 km / h				
14.	A train has a speed of speed in <i>km/h</i> is	60 km/h. for the first	t one hour and 40 km/h	for the next half hour. Its average [JIPMER 1999]			
	(1) 50	(2) 53.33	(3) 48	(4) 70			
15.	Which of the following			[BHU 2000; CBSE PMT 2001]			
	(1) Landing of an aircr(3) Motion of wheels of		(2) Earth revolving a round the sun(4) Train running on a straight track				
16.		u u		y of 45 km/h . The time taken by the train to			
	cross a bridge of length	h 850 meters is		[CBSE PMT 2001]			
	(1) 56 <i>sec</i>	(2) 68 sec	(3)80 sec	(4) 92 <i>sec</i>			
17.	A particle is constrained	ed to move on a straig	ght line path. It returns to	o the starting point after 10 sec.			
	The total distance cove	ered by the particle du	uring this time is 30 m.	Which of the following			
	statements about the m	notion of the particle	is false [CBSE PMT 2000; AFMC 200				
	(1) Displacement of th	e particle is zero	(2) Average speed of the particle is $3 m/s$				
	(3) Displacement of th	e particle is 30 m	(4) Both (1) and (2)				
18.	A particle moves along is	g a semicircle of radi	us 10 <i>m</i> in 5 seconds. Th	he average velocity of the particle [Kerala (Engg.) 2001]			
	(1) $2\pi ms^{-1}$	(2) $4\pi ms^{-1}$	(3) $2 m s^{-1}$	(4) 4 ms^{-1}			
19.	• A man walks on a straight road from his home to a market 2.5 km away with a speed of 5 km/h . Finding the market closed, he instantly turns and walks back home with a speed of 7.5 km/h . The average speed of the man over the interval of time 0 to 40 <i>min</i> . is equal to [AMU (Med.) 2002]						
	(1) 5 <i>km/h</i>	(2) $\frac{25}{4}$ km/h	(3) $\frac{30}{4}$ km/h	(4) $\frac{45}{8}$ km/h			

00	www.sdksiiieuucatioii.com							
20.	20. The ratio of the numerical values of the average velocity and average speed of a body is always [MP PET 2002]							
	(1) Unity	(2) Unity on loss	(2) Unity on mono	-	-			
	(1) Unity	•	(3) Unity or more		2			
21.	A person travels along	g a straight road for th	he first half time with a	velocity v_1 and	id the next half time			
	with a velocity v_2 . Th	e mean velocity v of	the man is	[RPET	1999; BHU 2002]			
	$(1) \ \frac{2}{V} = \frac{1}{v_1} + \frac{1}{v_2}$	(2) $V = \frac{v_1 + v_2}{2}$	$(3) V = \sqrt{v_1 v_2}$	$(4) V = \sqrt{\frac{v_1}{v_2}}$				
22.	The numerical ratio of	displacement to the	distance covered is alwa	ays	[BHU 2004]			
	(1) Less than one		(2) Equal to one					
	(3) Equal to or less that	in one	(4) Equal to or greate	r than one				
23.	A 100 <i>m</i> long train is cross a bridge of length	-	orm velocity of 45 km/	<i>hr</i> . The time t	aken by the train to [BHU 2004]			
	(1) 58 <i>s</i>		(3) 78 <i>s</i>	(4) 88 <i>s</i>				
24.	A particle moves for 2	20 seconds with velo	city 3 m/s and then velo	ocity 4 <i>m/s</i> for	another 20 seconds			
	and finally moves wi particle	th velocity 5 m/s for	r next 20 seconds. Wh	nat is the aver	age velocity of the [MH CET 2004]			
	(1) 3 <i>m/s</i>	(2) 4 <i>m/s</i>	(3) 5 <i>m/s</i>	(4) Zero				
25.			ation for 20 sec after	-	rest. If it travels a			
