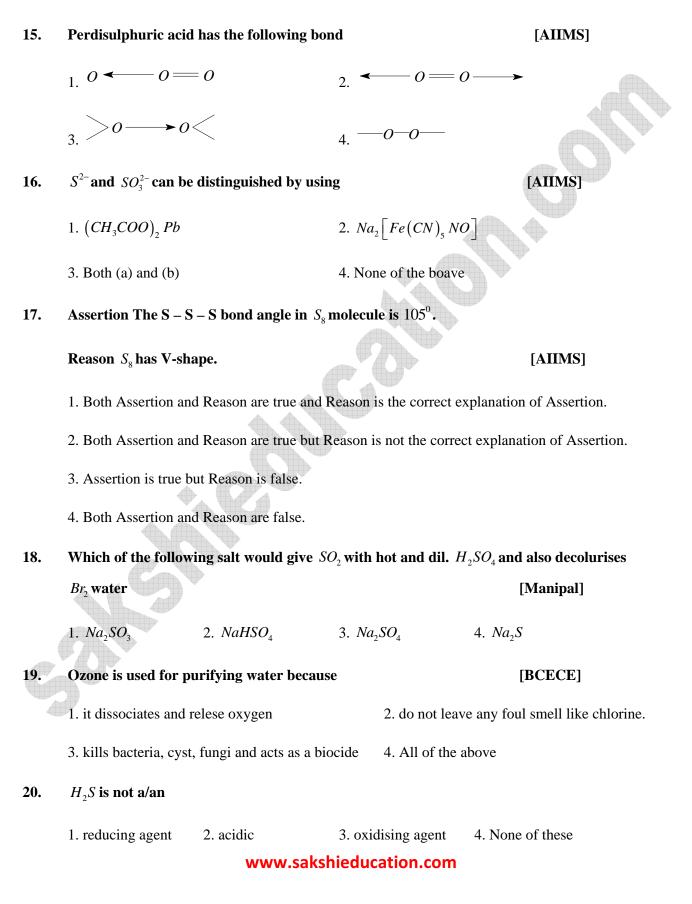
P-BLOCK ELEMENTS -VI A GROUP ELEMENTS

	2011						
1.	Which is not the	[DUMET]					
	1. The S_8 ring is	not planar 2.	2. Oxygen is more electronegative than sulphur.				
	3. SF_8 exists, but OF_4 does not exist 4. SO_3 and SO_3^{2-} both have trigonal planar geomet						
	2010						
2.	If the supply of	oxygen is limited, H_2S	Freacts with O_2 to form	[AFMC]			
	1. $H_2O + SO_3$	2. $H_2O + SO$	3. $H_2 SO_4 + S$	4. $H_2O + SO_2$			
3.	Bromine water	reacts with SO_2 to form	n	[AFMC]			
	1. HBr and S	2. H_2O and HBr	3. S and H_2O	4. H_2SO_4 and HBr			
4.	O_2 and O_3 are			[CPMT]			
	1. allotropes	2. isotopes	3. isomorphs	4. polymorphs			
5.	Ozone can be te	sted by		[Haryana PMT]			

3. Zn 4. Au 1. Ag 2. Hg

Sulphur trioxide gas when dissolved in H_2SO_4 the product obtained is 6. [OJEE]

1. H_2SO_3 2. H_2SO_5 3. $H_2 S_2 O_7$ 4. $H_2S_2O_8$


α and β forms of sulphur are at equilibrium at a temperature known as [OJEE] 7.

