CO-ORDINATION COMPOUNDS

- 1.[Co (NH3)5SO4] Br and [Co (NH3)5 Br] SO4 are a pair of isomers(E 2008)1) ionisation2) ligand3) coordination4) hydrate
- 2. In the coordination compound, $K_4[Ni(CN)_4]$ the oxidation state of nickel is (2003-E)
 - 1) +2 2) -1 3) 0 4) +1
- 3. One mole of the complex compound $Co(NH_3)_5 Cl_3$ gives 3 moles of ions on dissolution in water. One mole of the same complex reacts with two moles of $AgNO_3$ solution to yield two moles of AgCl(s). The structure of complex is (2003-E)
 - 1) $\left[Co(NH_3)_4 Cl \right] Cl_2.NH_3$
 - 2) $\left[Co(NH_3)_5 Cl \right] Cl_2$
 - 3) $\left[Co(NH_3)_2 Cl_3 \right] 2.NH_3$
 - 4) $\left[Co(NH_3)_4 Cl_2 \right] Cl.NH_3$
- 4. Ammonia forms the complex ion with copper ions in alkaline solutions but not in acidic solutions. What is the reason for it? (2003-E)
 - 1) Copper hydroxide is an amphoteric substance
 - 2) In acidic solutions hydration protects copper ions.
 - 3) In acidic solutions protons coordinate with ammonia molecule forming ions and molecule are not available.
 - 4) In alkaline solutions insoluble is precipitated which is soluble in excess of any alkali.

5. The coordination number of a central metal atom in a complex is determined by

(2004-E)

- 1) the number of ligands around a metal ion bonded by sigma bonds
- 2) the number of ligands around a metal ion bonded by -bonds
- 3) the number of ligands around a metal ion bounded by sigma and pi bonds both.
- 4) the number of only anionic ligands bonded to the metal ion.

6. Which one of the following complexes is an outer orbital complex? (2004-E)

1) $\left[Fe(CN)_{6}\right]^{4-}$ 2) $\left[Mn(CN)_{6}\right]^{4-}$ 3) $\left[Co(NH_{3})_{6}\right]^{3+}$ 4) $\left[Ni(NH_{3})_{6}\right]^{2+}$

www.sakshieducation.com

7. Which one of the following has largest number of isomers?

(2004-E)

(2004-E)

1) $\left[Ru(NH_3)_4 Cl_2 \right]^+$ 2) $\left[Co(NH_3)_5 Cl \right]^{2+}$ 3) $\left[Ir(Ph_3)_2 H(CO) \right]^{2+}$ 4) $\left[Co(en)_2 Cl_2 \right]^+$

(R=alkyl group, en=ethylenediamine)

8. The correct order of magnetic moments (spin only values in bohr magneton) among is

- 1) $[MnCl_4]^{2^-} > [CoCl_4]^{2^-} > [Fe(CN)_6]^{4^-}$ 2) $[MnCl_4]^{2^-} > [Fe(CN)_6]^{4^-} > [CoCl_4]^{2^-}$ 3) $[Fe(CN)_6]^{4^-} > [MnCl_4]^{2^-} > [CoCl_4]^{2^-}$ 4) $[Fe(CN)_6]^{4^-} > [CoCl_4]^{2^-} > [MnCl_4]^{2^-}$ (Atomic numbers: Mn = 25, Fe = 26, Co = 27)
- 9. Which of the following compounds shows optical isomerism? (2005-E) 1) $\left[Cr(C_2O_4)_3\right]^{3-}$ 2) $\left[Co(CN)_6\right]^{3-}$ 3) $\left[Cu(NH_3)_4\right]^{2+}$ 4) $\left[ZnCl_4\right]^{2-}$
- 10. Which one of the following cyano complexes would exhibit the lowest value of aramagnetic behaviour? (2005-E)
 - 1) $\left[Fe(CN)_{6}\right]^{3-}$ 2) $\left[Co(CN)_{6}\right]^{3-}$ 3) $\left[Cr(CN)_{6}\right]^{3-}$ 4) $\left[Mn(CN)_{6}\right]^{3-}$