	distance S_1 in the first	10 sec and a distance	s_2 in the next 10 sec,					
				,	97; MP PMT 2002]			
	(1) $S_1 = S_2$	(2) $S_1 = S_2 / 3$	$(3) S_1 = S_2 / 2$	(4) $S_1 = S_2 / A_1$	4			
26.	The displacement <i>x</i>	of a particle along a	straight line at time t	is given by x	$a = a_0 + a_1 t + a_2 t^2$. The			
	acceleration of the par	rticle is	[NCERT 19	974; RPMT 19	999; AFMC 1999]			
	(1) a_0	(2) a_1	(3) $2a_2$	(4) <i>a</i> ₂				
27.	The coordinates of a n	moving particle at ar	by time are given by x	$= at^2$ and $y = bt$	² . The speed of the			
	particle at any momen	t is		[DPMT 1	984; CPMT 1997]			
	(1) $2t(a+b)$	(2) $2t\sqrt{(a^2-b^2)}$	(3) $t\sqrt{a^2+b^2}$	(4) $2t\sqrt{a^2 + 1}$	$\overline{b^2}$)			
28.	An electron starting f	from rest has a velo	city that increases line	early with the	time that is $v = kt$,			
	where $k = 2m / \sec^2$. The	distance travelled in	the first 3 seconds will	be	[NCERT 1982]			
	(1) 9 m	(2) 16 <i>m</i>	(3) 27 m	(4) 36 m				
29.								
	(1) Increasing with tim	•	(2) Decreasing with t	ime				
	(3) Constant but not ze		(4) Zero	-				

30.	The displacement of a particle is given by $y = a + bt + ct^2 - dt^4$. The initial velocity and acceleration are							
	respectively		[CPMT 1999, 2003]					
	(1) $b, -4d$	(2) $-b, 2c$	(3) <i>b</i> ,2 <i>c</i>	(4) $2c, -4d$				
31.	A car moving with a	speed of 40 km/h car	be stopped by applyin	g brakes after atleast 2 m. If the				
	same car is moving wi	th a speed of 80 km/h	, what is the minimum s	topping distance				
	[CBSE PMT 1998, 1999; AFMC 2000; JIPMER 2001, 02							
	(1) 8 <i>m</i>	(2) 2 <i>m</i>	(3) 4 <i>m</i>	(4) 6 <i>m</i>				
32.	If a train travelling at '	72 <i>kmph</i> is to be broug	ght to rest in a distance of	of 200 metres, then its retardation				
	should be			[SCRA 1998; MP PMT 2004]				
	(1) 20 ms $^{-2}$	(2) $10 ms^{-2}$	(3) 2 ms^{-2}	(4) 1 ms^{-2}				
33.	-			s for constant speed for 30s and				
	then decelerates at 4 m	u/s^2 till it stops. What	is the distance travelled	•				
	(1) 750 <i>m</i>	(2) 800 <i>m</i>	(3) 700 m	2001; AIIMS 2002; DCE 2003] (4) 850 <i>m</i>				
34.	· · /	()		$5 m/s^2$. Its brakes can produce a				
	maximum retardation	$10 m/s^2$. What is the m	ninimum time in which i	t can cover a distance of 1.5 km				
	(1) 20	(2) 15	(2) 10	[Pb. PMT 2002]				
05	(1) 30 sec The path of a particle i	(2) 15 sec	(3) 10 sec	(4) 5 <i>sec</i> magnitude and direction is				
35.	The pair of a particle i	moving under the min		[MP PET 2002]				
	(1) Straight line	(2) Circle	(3) Parabola	(4) Ellipse				
36.			n describes $40 m$ in the f	First 5 sec and 65 m in next 5 sec.				
	Its initial velocity will (1) 4 <i>m/s</i>		(3) 5.5 <i>m/s</i>	[Pb. PET 2003] (4) 11 <i>m/s</i>				
37•				³ , where a, b, α and β are positive				
	constants. The velocity	y of the particle will		[CBSE PMT 2005]				
	(1) Go on decreasing v		(2) Be independent of α and β					
~ 0	(3) Drop to zero when		(4) Go on increasing with time $+ a(t-2)^2$ Which of the following is true ?					