- 1. Critical temperature 3. Transition temperature
- 3. Boyle's temperature 4. Inversion temperature

www.sakshieducation.com

8.	Which of the followi	ing statements regard	ing ozone is not corre	ect? [WB JEE]			
	1. The ozone molecule is angular in shape						
	2. The ozone is a resonance hybride of two structures						
	3. The oxygen-oxygen bond length in ozone is identical with that of molecular oxyen.						
	4. Ozone is used as go	e oxygen-oxygen bond length in ozone is identical with that of molecular oxygen. one is used as germicide and disinfectant for the purification of air. 's acid is S_2O_3 2. H_2SO_5 3. $H_2S_2O_8$ 4. $H_2S_2O_7$ In nitric acid reacts with nitric oxide, a gas is released, which converts H_2S into [AIIMS]					
9.	Caro's acid is		gular in shape hybride of two structures It length in ozone is identical with that of molecular oxyen. de and disinfectant for the purification of air. [VMMC] as $A = H_2S_2O_7$ it nitric oxide, a gas is released, which converts H_2S into [AIIMS] $A = A = S_2O_7^2$ it nitric oxide, a gas is released, which converts H_2S into [AIIMS] $A = A = S_2O_7^2$ $A = BaO_2^2$ $A = BaO_2$				
	1. $H_2 S_2 O_3$	2. H_2SO_5	3. $H_2 S_2 O_8$	4. $H_2 S_2 O_7$			
10.	When nitric acid reacts with nitric oxide, a gas is released, which converts H_2S into [AIIMS]						
	1. SO_4^{2-}	2. S^{2-}	3. S	4. $S_2 O_5^{2-}$			
11.	Peroxide bond is abs	sent in		[CPMT]			
	1. $(S_2 O_7)^{2-}$	2. $(S_2 O_8)^{2-}$	3. <i>CrO</i> ₅	4. <i>BaO</i> ₂			
12.	The type of bonds p	resent in sulphuric an	hydride	[EAMCET]			
	1. 3σ and three $p\pi$ -	$d\pi$	2. 3σ , one $p\pi - p\pi$ and two $p\pi - d\pi$				
	3. 2σ and three $p\pi - d\pi$ 4. 2σ and two			$p\pi - d\pi$			
13.	The acid having O –	O bond is	[CG PMT, Haryana P				
	1. $H_2 S_2 O_3$	2. $H_2 S_2 O_6$	3. $H_2 S_2 O_8$	4. $H_2 S_4 O_6$			
14.	The correct order of	f acidic strength is		[CG PMT, Haryana PMT]			
G	1. $Cl_2O_7 > SO_2 > P_4O_1$	10	2. $CO_2 > N_2O_5 > SO_3$				
	3. $Na_2O > MgO > Al$	₂ O ₃	$4. K_2 O > CaO > MgC$)			

2008

21. When conc. H_2SO_4 is heated with P_2O_5 , the acid is convered into

- 1. sulphur trioxide 2. sulphur dioxide
- 3. sulphur 4. a mixture of sulphur dioxide and sulphur trioxide

22. $KMnO_4$ is a strong oxidising agent in acid medium. To provide acid medium H_2SO_4 is used

instead of HCl. This is because

- 1. H_2SO_4 is a stronger acid than HCl.
- 3. H_2SO_4 is a dibasic acid

- 2. HCl is oxidised by $KMnO_4$ to Cl_2
- 4. rate is faster in the presence of H_2SO_4

23. The sides of safety matches contains

1. red phosphorus + sand power

.

3. $Ca_3(PO_4)$ + glass pieces

[BCECE]

[Kerala CEE]

2. P_4S_3

4. *KClO*₃, *KNO*₃, sulphur + antimony

VIA GROUP ELEMENTS PREVIOUS QUESTIONS

<u>KEY</u>

1) 4	2) 2	3) 4	4) 1	5) 2	6) 3	7) 2	8) 3	9) 2	10) 3
11) 1	12) 2	13) 3	14) 1	15) 4	16) 3	17) 3	18) 1	19) 4	20) 3
21) 1	22) 2	23) 1							

VIA GROUP ELEMENTS PREVIOUS QUESTIONS (SOLUTIONS)

1. SO_3 is trigonal planar due to sp^2 hybridised sulphur.

 SO_3^{2-} is sp^3 hybridised but pyramidal due to the presence of lone pair of electrons.

2. In limited supply of oxygen, H_2S buns with blue flame and S and H_2O are the main products

 $2H_2S + O_2 \rightarrow 2H_2O + 2S$

Note In excess of oxygen, H_2S gives SO_2 and water as main product.