11. Nickel (Z = 28) combines with a uninegative monodentate ligand to form a paramagnetic complex
The number of unpaired electron(s) in the nickel and geometry of this complex ion are, respectively

		(2006-Е)
1) Two, square planar	2) one, tetrahedral	
3) Two, tetrahedral	4) one, square planar	
12. In $Fe(CO)_5$, the Fe-C bor	(2006-E)	

1) σ -Character only2) π -character only3) σ Both and π characters4) Ionic character

www.sakshieducation.com

13. Which one of the following has a square planar geometry?

(**2007-E**)

- 1) $[CoCl_4]^{2-}$ 2) $[FeCl_4]^{2-}$ 3) $[NiCl_4]^{2-}$ 4) $[PtCl_4]^{2-}$
- 14. In which of the following octahedral complexes of cobalt (atomic number 27) will the magnitude of Δ_a be the highest? (2008-E)
 - 1) $\left[Co(NH_3)_6\right]^{3+}$ 2) $\left[Co(CN)_6\right]^{3-}$ 3) $\left[Co(C_2O_4)_3\right]^{3-}$ 4) $\left[Co(H_2O)_6\right]^{3+}$
- 15. The coordination number and the oxidation state of the element E in the complex, where en is ethylenediamine, are respectrively (2008-A)
 - 1) 6 and 3
 2) 6 and 2

 3) 4 and 2
 4) 4 and 3
- 16. Which of the following has an optical isomer
 (A-2009)

 1) $[Co (en) (NH_3)_2]^{2+}$ 2) $[Co (en) (H_2O)_4]^{3+}$

 3) $[Co (en)_2 (NH_3)_2]^{3+}$ 4) $[Co(Cl) (NH_3)_5]^+$
- 17. Which of the following pairs represents linkage isomers ? (A-2009)
 1) [Pd (P Ph₃)₂ (NCS)₂] and [Pd(P Ph₃)₂ (SCN)₂]
 2) [Co (NH₃)₅ NO₃] SO₄ and [Co (NH₃)₅ SO₄] NO₃
 3) [PtCl₂(NH₃)₄] Br₂ and [PtBr₂(NH₃)₄] Cl₂
 4) [Cu (NH₃)₄] [PtCl₄] and [Pt (NH₃)₄] [CuCl₄]
- 18. Thed- tronconfiguration of Cr²⁺, Mn²⁺, Fe²⁺ and Co²⁺ are d⁴, d⁵, d⁶ and d⁷ respectively. Which one of the following will exhibit minimum paramagnetic behavior? [CBSEAIPMT-2011]
 - 1) $[Cr(H_2O)_6]^{2+}$ 2) $[Mn(H_2O)_6]^{2+}$ 3) $[Fe(H_2O)_6]^{2+}$ 4) $[Co(H_2O)_6]^{2+}$
- **19.** The complex, $[Pt(Py)(NH_3)BrCl]$ will have many geometrical isomers?

1) 2 2) 3 3) 4 4) 0

[CBSE AIPMT-2011]

- **20.** Number of isomericforms (Constitution aland stereoisomer's) for $[Rh(en)_2(NO_2)(SCN)]^+$ [DUMET2011]
 - 1) 3 2) 6 3) 9 4) 12
- 21. Crystal field stabilization energy for high spin d^4 octahedral complex is ? [CBSE AIPMT-2010] 1) $-0.6\Delta_0$ 2) $-1.8\Delta_0$ 3) $-1.6\Delta_0 + p$ 4) $-1.2\Delta_0$

www.sakshieducation.com

KEY

1) 1	2) 3	3) 2	4) 3	5) 1	
6) 4	7) 4	8) 1	9) 1	10) 2	
11) 3	12) 3	13) 4	14) 2	15) 1	
16) 3	17)2	18)4	19)2	20) 4	
21) 1					