38.	A particle moves along	$g x - axis as \qquad x = 4(t - 2)$	a(t-2) which of the f	[J&K CET 2005]				
	(1) The initial velocity	of particle is 4	(2) The acceleration of					
		(3) The particle is at origin at $t = 0$ (4) None of these						
39.		A body starting from rest moves with constant acceleration. The ratio of distance covered by the						
	body during the 5th se			[Kerala PET 2005]				
	(1)9/25	(2) 3/5	(3) 25/9	(4) 1/25				
40.	What determines the n	ature of the path follo	wed by the particle	[AFMC 2005]				
	(1) Speed	(2) Velocity	(3) Acceleration	(4) None of these				

41.	An object accelerates from rest to a velocity 27.5 m/s in 10 sec then find distance covered by obje								
	in next 10 sec			[BCECE 2004]					
	(1) 550 m	(2) 137.5 <i>n</i>	<i>n</i> (3) 412.5 <i>m</i>	(4) 275 <i>m</i>					
42.	If the velocity	of a particle is giver	h by $v = (180 - 16x)^{1/2}$ m/s, the	en its acceleration will be					
				[J & K CET 20)04]				
	(1) Zero	(2) 8 m/s^2	$(3) - 8 m/s^2$	(4) $4 m/s^2$					
43.	The displacen	nent of a particle is p	proportional to the cube of t	time elapsed. How does the acceleration	tion				
	of the particle	depends on time obt	ained	[Pb. PET 20	01]				
	(1) $a \propto t^2$	(2) $a \propto 2t$	(3) $a \propto t^3$	$(4) a \propto t$					
44.	Starting from	rest, acceleration of a	a particle is $a = 2(t-1)$. The	velocity of the particle at $t = 5s$ is					
				[RPET 20)02]				
	(1) 15 <i>m/sec</i>	(2) 25 m/se	ec (3) 5 m/sec	(4)None of these					
45.			< <i>'</i>	(4)None of these al velocity. Another body <i>B</i> , starts fr	rom				
45.	A body A mov	ves with a uniform a	cceleration <i>a</i> and zero initiation						
45.	A body A mov	ves with a uniform ad t moves in the same	cceleration <i>a</i> and zero initiation	al velocity. Another body B, starts fr	er a				
45.	A body A moves the same point time t . The values of the same point time t and t	ves with a uniform as t moves in the same alue of t is	cceleration <i>a</i> and zero initiation	al velocity. Another body B , starts free velocity v . The two bodies meet aft [MP PET 200	er a				
45.	A body A moves the same point	ves with a uniform ad t moves in the same	cceleration <i>a</i> and zero initial direction with a constant	al velocity. Another body B , starts free velocity v . The two bodies meet after the start of	er a				
45.	A body A moves the same point time t . The values of the same point time t and t	ves with a uniform as t moves in the same alue of t is	cceleration <i>a</i> and zero initial direction with a constant	al velocity. Another body B , starts free velocity v . The two bodies meet aft [MP PET 200	er a				
45.	A body A moves the same point time t . The values of the same point time t and t	ves with a uniform as t moves in the same alue of t is	cceleration <i>a</i> and zero initial direction with a constant	al velocity. Another body B , starts free velocity v . The two bodies meet aft [MP PET 200	er a				
45.	A body A moves the same point time t . The values of the same point time t and t	ves with a uniform as t moves in the same alue of t is	cceleration <i>a</i> and zero initial direction with a constant	al velocity. Another body B , starts free velocity v . The two bodies meet aft [MP PET 200	er a				

1) 1	2) 1	3) 3	4) 1	5) 2	6) 3	7) 4	8) 4	9) 2	10) 2
11) 3	12) 4	13) 1	14) 2	15) 4	16) 3	17) 3	18) 4	19) 2	20) 2
21) 2	22) 3	23) 4	24) 2	25) 2	26) 3	27) 4	28) 4	29) 1	30) 3
31) 1	32) 4	33) 1	34) 1	35) 1	36) 3	37) 4	38) 2	39) 1	40) 4
41) 3	42) 3	43) 4	44) 1	45) 1					
1									