3. When bromine water reacts with SO_2 , it oxidises it to sulphuric acid and itself gets reduced to HBr.

$$Br_2 + 2H_2O + SO_2 \rightarrow 2HBr + H_2SO_4$$

Bromine water

4. Since, in O_2 and O_3 different these number of same element, i.e., oxygen is present, hence these are allotropes.

Note Different crystalline structure, different number of atoms and different muclear spins all result in allotropy.

5. Ozone can be tested by Hg (mercury).

$$2Hg + O_3 \rightarrow Hg_2O + O_2$$

mercurous
oxide

During this reaction mercury loses its meniscus and starts sticking to the side of the glass. This is known as tailing of mercury.

$$6. \qquad SO_3 + H_2SO_4 \to H_2S_2O_5$$

7. The temperature at which both the varieties of sulphur co-exist, is called transition temperature.

$$\alpha$$
 – sulphur $\xrightarrow{>369K} \beta$ – sulphur

- 8. Due to resonance the bond order in ozone is 1.5, hence O O bond length in O_3 is greater than O O bond length O_2 .
- 9. H_2SO_5 (peroxomono sulphuric acid) is known as Caro's acid.
- 10. When nitric acid (HNO_3) reacts with nitric oxide (NO), NO_2 gas is released which oxidises H_2S into sulphur. The reactions are as follows:

$$2HNO_3 + NO \rightarrow H_2O + 3NO_2$$
$$NO_2 + H_2S \rightarrow H_2O + S + NO$$

www.sakshieducation.com

14. Acidic strength of oxides increases along a period from left to right and decreases along a group from upward to downward. Therefore, the correct order of acidic strength is

$$Cl_2O_7 > SO_2 > P_4O_{10}$$

[:: the position of Cl, S and P along a period is as P,S and Cl]

16.
$$S^{2-} + (CH_{3}COO_{2})Pb \rightarrow PbS_{black} \downarrow +2CH_{3}COO^{-}$$
$$S^{2-} + Na_{2} \Big[Fe[CN]_{5} NO \Big] \rightarrow \Big[Fe(CN)_{5} NOS \Big]^{4-} + 2Na^{4-}$$
violet ppt.

Hence, they are distinguished by both the reagents as only S^{2-} gives precipitate with these reagents.

- 17. S-atom in S_8 molecule are sp^3 hybridised and contain two lone pair of electrons on each and exist as staggered eight atom rings.
- 18. Na_2SO_3 reacts with hot and dil. H_2SO_4 to give SO_2 gas which decolurieses bromme water.
- Ozone is used for purifying water because ozone kills the bacteria, cysts, fungi, mold, parasites, viruses, contaminates, etc. It is one of the effective wayof eliminating microorganisms in the water. Ozone is most effective oxidant (secondary to F₂). It inactivates and bacteria faster than chlorine. Ozone do not form TMH which have unpleasant odour and also carcinogenic. Ozone is very good bicocide. Ozone also absorbs UV radiation.
- 20. Only H-atom is directly attached to P. H_2S acts a reductions agent, because it can reduce PbO into PbS. $PbO + H_2S \rightarrow Pbs + H_2O$

It is acidic in nature. In chalcogens, the acidic nature of hydride increases from $H_2Oto H_2$ Te.

21. When conc. H_2SO_4 is heated with P_2O_5 , the acid is converted into sulphur trioxide.

$$2H_2SO_4 + 2P_2O_5 \rightarrow 2SO_3 + 4HPO_3$$

sulphur trioxide

- 22. $KMnO_4$ is strong oxidising agent in acidic medium H_2SO_4 is used instead of HCl to provide acidic medium because of HCl is oxidized by $KMnO_4$ into Cl_2 .
- 23. The head of match stick contains $KClO_3$, KNO_3 , sulphur and antimony. The sides of match box contains red phosphorus and sand power. P_4O_3 is used in strike anywere matches.