ELECTRO CHEMISTRY

1. What is the electrochemical equivalent (in $\mathrm{g}_{\mathrm{coulomb}}{ }^{\mathbf{- 1}}$) of silver?
[M2005]
1) 108 F
2) $108 / \mathrm{F}$
3) $108 / 96500$
4) $96500 / 108$
2. Which reaction is not feasible?
(CBSE PMT)
1) $2 \mathrm{KI}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{KBr}+\mathrm{I}_{2}$
2) $2 \mathrm{KBr}+\mathrm{I}_{2} \rightarrow 2 \mathrm{KI}+\mathrm{Br}_{2}$
3) $2 \mathrm{KBr}+\mathrm{Cl}_{2 \rightarrow} 2 \mathrm{KCl}+\mathrm{Br}_{2}$
4) $2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{~F}_{2} \rightarrow 4 \mathrm{HF}+\mathrm{O}_{2}$
3. The standard Potentials at $\mathbf{2 5}^{0} \mathbf{C}$ for the half reactions are given against them below:
(M-2009)
$\mathrm{Zn}^{2+}+2 e^{-} \rightarrow \mathrm{Zn} ; E^{0}=-0.762 \mathrm{~V}, \mathrm{Mg}^{2+}+2 e^{-} \rightarrow \mathrm{Mg} ; E^{0}=-2.37 \mathrm{~V}$
When Zn dust is added to a solution of MgCl_{2}
1) Magnesium is precipitated
2) Zinc dissolves in the solution
3) Zinc chloride is formed
4) No reaction takes place

4 For the following cell reaction
$\mathrm{Ag}\left|\mathrm{Ag}^{+}\right| \mathrm{AgCl}\left|\mathrm{Cl}^{-}\right| \mathrm{Cl}_{2}, \mathrm{Pt} ; \Delta G_{f}^{0}(\mathrm{AgCl})=-109 \mathrm{~kJ} / \mathrm{mol}, \Delta G_{f}^{0}\left(\mathrm{Cl}^{-}\right)=-129 \mathrm{KJ} / \mathrm{mol}$ and $\Delta G^{0} f\left(\mathrm{Ag}^{+}\right)=78 \mathrm{KJ} / \mathrm{mol} . \mathrm{E}^{0}$ of the cell is:

1) -0.60 v
2) 0.60 v
3)6.0v
3) None
5. During the charging of a lead-acid storage battery, the cathode reaction is
(M-2009)
1) Formation of PbSO_{4}
2) Reduction of Pb^{+2} to Pb
3) Formation of PbO_{2}
4) Oxidation of Pb to $\mathrm{Pb}^{2 \mathrm{t}}$
6. When 3.86 amperes current are passed through an electorlyte for 50 minutes, 2.4 grams of a divalent metal is deposited. The gram atomic weight of the metal (in grams) is
(M-2007)
1) 24
2) 12
3) 64
4) 40

7 What is the quantity of electricity (in coulombs) required to deposit all the silver from $\mathbf{2 5 0} \mathbf{~ m l}$ of $1 \mathrm{M} \mathrm{AgNO}_{3}$ solution? $(\mathrm{Ag}=108)$
(E-2005)

1) 2412.5
2) 24125
3) 4825.0
4) 48250

KEY

1)3
2)2
3) 4
4) 2
5) 2
6) 4
7) 2

