ELECTRO CHEMISTRY

1. What is the electrochemical equivalent (in g coulomb ⁻¹) of silver?	[M2005]
--	---------

- 1) 108F 2)108/F
- 3) 108/96500
- 4) 96500/108

2. Which reaction is not feasible?

(CBSE PMT)

- 1) $2KI + Br_2 \rightarrow 2KBr + I_2$
- 2) $2KBr + I_2 \rightarrow 2KI + Br_2$
- 3) $2KBr + Cl_2 \rightarrow 2KCl + Br_2$
- 4) $2H_2O + 2F_2 \rightarrow 4HF + O_2$
- 3. The standard Potentials at 25^0 C for the half reactions are given against them below: (M-2009)

$$Zn^{2+} + 2e^{-} \rightarrow Zn; E^{0} = -0.762V, Mg^{2+} + 2e^{-} \rightarrow Mg; E^{0} = -2.37V$$

When Zn dust is added to a solution of MgCl₂

- 1) Magnesium is precipitated
- 2) Zinc dissolves in the solution
- 3) Zinc chloride is formed
- 4) No reaction takes place
- **4** For the following cell reaction

(E-2009)

 $Ag/Ag^{+}/AgCl/Cl^{-}/Cl_{2}$, Pt; ΔG_{f}^{0} (AgCl) = -109kJ/mol, ΔG_{f}^{0} (Cl⁻) = -129KJ / mol and

$$\Delta G^0 f(Ag^+) = 78KJ / mol.E^0$$
 of the cell is:

- 1) -0.60v
- 2)0.60v
- 3)6.0v
- 4) None
- 5. During the charging of a lead-acid storage battery, the cathode reaction is (M-2009)
 - 1) Formation of PbSO₄
- 2) Reduction of Pb⁺² to Pb
- 3) Formation of PbO₂
- 4) Oxidation of Pb to Pb^{2t}
- 6. When 3.86 amperes current are passed through an electorlyte for 50 minutes, 2.4 grams of a divalent metal is deposited. The gram atomic weight of the metal (in grams) is

(M-2007)

- 1) 24
- 2) 12
- 3) 64
- 4) 40
- 7 What is the quantity of electricity (in coulombs) required to deposit all the silver from 250 ml of 1 M AgNO $_3$ solution? (Ag = 108) (E 2005)
 - 1) 2412.5
- 2) 24125
- 3) 4825.0
- 4) 48250

KEY

4) 2

- 1)3 2)2
- 3) 4
- 5) 2
- 6) 4
- 7) 2